Properties

Label 441.2.s.d.374.24
Level $441$
Weight $2$
Character 441.374
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(362,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.362"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.24
Character \(\chi\) \(=\) 441.374
Dual form 441.2.s.d.362.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.34591 + 1.35441i) q^{2} +(1.12982 - 1.31283i) q^{3} +(2.66888 + 4.62263i) q^{4} -1.20293 q^{5} +(4.42857 - 1.54954i) q^{6} +9.04141i q^{8} +(-0.447031 - 2.96651i) q^{9} +(-2.82197 - 1.62926i) q^{10} -2.48666i q^{11} +(9.08406 + 1.71895i) q^{12} +(1.63211 + 0.942300i) q^{13} +(-1.35909 + 1.57924i) q^{15} +(-6.90806 + 11.9651i) q^{16} +(0.601863 - 1.04246i) q^{17} +(2.96918 - 7.56464i) q^{18} +(-6.46933 + 3.73507i) q^{19} +(-3.21047 - 5.56070i) q^{20} +(3.36797 - 5.83350i) q^{22} -3.04101i q^{23} +(11.8698 + 10.2151i) q^{24} -3.55296 q^{25} +(2.55253 + 4.42111i) q^{26} +(-4.39957 - 2.76473i) q^{27} +(-0.173847 + 0.100371i) q^{29} +(-5.32725 + 1.86399i) q^{30} +(3.03381 - 1.75157i) q^{31} +(-16.7513 + 9.67135i) q^{32} +(-3.26456 - 2.80947i) q^{33} +(2.82384 - 1.63034i) q^{34} +(12.5200 - 9.98370i) q^{36} +(-0.865458 - 1.49902i) q^{37} -20.2353 q^{38} +(3.08106 - 1.07805i) q^{39} -10.8762i q^{40} +(3.36029 - 5.82020i) q^{41} +(0.00656005 + 0.0113623i) q^{43} +(11.4949 - 6.63660i) q^{44} +(0.537746 + 3.56850i) q^{45} +(4.11878 - 7.13394i) q^{46} +(-0.717403 + 1.24258i) q^{47} +(7.90329 + 22.5875i) q^{48} +(-8.33495 - 4.81219i) q^{50} +(-0.688572 - 1.96793i) q^{51} +10.0595i q^{52} +(8.58085 + 4.95416i) q^{53} +(-6.57643 - 12.4447i) q^{54} +2.99128i q^{55} +(-2.40565 + 12.7130i) q^{57} -0.543775 q^{58} +(6.10954 + 10.5820i) q^{59} +(-10.9275 - 2.06777i) q^{60} +(-9.73903 - 5.62283i) q^{61} +9.48942 q^{62} -24.7638 q^{64} +(-1.96331 - 1.13352i) q^{65} +(-3.85319 - 11.0124i) q^{66} +(2.57932 + 4.46752i) q^{67} +6.42520 q^{68} +(-3.99231 - 3.43578i) q^{69} -12.0452i q^{71} +(26.8214 - 4.04179i) q^{72} +(-7.51020 - 4.33602i) q^{73} -4.68875i q^{74} +(-4.01420 + 4.66443i) q^{75} +(-34.5317 - 19.9369i) q^{76} +(8.68805 + 1.64401i) q^{78} +(-2.74801 + 4.75969i) q^{79} +(8.30991 - 14.3932i) q^{80} +(-8.60033 + 2.65224i) q^{81} +(15.7659 - 9.10246i) q^{82} +(1.60854 + 2.78607i) q^{83} +(-0.723998 + 1.25400i) q^{85} +0.0355401i q^{86} +(-0.0646460 + 0.341632i) q^{87} +22.4829 q^{88} +(3.98364 + 6.89986i) q^{89} +(-3.57172 + 9.09972i) q^{90} +(14.0574 - 8.11607i) q^{92} +(1.12814 - 5.96182i) q^{93} +(-3.36593 + 1.94332i) q^{94} +(7.78214 - 4.49302i) q^{95} +(-6.22905 + 32.9184i) q^{96} +(2.06260 - 1.19084i) q^{97} +(-7.37671 + 1.11162i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 8 q^{9} - 40 q^{15} - 24 q^{16} + 32 q^{18} + 48 q^{25} + 48 q^{30} - 120 q^{32} - 8 q^{36} - 32 q^{39} + 96 q^{44} + 48 q^{50} + 48 q^{53} + 80 q^{57} - 72 q^{60} - 48 q^{64} - 120 q^{65}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34591 + 1.35441i 1.65881 + 0.957716i 0.973264 + 0.229689i \(0.0737707\pi\)
0.685548 + 0.728027i \(0.259563\pi\)
\(3\) 1.12982 1.31283i 0.652300 0.757961i
\(4\) 2.66888 + 4.62263i 1.33444 + 2.31132i
\(5\) −1.20293 −0.537966 −0.268983 0.963145i \(-0.586688\pi\)
−0.268983 + 0.963145i \(0.586688\pi\)
\(6\) 4.42857 1.54954i 1.80795 0.632598i
\(7\) 0 0
\(8\) 9.04141i 3.19662i
\(9\) −0.447031 2.96651i −0.149010 0.988836i
\(10\) −2.82197 1.62926i −0.892385 0.515219i
\(11\) 2.48666i 0.749757i −0.927074 0.374879i \(-0.877684\pi\)
0.927074 0.374879i \(-0.122316\pi\)
\(12\) 9.08406 + 1.71895i 2.62234 + 0.496218i
\(13\) 1.63211 + 0.942300i 0.452666 + 0.261347i 0.708956 0.705253i \(-0.249167\pi\)
−0.256289 + 0.966600i \(0.582500\pi\)
\(14\) 0 0
\(15\) −1.35909 + 1.57924i −0.350915 + 0.407757i
\(16\) −6.90806 + 11.9651i −1.72702 + 2.99128i
\(17\) 0.601863 1.04246i 0.145973 0.252833i −0.783762 0.621061i \(-0.786702\pi\)
0.929736 + 0.368228i \(0.120035\pi\)
\(18\) 2.96918 7.56464i 0.699843 1.78300i
\(19\) −6.46933 + 3.73507i −1.48417 + 0.856883i −0.999838 0.0180038i \(-0.994269\pi\)
−0.484327 + 0.874887i \(0.660936\pi\)
\(20\) −3.21047 5.56070i −0.717883 1.24341i
\(21\) 0 0
\(22\) 3.36797 5.83350i 0.718054 1.24371i
\(23\) 3.04101i 0.634093i −0.948410 0.317047i \(-0.897309\pi\)
0.948410 0.317047i \(-0.102691\pi\)
\(24\) 11.8698 + 10.2151i 2.42292 + 2.08516i
\(25\) −3.55296 −0.710593
\(26\) 2.55253 + 4.42111i 0.500592 + 0.867052i
\(27\) −4.39957 2.76473i −0.846698 0.532073i
