Properties

Label 1323.2.i.d.1097.21
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.21
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.70883i q^{2} -5.33776 q^{4} +(0.601464 + 1.04177i) q^{5} -9.04141i q^{8} +(-2.82197 + 1.62926i) q^{10} +(-2.15351 - 1.24333i) q^{11} +(-1.63211 - 0.942300i) q^{13} +13.8161 q^{16} +(0.601863 + 1.04246i) q^{17} +(-6.46933 - 3.73507i) q^{19} +(-3.21047 - 5.56070i) q^{20} +(3.36797 - 5.83350i) q^{22} +(2.63359 - 1.52050i) q^{23} +(1.77648 - 3.07696i) q^{25} +(2.55253 - 4.42111i) q^{26} +(0.173847 - 0.100371i) q^{29} -3.50314i q^{31} +19.3427i q^{32} +(-2.82384 + 1.63034i) q^{34} +(-0.865458 + 1.49902i) q^{37} +(10.1177 - 17.5243i) q^{38} +(9.41904 - 5.43809i) q^{40} +(3.36029 - 5.82020i) q^{41} +(0.00656005 + 0.0113623i) q^{43} +(11.4949 + 6.63660i) q^{44} +(4.11878 + 7.13394i) q^{46} +1.43481 q^{47} +(8.33495 + 4.81219i) q^{50} +(8.71182 + 5.02977i) q^{52} +(8.58085 - 4.95416i) q^{53} -2.99128i q^{55} +(0.271887 + 0.470923i) q^{58} -12.2191 q^{59} -11.2457i q^{61} +9.48942 q^{62} -24.7638 q^{64} -2.26704i q^{65} -5.15865 q^{67} +(-3.21260 - 5.56438i) q^{68} +12.0452i q^{71} +(-7.51020 + 4.33602i) q^{73} +(-4.06058 - 2.34438i) q^{74} +(34.5317 + 19.9369i) q^{76} +5.49601 q^{79} +(8.30991 + 14.3932i) q^{80} +(15.7659 + 9.10246i) q^{82} +(1.60854 + 2.78607i) q^{83} +(-0.723998 + 1.25400i) q^{85} +(-0.0307786 + 0.0177700i) q^{86} +(-11.2415 + 19.4708i) q^{88} +(3.98364 - 6.89986i) q^{89} +(-14.0574 + 8.11607i) q^{92} +3.88665i q^{94} -8.98604i q^{95} +(-2.06260 + 1.19084i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.70883i 1.91543i 0.287716 + 0.957716i \(0.407104\pi\)
−0.287716 + 0.957716i \(0.592896\pi\)
\(3\) 0 0
\(4\) −5.33776 −2.66888
\(5\) 0.601464 + 1.04177i 0.268983 + 0.465892i 0.968599 0.248626i \(-0.0799791\pi\)
−0.699616 + 0.714519i \(0.746646\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 9.04141i 3.19662i
\(9\) 0 0
\(10\) −2.82197 + 1.62926i −0.892385 + 0.515219i
\(11\) −2.15351 1.24333i −0.649309 0.374879i 0.138882 0.990309i \(-0.455649\pi\)
−0.788191 + 0.615430i \(0.788982\pi\)
\(12\) 0 0
\(13\) −1.63211 0.942300i −0.452666 0.261347i 0.256289 0.966600i \(-0.417500\pi\)
−0.708956 + 0.705253i \(0.750833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 13.8161 3.45403
\(17\) 0.601863 + 1.04246i 0.145973 + 0.252833i 0.929736 0.368228i \(-0.120035\pi\)
−0.783762 + 0.621061i \(0.786702\pi\)
\(18\) 0 0
\(19\) −6.46933 3.73507i −1.48417 0.856883i −0.484327 0.874887i \(-0.660936\pi\)
−0.999838 + 0.0180038i \(0.994269\pi\)
\(20\) −3.21047 5.56070i −0.717883 1.24341i
\(21\) 0 0
\(22\) 3.36797 5.83350i 0.718054 1.24371i
\(23\) 2.63359 1.52050i 0.549141 0.317047i −0.199634 0.979870i \(-0.563975\pi\)
0.748775 + 0.662824i \(0.230642\pi\)
\(24\) 0 0
\(25\) 1.77648 3.07696i 0.355296 0.615391i
\(26\) 2.55253 4.42111i 0.500592 0.867052i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.173847 0.100371i 0.0322826 0.0186384i −0.483772 0.875194i \(-0.660734\pi\)
0.516054 + 0.856556i \(0.327400\pi\)
\(30\) 0 0
\(31\) 3.50314i 0.629183i −0.949227 0.314592i \(-0.898132\pi\)
0.949227 0.314592i \(-0.101868\pi\)
\(32\) 19.3427i 3.41934i
\(33\) 0 0
\(34\) −2.82384 + 1.63034i −0.484285 + 0.279602i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.865458 + 1.49902i −0.142280 + 0.246437i −0.928355 0.371695i \(-0.878777\pi\)
0.786075 + 0.618132i \(0.212110\pi\)
\(38\) 10.1177 17.5243i 1.64130 2.84282i
\(39\) 0 0
\(40\) 9.41904 5.43809i 1.48928 0.859837i
\(41\) 3.36029 5.82020i 0.524790 0.908963i −0.474793 0.880097i \(-0.657477\pi\)
0.999583 0.0288655i \(-0.00918944\pi\)
\(42\) 0 0
\(43\) 0.00656005 + 0.0113623i 0.00100040 + 0.00173274i 0.866525 0.499133i \(-0.166348\pi\)
−0.865525 + 0.500866i \(0.833015\pi\)
\(44\) 11.4949 + 6.63660i 1.73293 + 1.00051i
\(45\) 0 0
\(46\) 4.11878 + 7.13394i 0.607281 + 1.05184i
\(47\) 1.43481 0.209288 0.104644 0.994510i \(-0.466630\pi\)
0.104644 + 0.994510i \(0.466630\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8.33495 + 4.81219i 1.17874 + 0.680546i
\(51\) 0 0
\(52\) 8.71182 + 5.02977i 1.20811 + 0.697504i
\(53\) 8.58085 4.95416i 1.17867 0.680506i 0.222964 0.974827i \(-0.428427\pi\)
0.955707 + 0.294321i \(0.0950935\pi\)
\(54\) 0 0
\(55\) 2.99128i 0.403344i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.271887 + 0.470923i 0.0357005 + 0.0618352i
\(59\) −12.2191 −1.59079 −0.795394 0.606092i \(-0.792736\pi\)
−0.795394 + 0.606092i \(0.792736\pi\)
\(60\) 0 0
\(61\) 11.2457i 1.43986i −0.694047 0.719930i \(-0.744174\pi\)
0.694047 0.719930i \(-0.255826\pi\)
\(62\) 9.48942 1.20516
\(63\) 0 0
\(64\) −24.7638 −3.09548
\(65\) 2.26704i 0.281192i
\(66\) 0 0
\(67\) −5.15865 −0.630229 −0.315115 0.949054i \(-0.602043\pi\)
−0.315115 + 0.949054i \(0.602043\pi\)
\(68\) −3.21260 5.56438i −0.389585 0.674781i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0452i 1.42950i 0.699379 + 0.714751i \(0.253460\pi\)
−0.699379 + 0.714751i \(0.746540\pi\)
\(72\) 0 0
\(73\) −7.51020 + 4.33602i −0.879003 + 0.507493i −0.870330 0.492470i \(-0.836094\pi\)
−0.00867336 + 0.999962i \(0.502761\pi\)
\(74\) −4.06058 2.34438i −0.472033 0.272528i
\(75\) 0 0
\(76\) 34.5317 + 19.9369i 3.96106 + 2.28692i
\(77\) 0 0
\(78\) 0 0
\(79\) 5.49601 0.618350 0.309175 0.951005i \(-0.399947\pi\)
0.309175 + 0.951005i \(0.399947\pi\)
\(80\) 8.30991 + 14.3932i 0.929076 + 1.60921i
\(81\) 0 0
\(82\) 15.7659 + 9.10246i 1.74106 + 1.00520i
\(83\) 1.60854 + 2.78607i 0.176560 + 0.305811i 0.940700 0.339239i \(-0.110170\pi\)
−0.764140 + 0.645051i \(0.776836\pi\)
\(84\) 0 0
\(85\) −0.723998 + 1.25400i −0.0785286 + 0.136016i
