Properties

Label 2-37e2-1.1-c1-0-63
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.92·2-s + 2.94·3-s + 1.70·4-s + 1.06·5-s + 5.67·6-s − 3.23·7-s − 0.564·8-s + 5.70·9-s + 2.05·10-s + 1.94·11-s + 5.03·12-s + 5.03·13-s − 6.23·14-s + 3.14·15-s − 4.50·16-s + 2.39·17-s + 10.9·18-s − 1.59·19-s + 1.82·20-s − 9.55·21-s + 3.74·22-s + 1.56·23-s − 1.66·24-s − 3.85·25-s + 9.69·26-s + 7.96·27-s − 5.52·28-s + ⋯
L(s)  = 1  + 1.36·2-s + 1.70·3-s + 0.853·4-s + 0.477·5-s + 2.31·6-s − 1.22·7-s − 0.199·8-s + 1.90·9-s + 0.650·10-s + 0.586·11-s + 1.45·12-s + 1.39·13-s − 1.66·14-s + 0.813·15-s − 1.12·16-s + 0.580·17-s + 2.58·18-s − 0.365·19-s + 0.407·20-s − 2.08·21-s + 0.798·22-s + 0.326·23-s − 0.339·24-s − 0.771·25-s + 1.90·26-s + 1.53·27-s − 1.04·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.798831437\)
\(L(\frac12)\) \(\approx\) \(5.798831437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 - 1.92T + 2T^{2} \)
3 \( 1 - 2.94T + 3T^{2} \)
5 \( 1 - 1.06T + 5T^{2} \)
7 \( 1 + 3.23T + 7T^{2} \)
11 \( 1 - 1.94T + 11T^{2} \)
13 \( 1 - 5.03T + 13T^{2} \)
17 \( 1 - 2.39T + 17T^{2} \)
19 \( 1 + 1.59T + 19T^{2} \)
23 \( 1 - 1.56T + 23T^{2} \)
29 \( 1 - 2.17T + 29T^{2} \)
31 \( 1 + 0.944T + 31T^{2} \)
41 \( 1 + 9.49T + 41T^{2} \)
43 \( 1 + 7.59T + 43T^{2} \)
47 \( 1 + 3.03T + 47T^{2} \)
53 \( 1 + 8.93T + 53T^{2} \)
59 \( 1 - 0.235T + 59T^{2} \)
61 \( 1 - 14.6T + 61T^{2} \)
67 \( 1 - 9.29T + 67T^{2} \)
71 \( 1 - 0.841T + 71T^{2} \)
73 \( 1 + 5.11T + 73T^{2} \)
79 \( 1 - 6.62T + 79T^{2} \)
83 \( 1 + 1.99T + 83T^{2} \)
89 \( 1 - 7.92T + 89T^{2} \)
97 \( 1 + 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.536948610791443588867270576775, −8.796147965292113531598448989538, −8.131675151643865939787262317214, −6.75320282879949568213815270158, −6.40618368414328431500234534153, −5.32403613735928081012505640494, −4.00392776732441349331903316491, −3.52690211818298438878771683038, −2.91738676402918929893210922345, −1.74393152345820537615937311509, 1.74393152345820537615937311509, 2.91738676402918929893210922345, 3.52690211818298438878771683038, 4.00392776732441349331903316491, 5.32403613735928081012505640494, 6.40618368414328431500234534153, 6.75320282879949568213815270158, 8.131675151643865939787262317214, 8.796147965292113531598448989538, 9.536948610791443588867270576775

Graph of the $Z$-function along the critical line