\(28\) 0 0
\(29\) −0.173847 + 0.100371i −0.0322826 + 0.0186384i −0.516054 0.856556i \(-0.672600\pi\)
0.483772 + 0.875194i \(0.339266\pi\)
\(30\) −5.32725 + 1.86399i −0.972618 + 0.340316i
\(31\) 3.03381 1.75157i 0.544889 0.314592i −0.202169 0.979351i \(-0.564799\pi\)
0.747058 + 0.664759i \(0.231466\pi\)
\(32\) −16.7513 + 9.67135i −2.96124 + 1.70967i
\(33\) −3.26456 2.80947i −0.568287 0.489066i
\(34\) 2.82384 1.63034i 0.484285 0.279602i
\(35\) 0 0
\(36\) 12.5200 9.98370i 2.08667 1.66395i
\(37\) −0.865458 1.49902i −0.142280 0.246437i 0.786075 0.618132i \(-0.212110\pi\)
−0.928355 + 0.371695i \(0.878777\pi\)
\(38\) −20.2353 −3.28260
\(39\) 3.08106 1.07805i 0.493365 0.172627i
\(40\) 10.8762i 1.71967i
\(41\) 3.36029 5.82020i 0.524790 0.908963i −0.474793 0.880097i \(-0.657477\pi\)
0.999583 0.0288655i \(-0.00918944\pi\)
\(42\) 0 0
\(43\) 0.00656005 + 0.0113623i 0.00100040 + 0.00173274i 0.866525 0.499133i \(-0.166348\pi\)
−0.865525 + 0.500866i \(0.833015\pi\)
\(44\) 11.4949 6.63660i 1.73293 1.00051i
\(45\) 0.537746 + 3.56850i 0.0801624 + 0.531960i
\(46\) 4.11878 7.13394i 0.607281 1.05184i
\(47\) −0.717403 + 1.24258i −0.104644 + 0.181249i −0.913593 0.406631i \(-0.866704\pi\)
0.808949 + 0.587879i \(0.200037\pi\)
\(48\) 7.90329 + 22.5875i 1.14074 + 3.26022i
\(49\) 0 0
\(50\) −8.33495 4.81219i −1.17874 0.680546i
\(51\) −0.688572 1.96793i −0.0964194 0.275565i
\(52\) 10.0595i 1.39501i
\(53\) 8.58085 + 4.95416i 1.17867 + 0.680506i 0.955707 0.294321i \(-0.0950935\pi\)
0.222964 + 0.974827i \(0.428427\pi\)
\(54\) −6.57643 12.4447i −0.894939 1.69351i
\(55\) 2.99128i 0.403344i
\(56\) 0 0
\(57\) −2.40565 + 12.7130i −0.318636 + 1.68388i
\(58\) −0.543775 −0.0714011
\(59\) 6.10954 + 10.5820i 0.795394 + 1.37766i 0.922588 + 0.385786i \(0.126070\pi\)
−0.127194 + 0.991878i \(0.540597\pi\)
\(60\) −10.9275 2.06777i −1.41073 0.266948i
\(61\) −9.73903 5.62283i −1.24696 0.719930i −0.276454 0.961027i \(-0.589159\pi\)
−0.970501 + 0.241097i \(0.922493\pi\)
\(62\) 9.48942 1.20516
\(63\) 0 0
\(64\) −24.7638 −3.09548
\(65\) −1.96331 1.13352i −0.243519 0.140596i
\(66\) −3.85319 11.0124i −0.474295 1.35553i
\(67\) 2.57932 + 4.46752i 0.315115 + 0.545794i 0.979462 0.201630i \(-0.0646237\pi\)
−0.664347 + 0.747424i \(0.731290\pi\)
\(68\) 6.42520 0.779170
\(69\) −3.99231 3.43578i −0.480618 0.413619i
\(70\) 0 0
\(71\) 12.0452i 1.42950i −0.699379 0.714751i \(-0.746540\pi\)
0.699379 0.714751i \(-0.253460\pi\)
\(72\) 26.8214 4.04179i 3.16093 0.476329i
\(73\) −7.51020 4.33602i −0.879003 0.507493i −0.00867336 0.999962i \(-0.502761\pi\)
−0.870330 + 0.492470i \(0.836094\pi\)
\(74\) 4.68875i 0.545057i
\(75\) −4.01420 + 4.66443i −0.463519 + 0.538602i
\(76\) −34.5317 19.9369i −3.96106 2.28692i
\(77\) 0 0
\(78\) 8.68805 + 1.64401i 0.983728 + 0.186148i
\(79\) −2.74801 + 4.75969i −0.309175 + 0.535507i −0.978182 0.207749i \(-0.933386\pi\)
0.669007 + 0.743256i \(0.266719\pi\)
\(80\) 8.30991 14.3932i 0.929076 1.60921i
\(81\) −8.60033 + 2.65224i −0.955592 + 0.294693i
\(82\) 15.7659 9.10246i 1.74106 1.00520i
\(83\) 1.60854 + 2.78607i 0.176560 + 0.305811i 0.940700 0.339239i \(-0.110170\pi\)
−0.764140 + 0.645051i \(0.776836\pi\)
\(84\) 0 0
\(85\) −0.723998 + 1.25400i −0.0785286 + 0.136016i
\(86\) 0.0355401i 0.00383239i
\(87\) −0.0646460 + 0.341632i −0.00693078 + 0.0366268i
\(88\) 22.4829 2.39669
\(89\) 3.98364 + 6.89986i 0.422265 + 0.731384i 0.996161 0.0875442i \(-0.0279019\pi\)
−0.573896 + 0.818928i \(0.694569\pi\)
\(90\) −3.57172 + 9.09972i −0.376492 + 0.959195i
\(91\) 0 0
\(92\) 14.0574 8.11607i 1.46559 0.846159i
\(93\) 1.12814 5.96182i 0.116982 0.618212i
\(94\) −3.36593 + 1.94332i −0.347170 + 0.200438i
\(95\) 7.78214 4.49302i 0.798430 0.460974i
\(96\) −6.22905 + 32.9184i −0.635749 + 3.35972i
\(97\) 2.06260 1.19084i 0.209425 0.120912i −0.391619 0.920128i \(-0.628085\pi\)
0.601044 + 0.799216i \(0.294751\pi\)
\(98\) 0 0
\(99\) −7.37671 + 1.11162i −0.741387 + 0.111722i
\(100\) −9.48242 16.4240i −0.948242 1.64240i
\(101\) 9.46543 0.941846 0.470923 0.882174i \(-0.343921\pi\)
0.470923 + 0.882174i \(0.343921\pi\)
\(102\) 1.05006 5.54920i 0.103971 0.549453i
\(103\) 17.2582i 1.70050i 0.526381 + 0.850249i \(0.323549\pi\)
−0.526381 + 0.850249i \(0.676451\pi\)
\(104\) −8.51973 + 14.7566i −0.835428 + 1.44700i
\(105\) 0 0
\(106\) 13.4200 + 23.2441i 1.30346 + 2.25766i
\(107\) −8.55935 + 4.94175i −0.827464 + 0.477737i −0.852984 0.521938i \(-0.825209\pi\)
0.0255196 + 0.999674i \(0.491876\pi\)