\(86\) −0.0307786 + 0.0177700i −0.00331894 + 0.00191619i
\(87\) 0 0
\(88\) −11.2415 + 19.4708i −1.19835 + 2.07559i
\(89\) 3.98364 6.89986i 0.422265 0.731384i −0.573896 0.818928i \(-0.694569\pi\)
0.996161 + 0.0875442i \(0.0279019\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −14.0574 + 8.11607i −1.46559 + 0.846159i
\(93\) 0 0
\(94\) 3.88665i 0.400877i
\(95\) 8.98604i 0.921948i
\(96\) 0 0
\(97\) −2.06260 + 1.19084i −0.209425 + 0.120912i −0.601044 0.799216i \(-0.705249\pi\)
0.391619 + 0.920128i \(0.371915\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.48242 + 16.4240i −0.948242 + 1.64240i
\(101\) −4.73272 + 8.19730i −0.470923 + 0.815662i −0.999447 0.0332561i \(-0.989412\pi\)
0.528524 + 0.848918i \(0.322746\pi\)
\(102\) 0 0
\(103\) −14.9460 + 8.62908i −1.47267 + 0.850249i −0.999528 0.0307347i \(-0.990215\pi\)
−0.473147 + 0.880984i \(0.656882\pi\)
\(104\) −8.51973 + 14.7566i −0.835428 + 1.44700i
\(105\) 0 0
\(106\) 13.4200 + 23.2441i 1.30346 + 2.25766i
\(107\) −8.55935 4.94175i −0.827464 0.477737i 0.0255196 0.999674i \(-0.491876\pi\)
−0.852984 + 0.521938i \(0.825209\pi\)
\(108\) 0 0
\(109\) −5.20678 9.01841i −0.498719 0.863807i 0.501280 0.865285i \(-0.332863\pi\)
−0.999999 + 0.00147852i \(0.999529\pi\)
\(110\) 8.10286 0.772578
\(111\) 0 0
\(112\) 0 0
\(113\) 9.56137 + 5.52026i 0.899458 + 0.519303i 0.877024 0.480446i \(-0.159525\pi\)
0.0224339 + 0.999748i \(0.492858\pi\)
\(114\) 0 0
\(115\) 3.16802 + 1.82906i 0.295419 + 0.170560i
\(116\) −0.927954 + 0.535755i −0.0861584 + 0.0497436i
\(117\) 0 0
\(118\) 33.0994i 3.04705i
\(119\) 0 0
\(120\) 0 0
\(121\) −2.40825 4.17121i −0.218932 0.379201i
\(122\) 30.4626 2.75795
\(123\) 0 0
\(124\) 18.6989i 1.67921i
\(125\) 10.2886 0.920241
\(126\) 0 0
\(127\) 13.8634 1.23018 0.615090 0.788457i \(-0.289119\pi\)
0.615090 + 0.788457i \(0.289119\pi\)
\(128\) 28.3956i 2.50984i
\(129\) 0 0
\(130\) 6.14102 0.538603
\(131\) −6.17975 10.7036i −0.539927 0.935181i −0.998907 0.0467344i \(-0.985119\pi\)
0.458981 0.888446i \(-0.348215\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.9739i 1.20716i
\(135\) 0 0
\(136\) 9.42529 5.44169i 0.808212 0.466621i
\(137\) 10.0991 + 5.83070i 0.862822 + 0.498150i 0.864956 0.501847i \(-0.167346\pi\)
−0.00213432 + 0.999998i \(0.500679\pi\)
\(138\) 0 0
\(139\) −8.73893 5.04543i −0.741227 0.427947i 0.0812884 0.996691i \(-0.474097\pi\)
−0.822515 + 0.568743i \(0.807430\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −32.6284 −2.73811
\(143\) 2.34318 + 4.05851i 0.195947 + 0.339390i
\(144\) 0 0
\(145\) 0.209126 + 0.120739i 0.0173670 + 0.0100268i
\(146\) −11.7455 20.3439i −0.972067 1.68367i
\(147\) 0 0
\(148\) 4.61960 8.00138i 0.379729 0.657710i
\(149\) 4.15010 2.39606i 0.339990 0.196293i −0.320278 0.947324i \(-0.603776\pi\)
0.660267 + 0.751031i \(0.270443\pi\)
\(150\) 0 0
\(151\) 5.65924 9.80209i 0.460542 0.797683i −0.538446 0.842660i \(-0.680988\pi\)
0.998988 + 0.0449774i \(0.0143216\pi\)
\(152\) −33.7703 + 58.4918i −2.73913 + 4.74431i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.64946 2.10702i 0.293132 0.169240i
\(156\) 0 0
\(157\) 14.7316i 1.17571i −0.808966 0.587856i \(-0.799972\pi\)
0.808966 0.587856i \(-0.200028\pi\)
\(158\) 14.8878i 1.18441i
\(159\) 0 0
\(160\) −20.1506 + 11.6339i −1.59304 + 0.919744i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.07900 15.7253i 0.711122 1.23170i −0.253314 0.967384i \(-0.581521\pi\)
0.964436 0.264316i \(-0.0851460\pi\)
\(164\) −17.9364 + 31.0668i −1.40060 + 2.42591i
\(165\) 0 0
\(166\) −7.54700 + 4.35726i −0.585761 + 0.338189i
\(167\) 0.599436 1.03825i 0.0463857 0.0803425i −0.841900 0.539633i \(-0.818563\pi\)
0.888286 + 0.459291i \(0.151896\pi\)
\(168\) 0 0
\(169\) −4.72414 8.18245i −0.363395 0.629419i
\(170\) −3.39688 1.96119i −0.260529 0.150416i
\(171\) 0 0
\(172\) −0.0350159 0.0606494i −0.00266994 0.00462447i
\(173\) −18.0081 −1.36913 −0.684564 0.728953i \(-0.740007\pi\)
−0.684564 + 0.728953i \(0.740007\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −29.7532 17.1780i −2.24273 1.29484i
\(177\) 0 0
\(178\) 18.6906 + 10.7910i 1.40092 + 0.808819i
\(179\) −13.1137 + 7.57118i −0.980162 + 0.565897i −0.902319 0.431069i \(-0.858137\pi\)
−0.0778428 + 0.996966i \(0.524803\pi\)
\(180\) 0 0
\(181\) 7.98716i 0.593681i −0.954927 0.296840i \(-0.904067\pi\)
0.954927 0.296840i \(-0.0959329\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −13.7475 23.8114i −1.01348 1.75540i
\(185\) −2.08217 −0.153084
\(186\) 0 0
\(187\) 2.99326i 0.218889i
\(188\) −7.65865 −0.558564
\(189\) 0 0
\(190\) 24.3416 1.76593
\(191\) 16.0170i 1.15895i −0.814991 0.579473i \(-0.803258\pi\)
0.814991 0.579473i \(-0.196742\pi\)
\(192\) 0 0
\(193\) −13.7094 −0.986821 −0.493410 0.869797i \(-0.664250\pi\)
−0.493410 + 0.869797i \(0.664250\pi\)
\(194\) −3.22579 5.58724i −0.231598 0.401140i
\(195\) 0 0
\(196\) 0 0
\(197\) 18.9248i 1.34834i 0.738577 + 0.674170i \(0.235498\pi\)
−0.738577 + 0.674170i \(0.764502\pi\)
\(198\) 0 0
\(199\) −21.5055 + 12.4162i −1.52449 + 0.880163i −0.524908 + 0.851159i \(0.675900\pi\)
−0.999579 + 0.0290036i \(0.990767\pi\)
\(200\) −27.8200 16.0619i −1.96717 1.13575i
\(201\) 0 0
\(202\) −22.2051 12.8201i −1.56235 0.902020i
\(203\) 0 0
\(204\) 0 0
\(205\) 8.08439 0.564638
\(206\) −23.3747 40.4862i −1.62859 2.82081i
\(207\) 0 0
\(208\) −22.5495 13.0189i −1.56352 0.902701i
\(209\) 9.28786 + 16.0870i 0.642454 + 1.11276i
\(210\) 0 0
\(211\) 3.60761 6.24857i 0.248358 0.430169i −0.714712 0.699419i \(-0.753442\pi\)
0.963070 + 0.269250i \(0.0867757\pi\)
\(212\) −45.8025 + 26.4441i −3.14573 + 1.81619i
\(213\) 0 0
