Properties

Label 2-37e2-1.1-c1-0-31
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.48·2-s + 2.16·3-s + 0.193·4-s + 2.23·5-s − 3.20·6-s − 3.28·7-s + 2.67·8-s + 1.68·9-s − 3.30·10-s + 2.94·11-s + 0.418·12-s + 5.66·13-s + 4.86·14-s + 4.83·15-s − 4.34·16-s − 0.266·17-s − 2.49·18-s + 3.40·19-s + 0.432·20-s − 7.10·21-s − 4.36·22-s − 1.09·23-s + 5.79·24-s − 0.0147·25-s − 8.39·26-s − 2.84·27-s − 0.635·28-s + ⋯
L(s)  = 1  − 1.04·2-s + 1.24·3-s + 0.0967·4-s + 0.998·5-s − 1.30·6-s − 1.24·7-s + 0.945·8-s + 0.561·9-s − 1.04·10-s + 0.887·11-s + 0.120·12-s + 1.57·13-s + 1.29·14-s + 1.24·15-s − 1.08·16-s − 0.0645·17-s − 0.588·18-s + 0.781·19-s + 0.0966·20-s − 1.55·21-s − 0.929·22-s − 0.228·23-s + 1.18·24-s − 0.00294·25-s − 1.64·26-s − 0.547·27-s − 0.120·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.625449793\)
\(L(\frac12)\) \(\approx\) \(1.625449793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 + 1.48T + 2T^{2} \)
3 \( 1 - 2.16T + 3T^{2} \)
5 \( 1 - 2.23T + 5T^{2} \)
7 \( 1 + 3.28T + 7T^{2} \)
11 \( 1 - 2.94T + 11T^{2} \)
13 \( 1 - 5.66T + 13T^{2} \)
17 \( 1 + 0.266T + 17T^{2} \)
19 \( 1 - 3.40T + 19T^{2} \)
23 \( 1 + 1.09T + 23T^{2} \)
29 \( 1 + 7.87T + 29T^{2} \)
31 \( 1 - 9.50T + 31T^{2} \)
41 \( 1 - 8.90T + 41T^{2} \)
43 \( 1 + 1.44T + 43T^{2} \)
47 \( 1 - 3.66T + 47T^{2} \)
53 \( 1 - 1.67T + 53T^{2} \)
59 \( 1 - 2.76T + 59T^{2} \)
61 \( 1 - 8.06T + 61T^{2} \)
67 \( 1 + 6.21T + 67T^{2} \)
71 \( 1 + 0.971T + 71T^{2} \)
73 \( 1 - 0.870T + 73T^{2} \)
79 \( 1 + 1.18T + 79T^{2} \)
83 \( 1 - 9.17T + 83T^{2} \)
89 \( 1 - 3.62T + 89T^{2} \)
97 \( 1 - 7.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.492595966544262645224097455748, −8.967726309298723236944495067172, −8.321288892494820732249471019276, −7.42047074539510686495778028026, −6.43440602243154843064918870126, −5.75344917094015121773396949248, −4.08402044478253206362336385033, −3.35898684893703827112196958518, −2.19689510638038358328228720238, −1.10393713392436699541066547774, 1.10393713392436699541066547774, 2.19689510638038358328228720238, 3.35898684893703827112196958518, 4.08402044478253206362336385033, 5.75344917094015121773396949248, 6.43440602243154843064918870126, 7.42047074539510686495778028026, 8.321288892494820732249471019276, 8.967726309298723236944495067172, 9.492595966544262645224097455748

Graph of the $Z$-function along the critical line