Properties

Label 2-37e2-1.1-c1-0-48
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.966·2-s + 1.18·3-s − 1.06·4-s + 3.99·5-s + 1.14·6-s + 0.596·7-s − 2.96·8-s − 1.60·9-s + 3.86·10-s + 5.38·11-s − 1.25·12-s − 0.870·13-s + 0.576·14-s + 4.71·15-s − 0.731·16-s − 1.89·17-s − 1.55·18-s + 2.15·19-s − 4.25·20-s + 0.704·21-s + 5.20·22-s + 2.92·23-s − 3.50·24-s + 10.9·25-s − 0.841·26-s − 5.43·27-s − 0.635·28-s + ⋯
L(s)  = 1  + 0.683·2-s + 0.682·3-s − 0.532·4-s + 1.78·5-s + 0.466·6-s + 0.225·7-s − 1.04·8-s − 0.534·9-s + 1.22·10-s + 1.62·11-s − 0.363·12-s − 0.241·13-s + 0.154·14-s + 1.21·15-s − 0.182·16-s − 0.460·17-s − 0.365·18-s + 0.494·19-s − 0.952·20-s + 0.153·21-s + 1.11·22-s + 0.609·23-s − 0.714·24-s + 2.19·25-s − 0.164·26-s − 1.04·27-s − 0.120·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.486415933\)
\(L(\frac12)\) \(\approx\) \(3.486415933\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 - 0.966T + 2T^{2} \)
3 \( 1 - 1.18T + 3T^{2} \)
5 \( 1 - 3.99T + 5T^{2} \)
7 \( 1 - 0.596T + 7T^{2} \)
11 \( 1 - 5.38T + 11T^{2} \)
13 \( 1 + 0.870T + 13T^{2} \)
17 \( 1 + 1.89T + 17T^{2} \)
19 \( 1 - 2.15T + 19T^{2} \)
23 \( 1 - 2.92T + 23T^{2} \)
29 \( 1 - 4.57T + 29T^{2} \)
31 \( 1 + 0.253T + 31T^{2} \)
41 \( 1 - 6.55T + 41T^{2} \)
43 \( 1 + 7.71T + 43T^{2} \)
47 \( 1 + 5.38T + 47T^{2} \)
53 \( 1 + 7.24T + 53T^{2} \)
59 \( 1 - 3.93T + 59T^{2} \)
61 \( 1 - 11.6T + 61T^{2} \)
67 \( 1 - 4.11T + 67T^{2} \)
71 \( 1 + 9.61T + 71T^{2} \)
73 \( 1 + 12.0T + 73T^{2} \)
79 \( 1 - 0.740T + 79T^{2} \)
83 \( 1 + 5.72T + 83T^{2} \)
89 \( 1 - 11.0T + 89T^{2} \)
97 \( 1 - 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.424098100524731312272323273842, −8.993688701807049700693612576287, −8.306333205447988517819314417413, −6.78716036176239784741245112462, −6.17750664264119024894741773525, −5.37385718430704317345306073520, −4.57963286300168097051918271495, −3.42399947273380855767129969987, −2.56735390115225979537868776219, −1.39765026989014382833316645918, 1.39765026989014382833316645918, 2.56735390115225979537868776219, 3.42399947273380855767129969987, 4.57963286300168097051918271495, 5.37385718430704317345306073520, 6.17750664264119024894741773525, 6.78716036176239784741245112462, 8.306333205447988517819314417413, 8.993688701807049700693612576287, 9.424098100524731312272323273842

Graph of the $Z$-function along the critical line