L(s) = 1 | + 2.70i·2-s − 5.33·4-s + (0.601 + 1.04i)5-s − 9.04i·8-s + (−2.82 + 1.62i)10-s + (−2.15 − 1.24i)11-s + (−1.63 − 0.942i)13-s + 13.8·16-s + (0.601 + 1.04i)17-s + (−6.46 − 3.73i)19-s + (−3.21 − 5.56i)20-s + (3.36 − 5.83i)22-s + (2.63 − 1.52i)23-s + (1.77 − 3.07i)25-s + (2.55 − 4.42i)26-s + ⋯ |
L(s) = 1 | + 1.91i·2-s − 2.66·4-s + (0.268 + 0.465i)5-s − 3.19i·8-s + (−0.892 + 0.515i)10-s + (−0.649 − 0.374i)11-s + (−0.452 − 0.261i)13-s + 3.45·16-s + (0.145 + 0.252i)17-s + (−1.48 − 0.856i)19-s + (−0.717 − 1.24i)20-s + (0.718 − 1.24i)22-s + (0.549 − 0.317i)23-s + (0.355 − 0.615i)25-s + (0.500 − 0.867i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.914 - 0.403i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6543615088\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6543615088\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.70iT - 2T^{2} \) |
| 5 | \( 1 + (-0.601 - 1.04i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.15 + 1.24i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.63 + 0.942i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.601 - 1.04i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.46 + 3.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.63 + 1.52i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.100i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.50iT - 31T^{2} \) |
| 37 | \( 1 + (0.865 - 1.49i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.36 + 5.82i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.00656 - 0.0113i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 1.43T + 47T^{2} \) |
| 53 | \( 1 + (-8.58 + 4.95i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + 11.2iT - 61T^{2} \) |
| 67 | \( 1 + 5.15T + 67T^{2} \) |
| 71 | \( 1 - 12.0iT - 71T^{2} \) |
| 73 | \( 1 + (7.51 - 4.33i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 5.49T + 79T^{2} \) |
| 83 | \( 1 + (-1.60 - 2.78i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.98 + 6.89i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.06 - 1.19i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.332804480022653213554073619767, −8.580860410349606614932768052390, −7.975755983640051430577655595798, −7.07865925875460153811314975708, −6.49792507623189715395724510625, −5.72467780248248979857653496653, −4.91334471975414830309617791797, −4.06593469132844096469419992212, −2.66144136410231473776404923209, −0.28992171848076403724844992733,
1.30809001859699661138740105213, 2.25599396735698022139838829591, 3.18993237659851958465089985586, 4.31927278962179022987787306992, 4.91325509904864192326431639206, 5.86298350384273715221181666715, 7.40510086694607818522818265451, 8.412976843045068887697667004885, 9.100315514201053355463181097116, 9.719735916460513521772492038304