\(214\) 13.3863 23.1858i 0.915072 1.58495i
\(215\) −0.00789127 + 0.0136681i −0.000538180 + 0.000932155i
\(216\) 0 0
\(217\) 0 0
\(218\) 24.4293 14.1043i 1.65456 0.955262i
\(219\) 0 0
\(220\) 15.9667i 1.07648i
\(221\) 2.26854i 0.152599i
\(222\) 0 0
\(223\) 21.0706 12.1651i 1.41099 0.814635i 0.415508 0.909590i \(-0.363604\pi\)
0.995482 + 0.0949545i \(0.0302705\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.9534 + 25.9001i −0.994688 + 1.72285i
\(227\) −0.240288 + 0.416192i −0.0159485 + 0.0276236i −0.873890 0.486125i \(-0.838410\pi\)
0.857941 + 0.513748i \(0.171743\pi\)
\(228\) 0 0
\(229\) 7.80442 4.50588i 0.515730 0.297757i −0.219456 0.975622i \(-0.570428\pi\)
0.735186 + 0.677865i \(0.237095\pi\)
\(230\) −4.95460 + 8.58162i −0.326697 + 0.565855i
\(231\) 0 0
\(232\) −0.907493 1.57182i −0.0595799 0.103195i
\(233\) 9.62742 + 5.55840i 0.630713 + 0.364143i 0.781028 0.624496i \(-0.214695\pi\)
−0.150315 + 0.988638i \(0.548029\pi\)
\(234\) 0 0
\(235\) 0.862985 + 1.49473i 0.0562949 + 0.0975057i
\(236\) 65.2225 4.24562
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0446 6.95395i −0.779100 0.449813i 0.0570114 0.998374i \(-0.481843\pi\)
−0.836111 + 0.548560i \(0.815176\pi\)
\(240\) 0 0
\(241\) 10.7181 + 6.18807i 0.690411 + 0.398609i 0.803766 0.594946i \(-0.202827\pi\)
−0.113355 + 0.993555i \(0.536160\pi\)
\(242\) 11.2991 6.52354i 0.726334 0.419349i
\(243\) 0 0
\(244\) 60.0266i 3.84281i
\(245\) 0 0
\(246\) 0 0
\(247\) 7.03911 + 12.1921i 0.447888 + 0.775764i
\(248\) −31.6734 −2.01126
\(249\) 0 0
\(250\) 27.8701i 1.76266i
\(251\) −19.7147 −1.24438 −0.622191 0.782866i \(-0.713757\pi\)
−0.622191 + 0.782866i \(0.713757\pi\)
\(252\) 0 0
\(253\) −7.56196 −0.475416
\(254\) 37.5537i 2.35633i
\(255\) 0 0
\(256\) 27.3911 1.71195
\(257\) −5.62025 9.73456i −0.350581 0.607225i 0.635770 0.771879i \(-0.280683\pi\)
−0.986351 + 0.164654i \(0.947349\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.1009i 0.750466i
\(261\) 0 0
\(262\) 28.9943 16.7399i 1.79127 1.03419i
\(263\) −2.82146 1.62897i −0.173979 0.100447i 0.410482 0.911869i \(-0.365360\pi\)
−0.584461 + 0.811422i \(0.698694\pi\)
\(264\) 0 0
\(265\) 10.3221 + 5.95949i 0.634084 + 0.366089i
\(266\) 0 0
\(267\) 0 0
\(268\) 27.5356 1.68200
\(269\) −0.121147 0.209832i −0.00738644 0.0127937i 0.862309 0.506383i \(-0.169018\pi\)
−0.869695 + 0.493590i \(0.835685\pi\)
\(270\) 0 0
\(271\) −0.929287 0.536524i −0.0564502 0.0325915i 0.471509 0.881861i \(-0.343709\pi\)
−0.527959 + 0.849270i \(0.677043\pi\)
\(272\) 8.31542 + 14.4027i 0.504196 + 0.873294i
\(273\) 0 0
\(274\) −15.7944 + 27.3567i −0.954173 + 1.65268i
\(275\) −7.65136 + 4.41751i −0.461394 + 0.266386i
\(276\) 0 0
\(277\) 2.45076 4.24485i 0.147252 0.255048i −0.782959 0.622074i \(-0.786290\pi\)
0.930211 + 0.367025i \(0.119624\pi\)
\(278\) 13.6672 23.6723i 0.819704 1.41977i
\(279\) 0 0
\(280\) 0 0
\(281\) −11.5613 + 6.67494i −0.689691 + 0.398194i −0.803496 0.595310i \(-0.797029\pi\)
0.113805 + 0.993503i \(0.463696\pi\)
\(282\) 0 0
\(283\) 3.75657i 0.223305i −0.993747 0.111653i \(-0.964386\pi\)
0.993747 0.111653i \(-0.0356144\pi\)
\(284\) 64.2943i 3.81517i
\(285\) 0 0
\(286\) −10.9938 + 6.34729i −0.650078 + 0.375323i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.77552 13.4676i 0.457384 0.792212i
\(290\) −0.327061 + 0.566486i −0.0192057 + 0.0332652i
\(291\) 0 0
\(292\) 40.0876 23.1446i 2.34595 1.35444i
\(293\) 6.38430 11.0579i 0.372975 0.646011i −0.617047 0.786926i \(-0.711671\pi\)
0.990022 + 0.140915i \(0.0450045\pi\)
\(294\) 0 0
\(295\) −7.34934 12.7294i −0.427895 0.741136i
\(296\) 13.5532 + 7.82496i 0.787765 + 0.454816i
\(297\) 0 0
\(298\) 6.49052 + 11.2419i 0.375986 + 0.651227i
\(299\) −5.73108 −0.331437
\(300\) 0 0
\(301\) 0 0
\(302\) 26.5522 + 15.3299i 1.52791 + 0.882137i
\(303\) 0 0
\(304\) −89.3810 51.6042i −5.12635 2.95970i
\(305\) 11.7154 6.76387i 0.670819 0.387298i
\(306\) 0 0
\(307\) 10.7257i 0.612148i 0.952008 + 0.306074i \(0.0990155\pi\)
−0.952008 + 0.306074i \(0.900984\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5.70755 + 9.88576i 0.324167 + 0.561473i
\(311\) 18.8349 1.06803 0.534013 0.845476i \(-0.320683\pi\)
0.534013 + 0.845476i \(0.320683\pi\)
\(312\) 0 0
\(313\) 26.0702i 1.47357i −0.676125 0.736787i \(-0.736342\pi\)
0.676125 0.736787i \(-0.263658\pi\)
\(314\) 39.9054 2.25199
\(315\) 0 0
\(316\) −29.3364 −1.65030
\(317\) 13.8899i 0.780134i −0.920786 0.390067i \(-0.872452\pi\)
0.920786 0.390067i \(-0.127548\pi\)
\(318\) 0 0
\(319\) −0.499177 −0.0279485
\(320\) −14.8946 25.7981i −0.832631 1.44216i
\(321\) 0 0
\(322\) 0 0
\(323\) 8.99200i 0.500328i
\(324\) 0 0
\(325\) −5.79883 + 3.34796i −0.321661 + 0.185711i
\(326\) 42.5971 + 24.5935i 2.35924 + 1.36211i
\(327\) 0 0
\(328\) −52.6228 30.3818i −2.90561 1.67755i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.48460 0.246496 0.123248 0.992376i \(-0.460669\pi\)
0.123248 + 0.992376i \(0.460669\pi\)
\(332\) −8.58600 14.8714i −0.471218 0.816173i
\(333\) 0 0
\(334\) 2.81245 + 1.62377i 0.153891 + 0.0888487i
\(335\) −3.10274 5.37411i −0.169521 0.293619i
\(336\) 0 0
\(337\) −16.4010 + 28.4074i −0.893420 + 1.54745i −0.0576723 + 0.998336i \(0.518368\pi\)
−0.835748 + 0.549113i \(0.814965\pi\)
\(338\) 22.1649 12.7969i 1.20561 0.696059i
\(339\) 0 0
\(340\) 3.86453 6.69356i 0.209583 0.363009i
\(341\) −4.35557 + 7.54407i −0.235867 + 0.408534i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.102732 0.0593121i 0.00553891 0.00319789i
\(345\) 0 0
\(346\) 48.7807i 2.62247i
\(347\) 13.4075i 0.719751i 0.933000 + 0.359876i \(0.117181\pi\)
−0.933000 + 0.359876i \(0.882819\pi\)
\(348\) 0 0