\(108\) 1.03842 27.7163i 0.0999221 2.66701i
\(109\) −5.20678 + 9.01841i −0.498719 + 0.863807i −0.999999 0.00147852i \(-0.999529\pi\)
0.501280 + 0.865285i \(0.332863\pi\)
\(110\) −4.05143 + 7.01729i −0.386289 + 0.669072i
\(111\) −2.94576 0.557417i −0.279599 0.0529077i
\(112\) 0 0
\(113\) −9.56137 5.52026i −0.899458 0.519303i −0.0224339 0.999748i \(-0.507142\pi\)
−0.877024 + 0.480446i \(0.840475\pi\)
\(114\) −22.8622 + 26.5655i −2.14124 + 2.48808i
\(115\) 3.65811i 0.341121i
\(116\) −0.927954 0.535755i −0.0861584 0.0497436i
\(117\) 2.06574 5.26291i 0.190977 0.486556i
\(118\) 33.0994i 3.04705i
\(119\) 0 0
\(120\) −14.2785 12.2881i −1.30345 1.12174i
\(121\) 4.81650 0.437864
\(122\) −15.2313 26.3814i −1.37898 2.38846i
\(123\) −3.84440 10.9872i −0.346638 0.990686i
\(124\) 16.1937 + 9.34946i 1.45424 + 0.839607i
\(125\) 10.2886 0.920241
\(126\) 0 0
\(127\) 13.8634 1.23018 0.615090 0.788457i \(-0.289119\pi\)
0.615090 + 0.788457i \(0.289119\pi\)
\(128\) −24.5913 14.1978i −2.17359 1.25492i
\(129\) 0.0223284 + 0.00422514i 0.00196591 + 0.000372003i
\(130\) −3.07051 5.31828i −0.269302 0.466444i
\(131\) 12.3595 1.07985 0.539927 0.841712i \(-0.318452\pi\)
0.539927 + 0.841712i \(0.318452\pi\)
\(132\) 4.27445 22.5890i 0.372043 1.96612i
\(133\) 0 0
\(134\) 13.9739i 1.20716i
\(135\) 5.29237 + 3.32578i 0.455495 + 0.286237i
\(136\) 9.42529 + 5.44169i 0.808212 + 0.466621i
\(137\) 11.6614i 0.996301i 0.867091 + 0.498150i \(0.165987\pi\)
−0.867091 + 0.498150i \(0.834013\pi\)
\(138\) −4.71216 13.4673i −0.401126 1.14641i
\(139\) 8.73893 + 5.04543i 0.741227 + 0.427947i 0.822515 0.568743i \(-0.192570\pi\)
−0.0812884 + 0.996691i \(0.525903\pi\)
\(140\) 0 0
\(141\) 0.820757 + 2.34571i 0.0691202 + 0.197545i
\(142\) 16.3142 28.2570i 1.36906 2.37128i
\(143\) 2.34318 4.05851i 0.195947 0.339390i
\(144\) 38.5827 + 15.1440i 3.21523 + 1.26200i
\(145\) 0.209126 0.120739i 0.0173670 0.0100268i
\(146\) −11.7455 20.3439i −0.972067 1.68367i
\(147\) 0 0
\(148\) 4.61960 8.00138i 0.379729 0.657710i
\(149\) 4.79212i 0.392586i −0.980545 0.196293i \(-0.937110\pi\)
0.980545 0.196293i \(-0.0628904\pi\)
\(150\) −15.7345 + 5.50546i −1.28472 + 0.449519i
\(151\) −11.3185 −0.921085 −0.460542 0.887638i \(-0.652345\pi\)
−0.460542 + 0.887638i \(0.652345\pi\)
\(152\) −33.7703 58.4918i −2.73913 4.74431i
\(153\) −3.36151 1.31942i −0.271762 0.106669i
\(154\) 0 0
\(155\) −3.64946 + 2.10702i −0.293132 + 0.169240i
\(156\) 13.2064 + 11.3654i 1.05736 + 0.909963i
\(157\) 12.7580 7.36581i 1.01820 0.587856i 0.104615 0.994513i \(-0.466639\pi\)
0.913581 + 0.406657i \(0.133306\pi\)
\(158\) −12.8932 + 7.44388i −1.02573 + 0.592203i
\(159\) 16.1987 5.66789i 1.28464 0.449493i
\(160\) 20.1506 11.6339i 1.59304 0.919744i
\(161\) 0 0
\(162\) −23.7679 5.42648i −1.86738 0.426345i
\(163\) 9.07900 + 15.7253i 0.711122 + 1.23170i 0.964436 + 0.264316i \(0.0851460\pi\)
−0.253314 + 0.967384i \(0.581521\pi\)
\(164\) 35.8729 2.80120
\(165\) 3.92703 + 3.37960i 0.305719 + 0.263101i
\(166\) 8.71452i 0.676378i
\(167\) 0.599436 1.03825i 0.0463857 0.0803425i −0.841900 0.539633i \(-0.818563\pi\)
0.888286 + 0.459291i \(0.151896\pi\)
\(168\) 0 0
\(169\) −4.72414 8.18245i −0.363395 0.629419i
\(170\) −3.39688 + 1.96119i −0.260529 + 0.150416i
\(171\) 13.9721 + 17.5216i 1.06847 + 1.33991i
\(172\) −0.0350159 + 0.0606494i −0.00266994 + 0.00462447i
\(173\) 9.00403 15.5954i 0.684564 1.18570i −0.289010 0.957326i \(-0.593326\pi\)
0.973574 0.228373i \(-0.0733405\pi\)
\(174\) −0.614365 + 0.713882i −0.0465749 + 0.0541193i
\(175\) 0 0
\(176\) 29.7532 + 17.1780i 2.24273 + 1.29484i
\(177\) 20.7950 + 3.93498i 1.56305 + 0.295771i
\(178\) 21.5820i 1.61764i
\(179\) −13.1137 7.57118i −0.980162 0.565897i −0.0778428 0.996966i \(-0.524803\pi\)
−0.902319 + 0.431069i \(0.858137\pi\)
\(180\) −15.0607 + 12.0097i −1.12256 + 0.895149i
\(181\) 7.98716i 0.593681i 0.954927 + 0.296840i \(0.0959329\pi\)
−0.954927 + 0.296840i \(0.904067\pi\)
\(182\) 0 0
\(183\) −18.3851 + 6.43290i −1.35907 + 0.475534i
\(184\) 27.4950 2.02696
\(185\) 1.04108 + 1.80321i 0.0765420 + 0.132575i
\(186\) 10.7213 12.4580i 0.786124 0.913462i
\(187\) −2.59224 1.49663i −0.189563 0.109445i
\(188\) −7.65865 −0.558564
\(189\) 0 0
\(190\) 24.3416 1.76593
\(191\) −13.8711 8.00848i −1.00368 0.579473i −0.0943426 0.995540i \(-0.530075\pi\)
−0.909334 + 0.416067i \(0.863408\pi\)
\(192\) −27.9786 + 32.5106i −2.01918 + 2.34625i
\(193\) 6.85468 + 11.8726i 0.493410 + 0.854612i 0.999971 0.00759239i \(-0.00241676\pi\)
