Properties

Label 2-37e2-1.1-c1-0-37
Degree $2$
Conductor $1369$
Sign $1$
Analytic cond. $10.9315$
Root an. cond. $3.30628$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.63·2-s + 1.29·3-s + 0.661·4-s + 4.07·5-s − 2.11·6-s + 2.52·7-s + 2.18·8-s − 1.31·9-s − 6.65·10-s − 0.486·11-s + 0.858·12-s + 2.08·13-s − 4.11·14-s + 5.29·15-s − 4.88·16-s − 2.18·17-s + 2.14·18-s + 1.54·19-s + 2.69·20-s + 3.27·21-s + 0.793·22-s + 7.37·23-s + 2.83·24-s + 11.6·25-s − 3.40·26-s − 5.60·27-s + 1.66·28-s + ⋯
L(s)  = 1  − 1.15·2-s + 0.749·3-s + 0.330·4-s + 1.82·5-s − 0.864·6-s + 0.952·7-s + 0.772·8-s − 0.438·9-s − 2.10·10-s − 0.146·11-s + 0.247·12-s + 0.578·13-s − 1.09·14-s + 1.36·15-s − 1.22·16-s − 0.528·17-s + 0.505·18-s + 0.354·19-s + 0.602·20-s + 0.713·21-s + 0.169·22-s + 1.53·23-s + 0.578·24-s + 2.32·25-s − 0.666·26-s − 1.07·27-s + 0.315·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1369 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1369\)    =    \(37^{2}\)
Sign: $1$
Analytic conductor: \(10.9315\)
Root analytic conductor: \(3.30628\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1369,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.757483134\)
\(L(\frac12)\) \(\approx\) \(1.757483134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad37 \( 1 \)
good2 \( 1 + 1.63T + 2T^{2} \)
3 \( 1 - 1.29T + 3T^{2} \)
5 \( 1 - 4.07T + 5T^{2} \)
7 \( 1 - 2.52T + 7T^{2} \)
11 \( 1 + 0.486T + 11T^{2} \)
13 \( 1 - 2.08T + 13T^{2} \)
17 \( 1 + 2.18T + 17T^{2} \)
19 \( 1 - 1.54T + 19T^{2} \)
23 \( 1 - 7.37T + 23T^{2} \)
29 \( 1 - 4.65T + 29T^{2} \)
31 \( 1 + 1.14T + 31T^{2} \)
41 \( 1 + 10.7T + 41T^{2} \)
43 \( 1 - 4.08T + 43T^{2} \)
47 \( 1 + 4.86T + 47T^{2} \)
53 \( 1 - 9.12T + 53T^{2} \)
59 \( 1 + 9.77T + 59T^{2} \)
61 \( 1 + 3.99T + 61T^{2} \)
67 \( 1 - 2.70T + 67T^{2} \)
71 \( 1 + 4.97T + 71T^{2} \)
73 \( 1 - 3.97T + 73T^{2} \)
79 \( 1 + 11.6T + 79T^{2} \)
83 \( 1 - 1.23T + 83T^{2} \)
89 \( 1 + 3.61T + 89T^{2} \)
97 \( 1 + 5.37T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.392685155394539158803699304358, −8.753946044500634070455821784185, −8.466860327927329549440419300732, −7.40133653347110221032265227950, −6.47930951486230388514698130992, −5.42109202597658391983246595237, −4.70533848241891722358195697819, −3.02081278167604880995327249150, −2.03273214146964295602233158128, −1.26047768118436227322104932205, 1.26047768118436227322104932205, 2.03273214146964295602233158128, 3.02081278167604880995327249150, 4.70533848241891722358195697819, 5.42109202597658391983246595237, 6.47930951486230388514698130992, 7.40133653347110221032265227950, 8.466860327927329549440419300732, 8.753946044500634070455821784185, 9.392685155394539158803699304358

Graph of the $Z$-function along the critical line