\(349\) −19.3276 + 11.1588i −1.03458 + 0.597316i −0.918294 0.395899i \(-0.870433\pi\)
−0.116288 + 0.993215i \(0.537100\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 24.0494 41.6548i 1.28184 2.22021i
\(353\) 8.60842 14.9102i 0.458180 0.793591i −0.540685 0.841225i \(-0.681835\pi\)
0.998865 + 0.0476341i \(0.0151682\pi\)
\(354\) 0 0
\(355\) −12.5483 + 7.24476i −0.665994 + 0.384512i
\(356\) −21.2637 + 36.8298i −1.12697 + 1.95198i
\(357\) 0 0
\(358\) −20.5090 35.5227i −1.08394 1.87743i
\(359\) 5.62867 + 3.24971i 0.297070 + 0.171513i 0.641126 0.767436i \(-0.278468\pi\)
−0.344056 + 0.938949i \(0.611801\pi\)
\(360\) 0 0
\(361\) 18.4015 + 31.8722i 0.968497 + 1.67749i
\(362\) 21.6358 1.13715
\(363\) 0 0
\(364\) 0 0
\(365\) −9.03424 5.21592i −0.472874 0.273014i
\(366\) 0 0
\(367\) −7.79734 4.50180i −0.407018 0.234992i 0.282490 0.959270i \(-0.408840\pi\)
−0.689508 + 0.724278i \(0.742173\pi\)
\(368\) 36.3860 21.0075i 1.89675 1.09509i
\(369\) 0 0
\(370\) 5.64024i 0.293222i
\(371\) 0 0
\(372\) 0 0
\(373\) −5.75312 9.96470i −0.297885 0.515953i 0.677767 0.735277i \(-0.262948\pi\)
−0.975652 + 0.219324i \(0.929615\pi\)
\(374\) 8.10824 0.419267
\(375\) 0 0
\(376\) 12.9727i 0.669015i
\(377\) −0.378318 −0.0194844
\(378\) 0 0
\(379\) 17.0982 0.878275 0.439138 0.898420i \(-0.355284\pi\)
0.439138 + 0.898420i \(0.355284\pi\)
\(380\) 47.9653i 2.46057i
\(381\) 0 0
\(382\) 43.3872 2.21988
\(383\) 8.10778 + 14.0431i 0.414288 + 0.717569i 0.995353 0.0962885i \(-0.0306971\pi\)
−0.581065 + 0.813857i \(0.697364\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.1363i 1.89019i
\(387\) 0 0
\(388\) 11.0097 6.35643i 0.558931 0.322699i
\(389\) −16.2358 9.37376i −0.823189 0.475269i 0.0283257 0.999599i \(-0.490982\pi\)
−0.851515 + 0.524330i \(0.824316\pi\)
\(390\) 0 0
\(391\) 3.17012 + 1.83027i 0.160320 + 0.0925607i
\(392\) 0 0
\(393\) 0 0
\(394\) −51.2642 −2.58265
\(395\) 3.30565 + 5.72556i 0.166326 + 0.288084i
\(396\) 0 0
\(397\) 26.8216 + 15.4854i 1.34614 + 0.777192i 0.987700 0.156362i \(-0.0499767\pi\)
0.358436 + 0.933554i \(0.383310\pi\)
\(398\) −33.6334 58.2548i −1.68589 2.92005i
\(399\) 0 0
\(400\) 24.5441 42.5116i 1.22720 2.12558i
\(401\) −0.801065 + 0.462495i −0.0400033 + 0.0230959i −0.519868 0.854246i \(-0.674019\pi\)
0.479865 + 0.877342i \(0.340686\pi\)
\(402\) 0 0
\(403\) −3.30101 + 5.71752i −0.164435 + 0.284810i
\(404\) 25.2621 43.7552i 1.25684 2.17690i
\(405\) 0 0
\(406\) 0 0
\(407\) 3.72755 2.15210i 0.184768 0.106676i
\(408\) 0 0
\(409\) 7.58159i 0.374885i 0.982276 + 0.187443i \(0.0600199\pi\)
−0.982276 + 0.187443i \(0.939980\pi\)
\(410\) 21.8992i 1.08153i
\(411\) 0 0
\(412\) 79.7782 46.0599i 3.93039 2.26921i
\(413\) 0 0
\(414\) 0 0
\(415\) −1.93496 + 3.35145i −0.0949834 + 0.164516i
\(416\) 18.2266 31.5695i 0.893635 1.54782i
\(417\) 0 0
\(418\) −43.5770 + 25.1592i −2.13142 + 1.23058i
\(419\) 2.85061 4.93740i 0.139262 0.241208i −0.787956 0.615732i \(-0.788860\pi\)
0.927217 + 0.374524i \(0.122194\pi\)
\(420\) 0 0
\(421\) −5.86189 10.1531i −0.285691 0.494832i 0.687085 0.726577i \(-0.258890\pi\)
−0.972777 + 0.231745i \(0.925557\pi\)
\(422\) 16.9263 + 9.77240i 0.823959 + 0.475713i
\(423\) 0 0
\(424\) −44.7926 77.5830i −2.17532 3.76776i
\(425\) 4.27680 0.207455
\(426\) 0 0
\(427\) 0 0
\(428\) 45.6877 + 26.3778i 2.20840 + 1.27502i
\(429\) 0 0
\(430\) −0.0370245 0.0213761i −0.00178548 0.00103085i
\(431\) −23.2973 + 13.4507i −1.12219 + 0.647897i −0.941959 0.335728i \(-0.891018\pi\)
−0.180231 + 0.983624i \(0.557685\pi\)
\(432\) 0 0
\(433\) 28.1028i 1.35053i 0.737574 + 0.675266i \(0.235971\pi\)
−0.737574 + 0.675266i \(0.764029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 27.7925 + 48.1381i 1.33102 + 2.30539i
\(437\) −22.7167 −1.08669
\(438\) 0 0
\(439\) 9.32629i 0.445120i −0.974919 0.222560i \(-0.928559\pi\)
0.974919 0.222560i \(-0.0714412\pi\)
\(440\) −27.0454 −1.28934
\(441\) 0 0
\(442\) 6.14510 0.292292
\(443\) 11.3407i 0.538812i −0.963027 0.269406i \(-0.913173\pi\)
0.963027 0.269406i \(-0.0868273\pi\)
\(444\) 0 0
\(445\) 9.58406 0.454328
\(446\) 32.9532 + 57.0766i 1.56038 + 2.70265i
\(447\) 0 0
\(448\) 0 0
\(449\) 15.3295i 0.723444i −0.932286 0.361722i \(-0.882189\pi\)
0.932286 0.361722i \(-0.117811\pi\)
\(450\) 0 0
\(451\) −14.4729 + 8.35592i −0.681501 + 0.393465i
\(452\) −51.0363 29.4658i −2.40054 1.38596i
\(453\) 0 0
\(454\) −1.12739 0.650900i −0.0529111 0.0305483i
\(455\) 0 0
\(456\) 0 0
\(457\) −9.17299 −0.429094 −0.214547 0.976714i \(-0.568828\pi\)
−0.214547 + 0.976714i \(0.568828\pi\)
\(458\) 12.2057 + 21.1408i 0.570333 + 0.987846i
\(459\) 0 0
\(460\) −16.9101 9.76305i −0.788438 0.455205i
\(461\) 16.5365 + 28.6420i 0.770181 + 1.33399i 0.937464 + 0.348083i \(0.113167\pi\)
−0.167283 + 0.985909i \(0.553499\pi\)
\(462\) 0 0
\(463\) 3.91594 6.78260i 0.181989 0.315214i −0.760569 0.649257i \(-0.775080\pi\)
0.942558 + 0.334043i \(0.108413\pi\)
\(464\) 2.40190 1.38674i 0.111505 0.0643776i
\(465\) 0 0
\(466\) −15.0567 + 26.0790i −0.697490 + 1.20809i
\(467\) −10.3385 + 17.9068i −0.478408 + 0.828627i −0.999694 0.0247555i \(-0.992119\pi\)
0.521286 + 0.853382i \(0.325453\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.04898 + 2.33768i −0.186765 + 0.107829i
\(471\) 0 0
\(472\) 110.478i 5.08515i
\(473\) 0.0326253i 0.00150011i
\(474\) 0 0
\(475\) −22.9853 + 13.2706i −1.05464 + 0.608895i
\(476\) 0 0
\(477\) 0 0
\(478\) 18.8371 32.6267i 0.861587 1.49231i
\(479\) −1.32999 + 2.30361i −0.0607688 + 0.105255i −0.894809 0.446449i \(-0.852689\pi\)
0.834040 + 0.551703i \(0.186022\pi\)
\(480\) 0 0
\(481\) 2.82505 1.63104i 0.128811 0.0743691i
\(482\) −16.7624 + 29.0334i −0.763508 + 1.32243i