−0.506561 + 0.862204i \(0.669083\pi\)
\(194\) 6.45158 0.463197
\(195\) −3.70630 + 1.29682i −0.265414 + 0.0928674i
\(196\) 0 0
\(197\) 18.9248i 1.34834i −0.738577 0.674170i \(-0.764502\pi\)
0.738577 0.674170i \(-0.235498\pi\)
\(198\) −18.8107 7.38336i −1.33682 0.524713i
\(199\) −21.5055 12.4162i −1.52449 0.880163i −0.999579 0.0290036i \(-0.990767\pi\)
−0.524908 0.851159i \(-0.675900\pi\)
\(200\) 32.1238i 2.27150i
\(201\) 8.77924 + 1.66127i 0.619240 + 0.117177i
\(202\) 22.2051 + 12.8201i 1.56235 + 0.902020i
\(203\) 0 0
\(204\) 7.25929 8.43517i 0.508252 0.590580i
\(205\) −4.04219 + 7.00129i −0.282319 + 0.488991i
\(206\) −23.3747 + 40.4862i −1.62859 + 2.82081i
\(207\) −9.02116 + 1.35942i −0.627014 + 0.0944864i
\(208\) −22.5495 + 13.0189i −1.56352 + 0.902701i
\(209\) 9.28786 + 16.0870i 0.642454 + 1.11276i
\(210\) 0 0
\(211\) 3.60761 6.24857i 0.248358 0.430169i −0.714712 0.699419i \(-0.753442\pi\)
0.963070 + 0.269250i \(0.0867757\pi\)
\(212\) 52.8881i 3.63237i
\(213\) −15.8133 13.6089i −1.08351 0.932464i
\(214\) −26.7727 −1.83014
\(215\) −0.00789127 0.0136681i −0.000538180 0.000932155i
\(216\) 24.9971 39.7784i 1.70084 2.70657i
\(217\) 0 0
\(218\) −24.4293 + 14.1043i −1.65456 + 0.955262i
\(219\) −14.1776 + 4.96070i −0.958033 + 0.335213i
\(220\) −13.8276 + 7.98336i −0.932255 + 0.538238i
\(221\) 1.96462 1.13427i 0.132154 0.0762994i
\(222\) −6.15552 5.29743i −0.413132 0.355540i
\(223\) −21.0706 + 12.1651i −1.41099 + 0.814635i −0.995482 0.0949545i \(-0.969729\pi\)
−0.415508 + 0.909590i \(0.636396\pi\)
\(224\) 0 0
\(225\) 1.58828 + 10.5399i 0.105886 + 0.702659i
\(226\) −14.9534 25.9001i −0.994688 1.72285i
\(227\) 0.480577 0.0318970 0.0159485 0.999873i \(-0.494923\pi\)
0.0159485 + 0.999873i \(0.494923\pi\)
\(228\) −65.1881 + 22.8091i −4.31719 + 1.51057i
\(229\) 9.01176i 0.595514i −0.954642 0.297757i \(-0.903761\pi\)
0.954642 0.297757i \(-0.0962385\pi\)
\(230\) −4.95460 + 8.58162i −0.326697 + 0.565855i
\(231\) 0 0
\(232\) −0.907493 1.57182i −0.0595799 0.103195i
\(233\) 9.62742 5.55840i 0.630713 0.364143i −0.150315 0.988638i \(-0.548029\pi\)
0.781028 + 0.624496i \(0.214695\pi\)
\(234\) 11.9742 9.54847i 0.782778 0.624203i
\(235\) 0.862985 1.49473i 0.0562949 0.0975057i
\(236\) −32.6112 + 56.4843i −2.12281 + 3.67682i
\(237\) 3.14390 + 8.98523i 0.204219 + 0.583653i
\(238\) 0 0
\(239\) 12.0446 + 6.95395i 0.779100 + 0.449813i 0.836111 0.548560i \(-0.184824\pi\)
−0.0570114 + 0.998374i \(0.518157\pi\)
\(240\) −9.50709 27.1711i −0.613680 1.75389i
\(241\) 12.3761i 0.797217i 0.917121 + 0.398609i \(0.130507\pi\)
−0.917121 + 0.398609i \(0.869493\pi\)
\(242\) 11.2991 + 6.52354i 0.726334 + 0.419349i
\(243\) −6.23486 + 14.2873i −0.399966 + 0.916530i
\(244\) 60.0266i 3.84281i
\(245\) 0 0
\(246\) 5.86264 30.9821i 0.373788 1.97534i
\(247\) −14.0782 −0.895776
\(248\) 15.8367 + 27.4299i 1.00563 + 1.74180i
\(249\) 5.47499 + 1.03602i 0.346963 + 0.0656548i
\(250\) 24.1362 + 13.9350i 1.52651 + 0.881329i
\(251\) −19.7147 −1.24438 −0.622191 0.782866i \(-0.713757\pi\)
−0.622191 + 0.782866i \(0.713757\pi\)
\(252\) 0 0
\(253\) −7.56196 −0.475416
\(254\) 32.5224 + 18.7768i 2.04064 + 1.17816i
\(255\) 0.828303 + 2.36728i 0.0518703 + 0.148245i
\(256\) −13.6956 23.7214i −0.855973 1.48259i
\(257\) 11.2405 0.701163 0.350581 0.936532i \(-0.385984\pi\)
0.350581 + 0.936532i \(0.385984\pi\)
\(258\) 0.0466580 + 0.0401538i 0.00290480 + 0.00249987i
\(259\) 0 0
\(260\) 12.1009i 0.750466i
\(261\) 0.375466 + 0.470850i 0.0232407 + 0.0291449i
\(262\) 28.9943 + 16.7399i 1.79127 + 1.03419i
\(263\) 3.25794i 0.200893i −0.994942 0.100447i \(-0.967973\pi\)
0.994942 0.100447i \(-0.0320272\pi\)
\(264\) 25.4016 29.5162i 1.56336 1.81660i
\(265\) −10.3221 5.95949i −0.634084 0.366089i
\(266\) 0 0
\(267\) 13.5591 + 2.56575i 0.829804 + 0.157021i
\(268\) −13.7678 + 23.8465i −0.841002 + 1.45666i
\(269\) −0.121147 + 0.209832i −0.00738644 + 0.0127937i −0.869695 0.493590i \(-0.835685\pi\)
0.862309 + 0.506383i \(0.169018\pi\)
\(270\) 7.91098 + 14.9701i 0.481447 + 0.911049i
\(271\) −0.929287 + 0.536524i −0.0564502 + 0.0325915i −0.527959 0.849270i \(-0.677043\pi\)
0.471509 + 0.881861i \(0.343709\pi\)
\(272\) 8.31542 + 14.4027i 0.504196 + 0.873294i
\(273\) 0 0
\(274\) −15.7944 + 27.3567i −0.954173 + 1.65268i
\(275\) 8.83502i 0.532772i
\(276\) 5.22733 27.6247i 0.314648 1.66281i
\(277\) −4.90153 −0.294504 −0.147252 0.989099i \(-0.547043\pi\)
−0.147252 + 0.989099i \(0.547043\pi\)