\(483\) 0 0
\(484\) 12.8547 + 22.2649i 0.584303 + 1.01204i
\(485\) −2.48116 1.43250i −0.112664 0.0650465i
\(486\) 0 0
\(487\) 0.521900 + 0.903957i 0.0236495 + 0.0409622i 0.877608 0.479379i \(-0.159138\pi\)
−0.853958 + 0.520341i \(0.825805\pi\)
\(488\) −101.677 −4.60269
\(489\) 0 0
\(490\) 0 0
\(491\) −36.0415 20.8085i −1.62653 0.939076i −0.985118 0.171878i \(-0.945016\pi\)
−0.641410 0.767198i \(-0.721650\pi\)
\(492\) 0 0
\(493\) 0.209265 + 0.120819i 0.00942480 + 0.00544141i
\(494\) −33.0263 + 19.0677i −1.48592 + 0.857898i
\(495\) 0 0
\(496\) 48.3999i 2.17322i
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1447 + 27.9635i 0.722738 + 1.25182i 0.959898 + 0.280348i \(0.0904499\pi\)
−0.237161 + 0.971470i \(0.576217\pi\)
\(500\) −54.9181 −2.45601
\(501\) 0 0
\(502\) 53.4038i 2.38353i
\(503\) −39.9702 −1.78218 −0.891091 0.453825i \(-0.850059\pi\)
−0.891091 + 0.453825i \(0.850059\pi\)
\(504\) 0 0
\(505\) −11.3862 −0.506681
\(506\) 20.4841i 0.910627i
\(507\) 0 0
\(508\) −73.9996 −3.28320
\(509\) 11.3631 + 19.6815i 0.503661 + 0.872367i 0.999991 + 0.00423260i \(0.00134728\pi\)
−0.496330 + 0.868134i \(0.665319\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 17.4067i 0.769277i
\(513\) 0 0
\(514\) 26.3692 15.2243i 1.16310 0.671515i
\(515\) −17.9790 10.3802i −0.792249 0.457405i
\(516\) 0 0
\(517\) −3.08988 1.78394i −0.135893 0.0784576i
\(518\) 0 0
\(519\) 0 0
\(520\) −20.4972 −0.898863
\(521\) 15.0179 + 26.0118i 0.657948 + 1.13960i 0.981146 + 0.193268i \(0.0619087\pi\)
−0.323198 + 0.946331i \(0.604758\pi\)
\(522\) 0 0
\(523\) −0.675300 0.389885i −0.0295288 0.0170485i 0.485163 0.874424i \(-0.338760\pi\)
−0.514692 + 0.857375i \(0.672094\pi\)
\(524\) 32.9860 + 57.1334i 1.44100 + 2.49588i
\(525\) 0 0
\(526\) 4.41260 7.64285i 0.192399 0.333244i
\(527\) 3.65188 2.10841i 0.159078 0.0918439i
\(528\) 0 0
\(529\) −6.87614 + 11.9098i −0.298963 + 0.517819i
\(530\) −16.1433 + 27.9609i −0.701218 + 1.21455i
\(531\) 0 0
\(532\) 0 0
\(533\) −10.9688 + 6.33281i −0.475110 + 0.274305i
\(534\) 0 0
\(535\) 11.8891i 0.514012i
\(536\) 46.6415i 2.01460i
\(537\) 0 0
\(538\) 0.568399 0.328165i 0.0245054 0.0141482i
\(539\) 0 0
\(540\) 0 0
\(541\) −1.02015 + 1.76696i −0.0438598 + 0.0759674i −0.887122 0.461535i \(-0.847299\pi\)
0.843262 + 0.537503i \(0.180632\pi\)
\(542\) 1.45335 2.51728i 0.0624268 0.108126i
\(543\) 0 0
\(544\) −20.1640 + 11.6417i −0.864522 + 0.499132i
\(545\) 6.26338 10.8485i 0.268294 0.464699i
\(546\) 0 0
\(547\) −8.93590 15.4774i −0.382071 0.661767i 0.609287 0.792950i \(-0.291456\pi\)
−0.991358 + 0.131183i \(0.958123\pi\)
\(548\) −53.9064 31.1229i −2.30277 1.32950i
\(549\) 0 0
\(550\) −11.9663 20.7262i −0.510244 0.883769i
\(551\) −1.49957 −0.0638837
\(552\) 0 0
\(553\) 0 0
\(554\) 11.4986 + 6.63870i 0.488527 + 0.282051i
\(555\) 0 0
\(556\) 46.6463 + 26.9313i 1.97824 + 1.14214i
\(557\) 37.2049 21.4802i 1.57642 0.910147i 0.581068 0.813855i \(-0.302635\pi\)
0.995353 0.0962924i \(-0.0306984\pi\)
\(558\) 0 0
\(559\) 0.0247261i 0.00104580i
\(560\) 0 0
\(561\) 0 0
\(562\) −18.0813 31.3177i −0.762713 1.32106i
\(563\) 1.54748 0.0652184 0.0326092 0.999468i \(-0.489618\pi\)
0.0326092 + 0.999468i \(0.489618\pi\)
\(564\) 0 0
\(565\) 13.2810i 0.558734i
\(566\) 10.1759 0.427726
\(567\) 0 0
\(568\) 108.906 4.56958
\(569\) 9.99861i 0.419164i 0.977791 + 0.209582i \(0.0672103\pi\)
−0.977791 + 0.209582i \(0.932790\pi\)
\(570\) 0 0
\(571\) −2.79430 −0.116938 −0.0584689 0.998289i \(-0.518622\pi\)
−0.0584689 + 0.998289i \(0.518622\pi\)
\(572\) −12.5073 21.6634i −0.522958 0.905790i
\(573\) 0 0
\(574\) 0 0
\(575\) 10.8046i 0.450582i
\(576\) 0 0
\(577\) −3.23689 + 1.86882i −0.134754 + 0.0778000i −0.565861 0.824500i \(-0.691456\pi\)
0.431108 + 0.902300i \(0.358123\pi\)
\(578\) 36.4814 + 21.0626i 1.51743 + 0.876087i
\(579\) 0 0
\(580\) −1.11626 0.644475i −0.0463503 0.0267604i
\(581\) 0 0
\(582\) 0 0
\(583\) −24.6386 −1.02043
\(584\) 39.2037 + 67.9028i 1.62226 + 2.80984i
\(585\) 0 0
\(586\) 29.9540 + 17.2940i 1.23739 + 0.714407i
\(587\) −13.1249 22.7331i −0.541725 0.938295i −0.998805 0.0488692i \(-0.984438\pi\)
0.457081 0.889425i \(-0.348895\pi\)
\(588\) 0 0
\(589\) −13.0845 + 22.6630i −0.539136 + 0.933812i
\(590\) 34.4819 19.9081i 1.41960 0.819604i
\(591\) 0 0
\(592\) −11.9573 + 20.7106i −0.491441 + 0.851201i
\(593\) 1.79833 3.11481i 0.0738488 0.127910i −0.826736 0.562590i \(-0.809805\pi\)
0.900585 + 0.434680i \(0.143138\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22.1522 + 12.7896i −0.907391 + 0.523882i
\(597\) 0 0
\(598\) 15.5245i 0.634845i
\(599\) 23.8330i 0.973789i 0.873461 + 0.486895i \(0.161870\pi\)
−0.873461 + 0.486895i \(0.838130\pi\)
\(600\) 0 0
\(601\) 14.6034 8.43126i 0.595684 0.343918i −0.171658 0.985157i \(-0.554912\pi\)
0.767342 + 0.641238i \(0.221579\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −30.2076 + 52.3212i −1.22913 + 2.12892i
\(605\) 2.89695 5.01767i 0.117778 0.203997i
\(606\) 0 0
\(607\) −9.07737 + 5.24082i −0.368439 + 0.212718i −0.672776 0.739846i \(-0.734898\pi\)
0.304337 + 0.952564i \(0.401565\pi\)
\(608\) 72.2463 125.134i 2.92997 5.07487i
\(609\) 0 0
\(610\) 18.3222 + 31.7349i 0.741842 + 1.28491i
\(611\) −2.34176 1.35202i −0.0947377 0.0546968i
\(612\) 0 0
\(613\) 23.9500 + 41.4827i 0.967333 + 1.67547i 0.703213 + 0.710979i \(0.251748\pi\)
0.264120 + 0.964490i \(0.414919\pi\)
\(614\) −29.0541 −1.17253
\(615\) 0 0
\(616\) 0 0
\(617\) −4.69477 2.71053i −0.189004 0.109122i 0.402512 0.915415i \(-0.368137\pi\)
−0.591516 + 0.806293i \(0.701470\pi\)
\(618\) 0 0
\(619\) 27.9729 + 16.1501i 1.12432 + 0.649129i 0.942501 0.334202i \(-0.108467\pi\)