\(278\) 13.6672 + 23.6723i 0.819704 + 1.41977i
\(279\) −6.55226 8.21682i −0.392273 0.491928i
\(280\) 0 0
\(281\) 11.5613 6.67494i 0.689691 0.398194i −0.113805 0.993503i \(-0.536304\pi\)
0.803496 + 0.595310i \(0.202971\pi\)
\(282\) −1.25164 + 6.61449i −0.0745340 + 0.393887i
\(283\) 3.25329 1.87829i 0.193388 0.111653i −0.400180 0.916437i \(-0.631052\pi\)
0.593568 + 0.804784i \(0.297719\pi\)
\(284\) 55.6805 32.1472i 3.30403 1.90758i
\(285\) 2.89383 15.2929i 0.171415 0.905872i
\(286\) 10.9938 6.34729i 0.650078 0.375323i
\(287\) 0 0
\(288\) 36.1785 + 45.3694i 2.13184 + 2.67342i
\(289\) 7.77552 + 13.4676i 0.457384 + 0.792212i
\(290\) 0.654122 0.0384114
\(291\) 0.766989 4.05327i 0.0449617 0.237607i
\(292\) 46.2892i 2.70887i
\(293\) 6.38430 11.0579i 0.372975 0.646011i −0.617047 0.786926i \(-0.711671\pi\)
0.990022 + 0.140915i \(0.0450045\pi\)
\(294\) 0 0
\(295\) −7.34934 12.7294i −0.427895 0.741136i
\(296\) 13.5532 7.82496i 0.787765 0.454816i
\(297\) −6.87496 + 10.9403i −0.398926 + 0.634818i
\(298\) 6.49052 11.2419i 0.375986 0.651227i
\(299\) 2.86554 4.96326i 0.165718 0.287033i
\(300\) −32.2753 6.10736i −1.86342 0.352609i
\(301\) 0 0
\(302\) −26.5522 15.3299i −1.52791 0.882137i
\(303\) 10.6942 12.4265i 0.614366 0.713882i
\(304\) 103.208i 5.91940i
\(305\) 11.7154 + 6.76387i 0.670819 + 0.387298i
\(306\) −6.09877 7.64813i −0.348644 0.437214i
\(307\) 10.7257i 0.612148i −0.952008 0.306074i \(-0.900984\pi\)
0.952008 0.306074i \(-0.0990155\pi\)
\(308\) 0 0
\(309\) 22.6570 + 19.4986i 1.28891 + 1.10923i
\(310\) −11.4151 −0.648334
\(311\) −9.41743 16.3115i −0.534013 0.924938i −0.999210 0.0397310i \(-0.987350\pi\)
0.465197 0.885207i \(-0.345983\pi\)
\(312\) 9.74714 + 27.8572i 0.551823 + 1.57710i
\(313\) −22.5774 13.0351i −1.27615 0.736787i −0.300013 0.953935i \(-0.596991\pi\)
−0.976139 + 0.217148i \(0.930324\pi\)
\(314\) 39.9054 2.25199
\(315\) 0 0
\(316\) −29.3364 −1.65030
\(317\) −12.0290 6.94495i −0.675616 0.390067i 0.122585 0.992458i \(-0.460882\pi\)
−0.798201 + 0.602391i \(0.794215\pi\)
\(318\) 45.6775 + 8.64342i 2.56147 + 0.484699i
\(319\) 0.249588 + 0.432300i 0.0139743 + 0.0242041i
\(320\) 29.7891 1.66526
\(321\) −3.18284 + 16.8202i −0.177649 + 0.938813i
\(322\) 0 0
\(323\) 8.99200i 0.500328i
\(324\) −35.2136 32.6776i −1.95631 1.81542i
\(325\) −5.79883 3.34796i −0.321661 0.185711i
\(326\) 49.1869i 2.72421i
\(327\) 5.95691 + 17.0247i 0.329418 + 0.941470i
\(328\) 52.6228 + 30.3818i 2.90561 + 1.67755i
\(329\) 0 0
\(330\) 4.63511 + 13.2471i 0.255154 + 0.729227i
\(331\) −2.24230 + 3.88378i −0.123248 + 0.213472i −0.921047 0.389452i \(-0.872664\pi\)
0.797799 + 0.602924i \(0.205998\pi\)
\(332\) −8.58600 + 14.8714i −0.471218 + 0.816173i
\(333\) −4.05996 + 3.23749i −0.222484 + 0.177413i
\(334\) 2.81245 1.62377i 0.153891 0.0888487i
\(335\) −3.10274 5.37411i −0.169521 0.293619i
\(336\) 0 0
\(337\) −16.4010 + 28.4074i −0.893420 + 1.54745i −0.0576723 + 0.998336i \(0.518368\pi\)
−0.835748 + 0.549113i \(0.814965\pi\)
\(338\) 25.5938i 1.39212i
\(339\) −18.0497 + 6.31555i −0.980328 + 0.343014i
\(340\) −7.72905 −0.419167
\(341\) −4.35557 7.54407i −0.235867 0.408534i
\(342\) 9.04581 + 60.0282i 0.489141 + 3.24595i
\(343\) 0 0
\(344\) −0.102732 + 0.0593121i −0.00553891 + 0.00319789i
\(345\) 4.80247 + 4.13299i 0.258556 + 0.222513i
\(346\) 42.2454 24.3904i 2.27112 1.31123i
\(347\) −11.6112 + 6.70374i −0.623323 + 0.359876i −0.778162 0.628064i \(-0.783848\pi\)
0.154839 + 0.987940i \(0.450514\pi\)
\(348\) −1.75177 + 0.612939i −0.0939048 + 0.0328570i
\(349\) 19.3276 11.1588i 1.03458 0.597316i 0.116288 0.993215i \(-0.462900\pi\)
0.918294 + 0.395899i \(0.129567\pi\)
\(350\) 0 0
\(351\) −4.57539 8.65807i −0.244216 0.462134i
\(352\) 24.0494 + 41.6548i 1.28184 + 2.22021i
\(353\) −17.2168 −0.916360 −0.458180 0.888859i \(-0.651499\pi\)
−0.458180 + 0.888859i \(0.651499\pi\)
\(354\) 43.4538 + 37.3962i 2.30954 + 1.98759i
\(355\) 14.4895i 0.769024i
\(356\) −21.2637 + 36.8298i −1.12697 + 1.95198i
\(357\) 0 0
\(358\) −20.5090 35.5227i −1.08394 1.87743i
\(359\) 5.62867 3.24971i 0.297070 0.171513i −0.344056 0.938949i \(-0.611801\pi\)
0.641126 + 0.767436i \(0.278468\pi\)
\(360\) −32.2642 + 4.86198i −1.70047 + 0.256249i
\(361\) 18.4015 31.8722i 0.968497 1.67749i
\(362\) −10.8179 + 18.7372i −0.568577 + 0.984805i
\(363\) 5.44176 6.32324i 0.285619 0.331884i
\(364\) 0 0
\(365\) 9.03424 + 5.21592i 0.472874 + 0.273014i
\(366\) −51.8427 9.81005i −2.70986 0.512779i