0.181823 + 0.983331i \(0.441800\pi\)
\(620\) −19.4799 + 11.2467i −0.782332 + 0.451680i
\(621\) 0 0
\(622\) 51.0204i 2.04573i
\(623\) 0 0
\(624\) 0 0
\(625\) −2.69418 4.66646i −0.107767 0.186658i
\(626\) 70.6196 2.82253
\(627\) 0 0
\(628\) 78.6338i 3.13783i
\(629\) −2.08355 −0.0830765
\(630\) 0 0
\(631\) −18.3539 −0.730656 −0.365328 0.930879i \(-0.619043\pi\)
−0.365328 + 0.930879i \(0.619043\pi\)
\(632\) 49.6917i 1.97663i
\(633\) 0 0
\(634\) 37.6253 1.49429
\(635\) 8.33836 + 14.4425i 0.330898 + 0.573132i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.35218i 0.0535335i
\(639\) 0 0
\(640\) 29.5816 17.0789i 1.16931 0.675104i
\(641\) 9.07003 + 5.23658i 0.358245 + 0.206833i 0.668310 0.743882i \(-0.267018\pi\)
−0.310066 + 0.950715i \(0.600351\pi\)
\(642\) 0 0
\(643\) −3.37572 1.94897i −0.133125 0.0768600i 0.431958 0.901894i \(-0.357823\pi\)
−0.565084 + 0.825034i \(0.691156\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.3578 0.958344
\(647\) −6.20269 10.7434i −0.243853 0.422366i 0.717955 0.696089i \(-0.245078\pi\)
−0.961809 + 0.273723i \(0.911745\pi\)
\(648\) 0 0
\(649\) 26.3140 + 15.1924i 1.03291 + 0.596353i
\(650\) −9.06905 15.7081i −0.355717 0.616120i
\(651\) 0 0
\(652\) −48.4615 + 83.9377i −1.89790 + 3.28726i
\(653\) −12.2749 + 7.08690i −0.480353 + 0.277332i −0.720564 0.693389i \(-0.756117\pi\)
0.240211 + 0.970721i \(0.422784\pi\)
\(654\) 0 0
\(655\) 7.43379 12.8757i 0.290462 0.503095i
\(656\) 46.4263 80.4126i 1.81264 3.13959i
\(657\) 0 0
\(658\) 0 0
\(659\) 17.2962 9.98594i 0.673763 0.388997i −0.123738 0.992315i \(-0.539488\pi\)
0.797501 + 0.603318i \(0.206155\pi\)
\(660\) 0 0
\(661\) 24.3056i 0.945378i −0.881229 0.472689i \(-0.843283\pi\)
0.881229 0.472689i \(-0.156717\pi\)
\(662\) 12.1480i 0.472146i
\(663\) 0 0
\(664\) 25.1900 14.5435i 0.977563 0.564396i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.305228 0.528670i 0.0118185 0.0204702i
\(668\) −3.19964 + 5.54194i −0.123798 + 0.214424i
\(669\) 0 0
\(670\) 14.5575 8.40480i 0.562407 0.324706i
\(671\) −13.9821 + 24.2177i −0.539773 + 0.934914i
\(672\) 0 0
\(673\) −1.82521 3.16135i −0.0703566 0.121861i 0.828701 0.559692i \(-0.189080\pi\)
−0.899058 + 0.437830i \(0.855747\pi\)
\(674\) −76.9508 44.4275i −2.96403 1.71129i
\(675\) 0 0
\(676\) 25.2163 + 43.6759i 0.969858 + 1.67984i
\(677\) 1.93735 0.0744585 0.0372292 0.999307i \(-0.488147\pi\)
0.0372292 + 0.999307i \(0.488147\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11.3379 + 6.54597i 0.434790 + 0.251026i
\(681\) 0 0
\(682\) −20.4356 11.7985i −0.782519 0.451788i
\(683\) −16.8815 + 9.74656i −0.645954 + 0.372942i −0.786905 0.617075i \(-0.788318\pi\)
0.140950 + 0.990017i \(0.454984\pi\)
\(684\) 0 0
\(685\) 14.0278i 0.535976i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.0906345 + 0.156983i 0.00345541 + 0.00598494i
\(689\) −18.6732 −0.711393
\(690\) 0 0
\(691\) 41.3215i 1.57194i 0.618261 + 0.785972i \(0.287837\pi\)
−0.618261 + 0.785972i \(0.712163\pi\)
\(692\) 96.1226 3.65403
\(693\) 0 0
\(694\) −36.3186 −1.37863
\(695\) 12.1386i 0.460442i
\(696\) 0 0
\(697\) 8.08975 0.306421
\(698\) −30.2273 52.3552i −1.14412 1.98167i
\(699\) 0 0
\(700\) 0 0
\(701\) 27.3333i 1.03236i 0.856479 + 0.516182i \(0.172647\pi\)
−0.856479 + 0.516182i \(0.827353\pi\)
\(702\) 0 0
\(703\) 11.1979 6.46508i 0.422335 0.243835i
\(704\) 53.3293 + 30.7897i 2.00992 + 1.16043i
\(705\) 0 0
\(706\) 40.3893 + 23.3187i 1.52007 + 0.877613i
\(707\) 0 0
\(708\) 0 0
\(709\) 2.71269 0.101877 0.0509387 0.998702i \(-0.483779\pi\)
0.0509387 + 0.998702i \(0.483779\pi\)
\(710\) −19.6248 33.9912i −0.736506 1.27567i
\(711\) 0 0
\(712\) −62.3845 36.0177i −2.33796 1.34982i
\(713\) −5.32654 9.22584i −0.199480 0.345510i
\(714\) 0 0
\(715\) −2.81868 + 4.88210i −0.105413 + 0.182580i
\(716\) 69.9976 40.4131i 2.61593 1.51031i
\(717\) 0 0
\(718\) −8.80292 + 15.2471i −0.328522 + 0.569017i
\(719\) −8.13931 + 14.0977i −0.303545 + 0.525756i −0.976936 0.213531i \(-0.931504\pi\)
0.673391 + 0.739286i \(0.264837\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −86.3365 + 49.8464i −3.21311 + 1.85509i
\(723\) 0 0
\(724\) 42.6335i 1.58446i
\(725\) 0.713227i 0.0264886i
\(726\) 0 0
\(727\) 0.980123 0.565874i 0.0363508 0.0209871i −0.481714 0.876328i \(-0.659986\pi\)
0.518065 + 0.855341i \(0.326652\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 14.1290 24.4722i 0.522939 0.905757i
\(731\) −0.00789650 + 0.0136771i −0.000292063 + 0.000505867i
\(732\) 0 0
\(733\) 33.2085 19.1729i 1.22658 0.708169i 0.260270 0.965536i \(-0.416188\pi\)
0.966314 + 0.257367i \(0.0828549\pi\)
\(734\) 12.1946 21.1217i 0.450111 0.779615i
\(735\) 0 0
\(736\) 29.4106 + 50.9407i 1.08409 + 1.87770i
\(737\) 11.1092 + 6.41391i 0.409213 + 0.236259i
\(738\) 0 0
\(739\) −5.36489 9.29226i −0.197351 0.341821i 0.750318 0.661077i \(-0.229900\pi\)
−0.947669 + 0.319256i \(0.896567\pi\)
\(740\) 11.1141 0.408562
\(741\) 0 0
\(742\) 0 0
\(743\) 11.3308 + 6.54185i 0.415687 + 0.239997i 0.693230 0.720716i \(-0.256187\pi\)
−0.277543 + 0.960713i \(0.589520\pi\)
\(744\) 0 0
\(745\) 4.99228 + 2.88229i 0.182903 + 0.105599i
\(746\) 26.9927 15.5842i 0.988272 0.570579i
\(747\) 0 0
\(748\) 15.9773i 0.584188i
\(749\) 0 0
\(750\) 0 0
\(751\) −13.1677 22.8071i −0.480495 0.832242i 0.519254 0.854620i \(-0.326210\pi\)
−0.999750 + 0.0223774i \(0.992876\pi\)
\(752\) 19.8235 0.722887
\(753\) 0 0
\(754\) 1.02480i 0.0373209i
\(755\) 13.6153 0.495512
\(756\) 0 0
\(757\) −32.6280 −1.18588 −0.592942 0.805245i \(-0.702034\pi\)
−0.592942 + 0.805245i \(0.702034\pi\)
\(758\) 46.3161i 1.68228i
\(759\) 0 0
\(760\) −81.2465 −2.94712