\(367\) 9.00360i 0.469984i −0.971997 0.234992i \(-0.924494\pi\)
0.971997 0.234992i \(-0.0755064\pi\)
\(368\) 36.3860 + 21.0075i 1.89675 + 1.09509i
\(369\) −18.7678 7.36653i −0.977014 0.383486i
\(370\) 5.64024i 0.293222i
\(371\) 0 0
\(372\) 30.5702 10.6964i 1.58499 0.554583i
\(373\) 11.5062 0.595771 0.297885 0.954602i \(-0.403719\pi\)
0.297885 + 0.954602i \(0.403719\pi\)
\(374\) −4.05412 7.02194i −0.209633 0.363096i
\(375\) 11.6242 13.5072i 0.600273 0.697507i
\(376\) −11.2347 6.48634i −0.579384 0.334507i
\(377\) −0.378318 −0.0194844
\(378\) 0 0
\(379\) 17.0982 0.878275 0.439138 0.898420i \(-0.355284\pi\)
0.439138 + 0.898420i \(0.355284\pi\)
\(380\) 41.5391 + 23.9826i 2.13091 + 1.23028i
\(381\) 15.6631 18.2003i 0.802447 0.932429i
\(382\) −21.6936 37.5744i −1.10994 1.92247i
\(383\) −16.2156 −0.828577 −0.414288 0.910146i \(-0.635970\pi\)
−0.414288 + 0.910146i \(0.635970\pi\)
\(384\) −46.4229 + 16.2432i −2.36901 + 0.828909i
\(385\) 0 0
\(386\) 37.1363i 1.89019i
\(387\) 0.0307739 0.0245397i 0.00156433 0.00124743i
\(388\) 11.0097 + 6.35643i 0.558931 + 0.322699i
\(389\) 18.7475i 0.950537i −0.879841 0.475269i \(-0.842351\pi\)
0.879841 0.475269i \(-0.157649\pi\)
\(390\) −10.4511 1.97763i −0.529212 0.100141i
\(391\) −3.17012 1.83027i −0.160320 0.0925607i
\(392\) 0 0
\(393\) 13.9640 16.2259i 0.704388 0.818487i
\(394\) 25.6321 44.3961i 1.29133 2.23664i
\(395\) 3.30565 5.72556i 0.166326 0.288084i
\(396\) −24.8261 31.1330i −1.24756 1.56449i
\(397\) 26.8216 15.4854i 1.34614 0.777192i 0.358436 0.933554i \(-0.383310\pi\)
0.987700 + 0.156362i \(0.0499767\pi\)
\(398\) −33.6334 58.2548i −1.68589 2.92005i
\(399\) 0 0
\(400\) 24.5441 42.5116i 1.22720 2.12558i
\(401\) 0.924990i 0.0461918i 0.999733 + 0.0230959i \(0.00735231\pi\)
−0.999733 + 0.0230959i \(0.992648\pi\)
\(402\) 18.3453 + 15.7879i 0.914981 + 0.787431i
\(403\) 6.60203 0.328870
\(404\) 25.2621 + 43.7552i 1.25684 + 2.17690i
\(405\) 10.3456 3.19045i 0.514076 0.158535i
\(406\) 0 0
\(407\) −3.72755 + 2.15210i −0.184768 + 0.106676i
\(408\) 17.7928 6.22566i 0.880877 0.308216i
\(409\) −6.56585 + 3.79079i −0.324660 + 0.187443i −0.653468 0.756954i \(-0.726687\pi\)
0.328808 + 0.944397i \(0.393353\pi\)
\(410\) −18.9653 + 10.9496i −0.936629 + 0.540763i
\(411\) 15.3094 + 13.1752i 0.755157 + 0.649887i
\(412\) −79.7782 + 46.0599i −3.93039 + 2.26921i
\(413\) 0 0
\(414\) −23.0041 9.02931i −1.13059 0.443766i
\(415\) −1.93496 3.35145i −0.0949834 0.164516i
\(416\) −36.4533 −1.78727
\(417\) 16.4972 5.77231i 0.807870 0.282671i
\(418\) 50.3184i 2.46115i
\(419\) 2.85061 4.93740i 0.139262 0.241208i −0.787956 0.615732i \(-0.788860\pi\)
0.927217 + 0.374524i \(0.122194\pi\)
\(420\) 0 0
\(421\) −5.86189 10.1531i −0.285691 0.494832i 0.687085 0.726577i \(-0.258890\pi\)
−0.972777 + 0.231745i \(0.925557\pi\)
\(422\) 16.9263 9.77240i 0.823959 0.475713i
\(423\) 4.00682 + 1.57271i 0.194818 + 0.0764678i
\(424\) −44.7926 + 77.5830i −2.17532 + 3.76776i
\(425\) −2.13840 + 3.70381i −0.103728 + 0.179661i
\(426\) −18.6645 53.3430i −0.904300 2.58447i
\(427\) 0 0
\(428\) −45.6877 26.3778i −2.20840 1.27502i
\(429\) −2.68076 7.66157i −0.129428 0.369904i
\(430\) 0.0427522i 0.00206169i
\(431\) −23.2973 13.4507i −1.12219 0.647897i −0.180231 0.983624i \(-0.557685\pi\)
−0.941959 + 0.335728i \(0.891018\pi\)
\(432\) 63.4729 33.5425i 3.05384 1.61381i
\(433\) 28.1028i 1.35053i −0.737574 0.675266i \(-0.764029\pi\)
0.737574 0.675266i \(-0.235971\pi\)
\(434\) 0 0
\(435\) 0.0777645 0.410959i 0.00372852 0.0197040i
\(436\) −55.5850 −2.66204
\(437\) 11.3584 + 19.6733i 0.543344 + 0.941099i
\(438\) −39.9783 7.56497i −1.91024 0.361468i
\(439\) −8.07680 4.66314i −0.385485 0.222560i 0.294717 0.955585i \(-0.404775\pi\)
−0.680202 + 0.733025i \(0.738108\pi\)
\(440\) −27.0454 −1.28934
\(441\) 0 0
\(442\) 6.14510 0.292292
\(443\) −9.82131 5.67034i −0.466624 0.269406i 0.248201 0.968709i \(-0.420161\pi\)
−0.714826 + 0.699303i \(0.753494\pi\)
\(444\) −5.28514 15.1048i −0.250821 0.716844i
\(445\) −4.79203 8.30004i −0.227164 0.393460i
\(446\) −65.9063 −3.12076
\(447\) −6.29123 5.41422i −0.297565 0.256084i
\(448\) 0 0
\(449\) 15.3295i 0.723444i 0.932286 + 0.361722i \(0.117811\pi\)
−0.932286 + 0.361722i \(0.882189\pi\)
\(450\) −10.5494 + 26.8769i −0.497304 + 1.26699i
\(451\) −14.4729 8.35592i −0.681501 0.393465i
\(452\) 58.9316i 2.77191i
\(453\) −12.7878 + 14.8592i −0.600823 + 0.698147i
\(454\) 1.12739 + 0.650900i 0.0529111 + 0.0305483i
\(455\) 0 0
\(456\) −114.944 21.7505i −5.38274 1.01856i