\(761\) −12.6727 21.9498i −0.459385 0.795679i 0.539543 0.841958i \(-0.318597\pi\)
−0.998929 + 0.0462793i \(0.985264\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 85.4946i 3.09309i
\(765\) 0 0
\(766\) −38.0403 + 21.9626i −1.37445 + 0.793541i
\(767\) 19.9429 + 11.5140i 0.720097 + 0.415748i
\(768\) 0 0
\(769\) 11.4964 + 6.63744i 0.414570 + 0.239352i 0.692752 0.721176i \(-0.256398\pi\)
−0.278181 + 0.960529i \(0.589732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 73.1772 2.63370
\(773\) 8.00680 + 13.8682i 0.287985 + 0.498804i 0.973329 0.229416i \(-0.0736815\pi\)
−0.685344 + 0.728219i \(0.740348\pi\)
\(774\) 0 0
\(775\) −10.7790 6.22327i −0.387194 0.223546i
\(776\) 10.7669 + 18.6488i 0.386509 + 0.669454i
\(777\) 0 0
\(778\) 25.3919 43.9801i 0.910344 1.57676i
\(779\) −43.4777 + 25.1019i −1.55775 + 0.899367i
\(780\) 0 0
\(781\) 14.9762 25.9395i 0.535890 0.928189i
\(782\) −4.95789 + 8.58731i −0.177294 + 0.307082i
\(783\) 0 0
\(784\) 0 0
\(785\) 15.3469 8.86054i 0.547755 0.316246i
\(786\) 0 0
\(787\) 4.90354i 0.174792i 0.996174 + 0.0873961i \(0.0278546\pi\)
−0.996174 + 0.0873961i \(0.972145\pi\)
\(788\) 101.016i 3.59855i
\(789\) 0 0
\(790\) −15.5096 + 8.95445i −0.551806 + 0.318585i
\(791\) 0 0
\(792\) 0 0
\(793\) −10.5968 + 18.3542i −0.376303 + 0.651776i
\(794\) −41.9474 + 72.6551i −1.48866 + 2.57843i
\(795\) 0 0
\(796\) 114.791 66.2748i 4.06867 2.34905i
\(797\) −21.3994 + 37.0649i −0.758006 + 1.31290i 0.185860 + 0.982576i \(0.440493\pi\)
−0.943866 + 0.330328i \(0.892841\pi\)
\(798\) 0 0
\(799\) 0.863557 + 1.49572i 0.0305505 + 0.0529149i
\(800\) 59.5167 + 34.3620i 2.10423 + 1.21488i
\(801\) 0 0
\(802\) −1.25282 2.16995i −0.0442386 0.0766235i
\(803\) 21.5644 0.760993
\(804\) 0 0
\(805\) 0 0
\(806\) −15.4878 8.94188i −0.545534 0.314964i
\(807\) 0 0
\(808\) 74.1152 + 42.7904i 2.60736 + 1.50536i
\(809\) −30.5649 + 17.6467i −1.07461 + 0.620424i −0.929436 0.368983i \(-0.879706\pi\)
−0.145169 + 0.989407i \(0.546373\pi\)
\(810\) 0 0
\(811\) 21.0223i 0.738193i −0.929391 0.369096i \(-0.879667\pi\)
0.929391 0.369096i \(-0.120333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.82968 + 10.0973i 0.204330 + 0.353910i
\(815\) 21.8428 0.765119
\(816\) 0 0
\(817\) 0.0980089i 0.00342890i
\(818\) −20.5372 −0.718067
\(819\) 0 0
\(820\) −43.1525 −1.50695
\(821\) 34.4820i 1.20343i 0.798710 + 0.601716i \(0.205516\pi\)
−0.798710 + 0.601716i \(0.794484\pi\)
\(822\) 0 0
\(823\) −38.9899 −1.35910 −0.679552 0.733628i \(-0.737826\pi\)
−0.679552 + 0.733628i \(0.737826\pi\)
\(824\) 78.0191 + 135.133i 2.71792 + 4.70758i
\(825\) 0 0
\(826\) 0 0
\(827\) 47.2537i 1.64317i −0.570086 0.821585i \(-0.693090\pi\)
0.570086 0.821585i \(-0.306910\pi\)
\(828\) 0 0
\(829\) 42.5588 24.5713i 1.47813 0.853397i 0.478432 0.878124i \(-0.341205\pi\)
0.999694 + 0.0247275i \(0.00787180\pi\)
\(830\) −9.07850 5.24147i −0.315119 0.181934i
\(831\) 0 0
\(832\) 40.4174 + 23.3350i 1.40122 + 0.808995i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.44216 0.0499079
\(836\) −49.5763 85.8687i −1.71463 2.96983i
\(837\) 0 0
\(838\) 13.3746 + 7.72182i 0.462017 + 0.266746i
\(839\) 26.0780 + 45.1684i 0.900312 + 1.55939i 0.827090 + 0.562070i \(0.189995\pi\)
0.0732219 + 0.997316i \(0.476672\pi\)
\(840\) 0 0
\(841\) −14.4799 + 25.0798i −0.499305 + 0.864822i
\(842\) 27.5030 15.8789i 0.947816 0.547222i
\(843\) 0 0
\(844\) −19.2565 + 33.3533i −0.662838 + 1.14807i
\(845\) 5.68280 9.84290i 0.195494 0.338606i
\(846\) 0 0
\(847\) 0 0
\(848\) 118.554 68.4472i 4.07116 2.35049i
\(849\) 0 0
\(850\) 11.5851i 0.397366i
\(851\) 5.26372i 0.180438i
\(852\) 0 0
\(853\) 13.4028 7.73808i 0.458902 0.264947i −0.252681 0.967550i \(-0.581312\pi\)
0.711582 + 0.702603i \(0.247979\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −44.6804 + 77.3886i −1.52714 + 2.64509i
\(857\) 24.4356 42.3238i 0.834706 1.44575i −0.0595642 0.998224i \(-0.518971\pi\)
0.894270 0.447528i \(-0.147696\pi\)
\(858\) 0 0
\(859\) −8.45000 + 4.87861i −0.288310 + 0.166456i −0.637180 0.770715i \(-0.719899\pi\)
0.348869 + 0.937171i \(0.386566\pi\)
\(860\) 0.0421217 0.0729569i 0.00143634 0.00248781i
\(861\) 0 0
\(862\) −36.4356 63.1083i −1.24100 2.14948i
\(863\) 23.9462 + 13.8253i 0.815138 + 0.470620i 0.848737 0.528815i \(-0.177363\pi\)
−0.0335987 + 0.999435i \(0.510697\pi\)
\(864\) 0 0
\(865\) −10.8312 18.7602i −0.368272 0.637866i
\(866\) −76.1256 −2.58685
\(867\) 0 0
\(868\) 0 0
\(869\) −11.8357 6.83337i −0.401500 0.231806i
\(870\) 0 0
\(871\) 8.41949 + 4.86100i 0.285284 + 0.164709i
\(872\) −81.5391 + 47.0766i −2.76126 + 1.59422i
\(873\) 0 0
\(874\) 61.5357i 2.08148i
\(875\) 0 0
\(876\) 0 0
\(877\) 0.932622 + 1.61535i 0.0314924 + 0.0545465i 0.881342 0.472479i \(-0.156641\pi\)
−0.849850 + 0.527025i \(0.823307\pi\)
\(878\) 25.2633 0.852596
\(879\) 0 0
\(880\) 41.3279i 1.39316i
\(881\) 0.0273875 0.000922707 0.000461353 1.00000i \(-0.499853\pi\)
0.000461353 1.00000i \(0.499853\pi\)
\(882\) 0 0
\(883\) 36.2074 1.21848 0.609239 0.792987i \(-0.291475\pi\)
0.609239 + 0.792987i \(0.291475\pi\)
\(884\) 12.1089i 0.407267i
\(885\) 0 0
\(886\) 30.7199 1.03206
\(887\) −12.6626 21.9323i −0.425170 0.736415i 0.571267 0.820765i \(-0.306452\pi\)
−0.996436 + 0.0843491i \(0.973119\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 25.9616i 0.870235i
\(891\) 0 0
\(892\) −112.470 + 64.9343i −3.76576 + 2.17416i
\(893\) −9.28223 5.35910i −0.310618 0.179335i
\(894\) 0 0
\(895\) −15.7748 9.10759i −0.527294 0.304433i
\(896\) 0 0
\(897\) 0 0
\(898\) 41.5250 1.38571
\(899\) −0.351613 0.609012i −0.0117270 0.0203117i
\(900\) 0 0
\(901\) 10.3290 + 5.96345i 0.344109 + 0.198671i