\(457\) 4.58649 7.94404i 0.214547 0.371606i −0.738585 0.674160i \(-0.764506\pi\)
0.953132 + 0.302554i \(0.0978391\pi\)
\(458\) 12.2057 21.1408i 0.570333 0.987846i
\(459\) −5.53006 + 2.92238i −0.258121 + 0.136405i
\(460\) −16.9101 + 9.76305i −0.788438 + 0.455205i
\(461\) 16.5365 + 28.6420i 0.770181 + 1.33399i 0.937464 + 0.348083i \(0.113167\pi\)
−0.167283 + 0.985909i \(0.553499\pi\)
\(462\) 0 0
\(463\) 3.91594 6.78260i 0.181989 0.315214i −0.760569 0.649257i \(-0.775080\pi\)
0.942558 + 0.334043i \(0.108413\pi\)
\(464\) 2.77347i 0.128755i
\(465\) −1.35707 + 7.17165i −0.0629326 + 0.332577i
\(466\) 30.1135 1.39498
\(467\) −10.3385 17.9068i −0.478408 0.828627i 0.521286 0.853382i \(-0.325453\pi\)
−0.999694 + 0.0247555i \(0.992119\pi\)
\(468\) 29.8417 4.49692i 1.37943 0.207870i
\(469\) 0 0
\(470\) 4.04898 2.33768i 0.186765 0.107829i
\(471\) 4.74411 25.0710i 0.218597 1.15521i
\(472\) −95.6765 + 55.2389i −4.40387 + 2.54257i
\(473\) 0.0282543 0.0163126i 0.00129913 0.000750056i
\(474\) −4.79439 + 25.3367i −0.220214 + 1.16375i
\(475\) 22.9853 13.2706i 1.05464 0.608895i
\(476\) 0 0
\(477\) 10.8606 27.6698i 0.497274 1.26691i
\(478\) 18.8371 + 32.6267i 0.861587 + 1.49231i
\(479\) 2.65998 0.121538 0.0607688 0.998152i \(-0.480645\pi\)
0.0607688 + 0.998152i \(0.480645\pi\)
\(480\) 7.49310 39.5985i 0.342012 1.80741i
\(481\) 3.26208i 0.148738i
\(482\) −16.7624 + 29.0334i −0.763508 + 1.32243i
\(483\) 0 0
\(484\) 12.8547 + 22.2649i 0.584303 + 1.01204i
\(485\) −2.48116 + 1.43250i −0.112664 + 0.0650465i
\(486\) −33.9774 + 25.0722i −1.54124 + 1.13730i
\(487\) 0.521900 0.903957i 0.0236495 0.0409622i −0.853958 0.520341i \(-0.825805\pi\)
0.877608 + 0.479379i \(0.159138\pi\)
\(488\) 50.8383 88.0546i 2.30134 3.98604i
\(489\) 30.9022 + 5.84753i 1.39745 + 0.264434i
\(490\) 0 0
\(491\) 36.0415 + 20.8085i 1.62653 + 0.939076i 0.985118 + 0.171878i \(0.0549835\pi\)
0.641410 + 0.767198i \(0.278350\pi\)
\(492\) 40.5297 47.0949i 1.82722 2.12320i
\(493\) 0.241638i 0.0108828i
\(494\) −33.0263 19.0677i −1.48592 0.857898i
\(495\) 8.87365 1.33719i 0.398841 0.0601024i
\(496\) 48.3999i 2.17322i
\(497\) 0 0
\(498\) 11.4407 + 9.84581i 0.512668 + 0.441201i
\(499\) −32.2895 −1.44548 −0.722738 0.691122i \(-0.757117\pi\)
−0.722738 + 0.691122i \(0.757117\pi\)
\(500\) 27.4590 + 47.5604i 1.22800 + 2.12697i
\(501\) −0.685795 1.95999i −0.0306391 0.0875660i
\(502\) −46.2490 26.7019i −2.06420 1.19176i
\(503\) −39.9702 −1.78218 −0.891091 0.453825i \(-0.850059\pi\)
−0.891091 + 0.453825i \(0.850059\pi\)
\(504\) 0 0
\(505\) −11.3862 −0.506681
\(506\) −17.7397 10.2420i −0.788626 0.455314i
\(507\) −16.0796 3.04269i −0.714118 0.135130i
\(508\) 36.9998 + 64.0856i 1.64160 + 2.84334i
\(509\) −22.7262 −1.00732 −0.503661 0.863901i \(-0.668014\pi\)
−0.503661 + 0.863901i \(0.668014\pi\)
\(510\) −1.26315 + 6.67529i −0.0559330 + 0.295587i
\(511\) 0 0
\(512\) 17.4067i 0.769277i
\(513\) 38.7887 + 1.45326i 1.71256 + 0.0641630i
\(514\) 26.3692 + 15.2243i 1.16310 + 0.671515i
\(515\) 20.7603i 0.914810i
\(516\) 0.0400606 + 0.114493i 0.00176357 + 0.00504025i
\(517\) 3.08988 + 1.78394i 0.135893 + 0.0784576i
\(518\) 0 0
\(519\) −10.3012 29.4407i −0.452173 1.29230i
\(520\) 10.2486 17.7511i 0.449432 0.778439i
\(521\) 15.0179 26.0118i 0.657948 1.13960i −0.323198 0.946331i \(-0.604758\pi\)
0.981146 0.193268i \(-0.0619087\pi\)
\(522\) 0.243084 + 1.61311i 0.0106395 + 0.0706040i
\(523\) −0.675300 + 0.389885i −0.0295288 + 0.0170485i −0.514692 0.857375i \(-0.672094\pi\)
0.485163 + 0.874424i \(0.338760\pi\)
\(524\) 32.9860 + 57.1334i 1.44100 + 2.49588i
\(525\) 0 0
\(526\) 4.41260 7.64285i 0.192399 0.333244i
\(527\) 4.21683i 0.183688i
\(528\) 56.1675 19.6528i 2.44438 0.855279i
\(529\) 13.7523 0.597926
\(530\) −16.1433 27.9609i −0.701218 1.21455i
\(531\) 28.6605 22.8545i 1.24376 0.991800i
\(532\) 0 0
\(533\) 10.9688 6.33281i 0.475110 0.274305i
\(534\) 28.3334 + 24.3837i 1.22611 + 1.05519i
\(535\) 10.2963 5.94457i 0.445147 0.257006i
\(536\) −40.3927 + 23.3207i −1.74470 + 1.00730i
\(537\) −24.7557 + 8.66194i −1.06829 + 0.373790i
\(538\) −0.568399 + 0.328165i −0.0245054 + 0.0141482i
\(539\) 0 0
\(540\) −1.24915 + 33.3408i −0.0537547 + 1.43476i
\(541\) −1.02015 1.76696i −0.0438598 0.0759674i 0.843262 0.537503i \(-0.180632\pi\)
−0.887122 + 0.461535i \(0.847299\pi\)
\(542\) −2.90670 −0.124854
\(543\) 10.4858 + 9.02402i 0.449987 + 0.387258i
\(544\) 23.2833i 0.998264i
\(545\) 6.26338 10.8485i 0.268294 0.464699i