\(902\) −22.6348 39.2046i −0.753655 1.30537i
\(903\) 0 0
\(904\) 49.9110 86.4483i 1.66001 2.87523i
\(905\) 8.32075 4.80399i 0.276591 0.159690i
\(906\) 0 0
\(907\) 19.4060 33.6122i 0.644366 1.11608i −0.340081 0.940396i \(-0.610455\pi\)
0.984447 0.175679i \(-0.0562121\pi\)
\(908\) 1.28260 2.22153i 0.0425646 0.0737240i
\(909\) 0 0
\(910\) 0 0
\(911\) 43.6110 25.1788i 1.44490 0.834211i 0.446725 0.894671i \(-0.352590\pi\)
0.998171 + 0.0604602i \(0.0192568\pi\)
\(912\) 0 0
\(913\) 7.99980i 0.264755i
\(914\) 24.8481i 0.821901i
\(915\) 0 0
\(916\) −41.6581 + 24.0513i −1.37642 + 0.794677i
\(917\) 0 0
\(918\) 0 0
\(919\) 1.49845 2.59539i 0.0494293 0.0856140i −0.840252 0.542196i \(-0.817593\pi\)
0.889681 + 0.456582i \(0.150926\pi\)
\(920\) 16.5372 28.6434i 0.545217 0.944343i
\(921\) 0 0
\(922\) −77.5863 + 44.7945i −2.55517 + 1.47523i
\(923\) 11.3502 19.6591i 0.373596 0.647088i
\(924\) 0 0
\(925\) 3.07494 + 5.32595i 0.101103 + 0.175116i
\(926\) 18.3729 + 10.6076i 0.603771 + 0.348588i
\(927\) 0 0
\(928\) 1.94144 + 3.36268i 0.0637310 + 0.110385i
\(929\) 32.2215 1.05715 0.528577 0.848885i \(-0.322726\pi\)
0.528577 + 0.848885i \(0.322726\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −51.3888 29.6694i −1.68330 0.971852i
\(933\) 0 0
\(934\) −48.5064 28.0052i −1.58718 0.916358i
\(935\) 3.11828 1.80034i 0.101979 0.0588774i
\(936\) 0 0
\(937\) 3.07038i 0.100305i −0.998742 0.0501525i \(-0.984029\pi\)
0.998742 0.0501525i \(-0.0159708\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.60640 7.97852i −0.150244 0.260231i
\(941\) −38.8272 −1.26573 −0.632865 0.774263i \(-0.718121\pi\)
−0.632865 + 0.774263i \(0.718121\pi\)
\(942\) 0 0
\(943\) 20.4373i 0.665532i
\(944\) −168.820 −5.49464
\(945\) 0 0
\(946\) 0.0883763 0.00287336
\(947\) 18.7513i 0.609337i −0.952459 0.304668i \(-0.901454\pi\)
0.952459 0.304668i \(-0.0985456\pi\)
\(948\) 0 0
\(949\) 16.3433 0.530527
\(950\) −35.9477 62.2632i −1.16630 2.02008i
\(951\) 0 0
\(952\) 0 0
\(953\) 47.6453i 1.54338i 0.635997 + 0.771692i \(0.280589\pi\)
−0.635997 + 0.771692i \(0.719411\pi\)
\(954\) 0 0
\(955\) 16.6859 9.63362i 0.539944 0.311737i
\(956\) 64.2911 + 37.1185i 2.07932 + 1.20050i
\(957\) 0 0
\(958\) −6.24009 3.60272i −0.201608 0.116398i
\(959\) 0 0
\(960\) 0 0
\(961\) 18.7280 0.604129
\(962\) 4.41821 + 7.65257i 0.142449 + 0.246729i
\(963\) 0 0
\(964\) −57.2104 33.0304i −1.84262 1.06384i
\(965\) −8.24569 14.2819i −0.265438 0.459752i
\(966\) 0 0
\(967\) 25.8005 44.6878i 0.829689 1.43706i −0.0685936 0.997645i \(-0.521851\pi\)
0.898282 0.439419i \(-0.144815\pi\)
\(968\) −37.7137 + 21.7740i −1.21216 + 0.699843i
\(969\) 0 0
\(970\) 3.88040 6.72104i 0.124592 0.215800i
\(971\) −14.1933 + 24.5836i −0.455485 + 0.788924i −0.998716 0.0506597i \(-0.983868\pi\)
0.543231 + 0.839584i \(0.317201\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.44867 + 1.41374i −0.0784603 + 0.0452991i
\(975\) 0 0
\(976\) 155.372i 4.97332i
\(977\) 41.1908i 1.31781i 0.752227 + 0.658904i \(0.228980\pi\)
−0.752227 + 0.658904i \(0.771020\pi\)
\(978\) 0 0
\(979\) −17.1576 + 9.90597i −0.548361 + 0.316596i
\(980\) 0 0
\(981\) 0 0
\(982\) 56.3668 97.6302i 1.79874 3.11550i
\(983\) −26.4017 + 45.7291i −0.842085 + 1.45853i 0.0460447 + 0.998939i \(0.485338\pi\)
−0.888129 + 0.459594i \(0.847995\pi\)
\(984\) 0 0
\(985\) −19.7153 + 11.3826i −0.628181 + 0.362680i
\(986\) −0.327278 + 0.566862i −0.0104227 + 0.0180526i
\(987\) 0 0
\(988\) −37.5731 65.0784i −1.19536 2.07042i
\(989\) 0.0345529 + 0.0199491i 0.00109872 + 0.000634346i
\(990\) 0 0
\(991\) −8.24486 14.2805i −0.261907 0.453636i 0.704842 0.709364i \(-0.251018\pi\)
−0.966749 + 0.255729i \(0.917685\pi\)
\(992\) 67.7603 2.15139
\(993\) 0 0
\(994\) 0 0
\(995\) −25.8696 14.9358i −0.820122 0.473498i
\(996\) 0 0
\(997\) −42.4857 24.5291i −1.34553 0.776845i −0.357921 0.933752i \(-0.616514\pi\)
−0.987613 + 0.156907i \(0.949848\pi\)
\(998\) −75.7484 + 43.7333i −2.39777 + 1.38435i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.21 48
3.2 odd 2 441.2.i.d.68.1 48
7.2 even 3 1323.2.o.e.881.24 48
7.3 odd 6 1323.2.s.d.962.1 48
7.4 even 3 1323.2.s.d.962.2 48
7.5 odd 6 1323.2.o.e.881.23 48
7.6 odd 2 inner 1323.2.i.d.1097.6 48
9.2 odd 6 1323.2.s.d.656.1 48
9.7 even 3 441.2.s.d.362.24 48
21.2 odd 6 441.2.o.e.293.2 yes 48
21.5 even 6 441.2.o.e.293.1 yes 48
21.11 odd 6 441.2.s.d.374.23 48
21.17 even 6 441.2.s.d.374.24 48
21.20 even 2 441.2.i.d.68.2 48
63.2 odd 6 1323.2.o.e.440.23 48
63.11 odd 6 inner 1323.2.i.d.521.6 48
63.16 even 3 441.2.o.e.146.1 48
63.20 even 6 1323.2.s.d.656.2 48
63.25 even 3 441.2.i.d.227.24 48
63.34 odd 6 441.2.s.d.362.23 48
63.38 even 6 inner 1323.2.i.d.521.21 48
63.47 even 6 1323.2.o.e.440.24 48
63.52 odd 6 441.2.i.d.227.23 48
63.61 odd 6 441.2.o.e.146.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.1 48 3.2 odd 2
441.2.i.d.68.2 48 21.20 even 2
441.2.i.d.227.23 48 63.52 odd 6
441.2.i.d.227.24 48 63.25 even 3
441.2.o.e.146.1 48 63.16 even 3
441.2.o.e.146.2 yes 48 63.61 odd 6
441.2.o.e.293.1 yes 48 21.5 even 6
441.2.o.e.293.2 yes 48 21.2 odd 6
441.2.s.d.362.23 48 63.34 odd 6
441.2.s.d.362.24 48 9.7 even 3
441.2.s.d.374.23 48 21.11 odd 6
441.2.s.d.374.24 48 21.17 even 6
1323.2.i.d.521.6 48 63.11 odd 6 inner
1323.2.i.d.521.21 48 63.38 even 6 inner
1323.2.i.d.1097.6 48 7.6 odd 2 inner
1323.2.i.d.1097.21 48 1.1 even 1 trivial
1323.2.o.e.440.23 48 63.2 odd 6
1323.2.o.e.440.24 48 63.47 even 6
1323.2.o.e.881.23 48 7.5 odd 6
1323.2.o.e.881.24 48 7.2 even 3
1323.2.s.d.656.1 48 9.2 odd 6
1323.2.s.d.656.2 48 63.20 even 6
1323.2.s.d.962.1 48 7.3 odd 6
1323.2.s.d.962.2 48 7.4 even 3