\(546\) 0 0
\(547\) −8.93590 15.4774i −0.382071 0.661767i 0.609287 0.792950i \(-0.291456\pi\)
−0.991358 + 0.131183i \(0.958123\pi\)
\(548\) −53.9064 + 31.1229i −2.30277 + 1.32950i
\(549\) −12.3265 + 31.4045i −0.526083 + 1.34031i
\(550\) −11.9663 + 20.7262i −0.510244 + 0.883769i
\(551\) 0.749783 1.29866i 0.0319418 0.0553249i
\(552\) 31.0643 36.0962i 1.32218 1.53635i
\(553\) 0 0
\(554\) −11.4986 6.63870i −0.488527 0.282051i
\(555\) 3.54354 + 0.670533i 0.150415 + 0.0284625i
\(556\) 53.8625i 2.28428i
\(557\) 37.2049 + 21.4802i 1.57642 + 0.910147i 0.995353 + 0.0962924i \(0.0306984\pi\)
0.581068 + 0.813855i \(0.302635\pi\)
\(558\) −4.24206 28.1504i −0.179581 1.19170i
\(559\) 0.0247261i 0.00104580i
\(560\) 0 0
\(561\) −4.89357 + 1.71225i −0.206607 + 0.0722911i
\(562\) 36.1625 1.52543
\(563\) −0.773739 1.34016i −0.0326092 0.0564808i 0.849260 0.527975i \(-0.177048\pi\)
−0.881869 + 0.471494i \(0.843715\pi\)
\(564\) −8.65286 + 10.0545i −0.364351 + 0.423370i
\(565\) 11.5016 + 6.64048i 0.483878 + 0.279367i
\(566\) 10.1759 0.427726
\(567\) 0 0
\(568\) 108.906 4.56958
\(569\) 8.65905 + 4.99931i 0.363006 + 0.209582i 0.670399 0.742001i \(-0.266123\pi\)
−0.307392 + 0.951583i \(0.599456\pi\)
\(570\) 27.5016 31.9564i 1.15191 1.33850i
\(571\) 1.39715 + 2.41994i 0.0584689 + 0.101271i 0.893778 0.448509i \(-0.148045\pi\)
−0.835309 + 0.549780i \(0.814711\pi\)
\(572\) 25.0147 1.04592
\(573\) −26.1855 + 9.16224i −1.09392 + 0.382758i
\(574\) 0 0
\(575\) 10.8046i 0.450582i
\(576\) 11.0702 + 73.4621i 0.461258 + 3.06092i
\(577\) −3.23689 1.86882i −0.134754 0.0778000i 0.431108 0.902300i \(-0.358123\pi\)
−0.565861 + 0.824500i \(0.691456\pi\)
\(578\) 42.1251i 1.75217i
\(579\) 23.3313 + 4.41490i 0.969614 + 0.183477i
\(580\) 1.11626 + 0.644475i 0.0463503 + 0.0267604i
\(581\) 0 0
\(582\) 7.28910 8.46981i 0.302143 0.351085i
\(583\) 12.3193 21.3377i 0.510214 0.883717i
\(584\) 39.2037 67.9028i 1.62226 2.80984i
\(585\) −2.48493 + 6.33090i −0.102739 + 0.261751i
\(586\) 29.9540 17.2940i 1.23739 0.714407i
\(587\) −13.1249 22.7331i −0.541725 0.938295i −0.998805 0.0488692i \(-0.984438\pi\)
0.457081 0.889425i \(-0.348895\pi\)
\(588\) 0 0
\(589\) −13.0845 + 22.6630i −0.539136 + 0.933812i
\(590\) 39.8162i 1.63921i
\(591\) −24.8450 21.3816i −1.02199 0.879521i
\(592\) 23.9145 0.982882
\(593\) 1.79833 + 3.11481i 0.0738488 + 0.127910i 0.900585 0.434680i \(-0.143138\pi\)
−0.826736 + 0.562590i \(0.809805\pi\)
\(594\) −30.9457 + 16.3534i −1.26972 + 0.670987i
\(595\) 0 0
\(596\) 22.1522 12.7896i 0.907391 0.523882i
\(597\) −40.5977 + 14.2050i −1.66155 + 0.581372i
\(598\) 13.4446 7.76226i 0.549792 0.317422i
\(599\) −20.6400 + 11.9165i −0.843326 + 0.486895i −0.858394 0.512992i \(-0.828537\pi\)
0.0150672 + 0.999886i \(0.495204\pi\)
\(600\) −42.1730 36.2940i −1.72171 1.48170i
\(601\) −14.6034 + 8.43126i −0.595684 + 0.343918i −0.767342 0.641238i \(-0.778421\pi\)
0.171658 + 0.985157i \(0.445088\pi\)
\(602\) 0 0
\(603\) 12.0999 9.64870i 0.492746 0.392925i
\(604\) −30.2076 52.3212i −1.22913 2.12892i
\(605\) −5.79391 −0.235556
\(606\) 41.9183 14.6671i 1.70281 0.595809i
\(607\) 10.4816i 0.425437i 0.977114 + 0.212718i \(0.0682317\pi\)
−0.977114 + 0.212718i \(0.931768\pi\)
\(608\) 72.2463 125.134i 2.92997 5.07487i
\(609\) 0 0
\(610\) 18.3222 + 31.7349i 0.741842 + 1.28491i
\(611\) −2.34176 + 1.35202i −0.0947377 + 0.0546968i
\(612\) −2.87226 19.0604i −0.116104 0.770471i
\(613\) 23.9500 41.4827i 0.967333 1.67547i 0.264120 0.964490i \(-0.414919\pi\)
0.703213 0.710979i \(-0.251748\pi\)
\(614\) 14.5270 25.1616i 0.586264 1.01544i
\(615\) 4.62454 + 13.2169i 0.186480 + 0.532956i
\(616\) 0 0
\(617\) 4.69477 + 2.71053i 0.189004 + 0.109122i 0.591516 0.806293i \(-0.298530\pi\)
−0.402512 + 0.915415i \(0.631863\pi\)
\(618\) 26.7422 + 76.4289i 1.07573 + 3.07442i
\(619\) 32.3003i 1.29826i 0.760678 + 0.649129i \(0.224866\pi\)
−0.760678 + 0.649129i \(0.775134\pi\)
\(620\) −19.4799 11.2467i −0.782332 0.451680i
\(621\) −8.40757 + 13.3791i −0.337384 + 0.536886i
\(622\) 51.0204i 2.04573i
\(623\) 0 0
\(624\) −8.38513 + 44.3126i −0.335674 + 1.77392i
\(625\) 5.38836 0.215534
\(626\) −35.3098 61.1584i −1.41126 2.44438i
\(627\) 31.6131 + 5.98205i 1.26250 + 0.238900i
\(628\) 68.0989 + 39.3169i 2.71744 + 1.56892i
\(629\) −2.08355 −0.0830765
\(630\) 0 0
\(631\) −18.3539 −0.730656 −0.365328 0.930879i \(-0.619043\pi\)
−0.365328 + 0.930879i \(0.619043\pi\)
\(632\) −43.0343 24.8459i −1.71181 0.988315i
\(633\) −4.12735 11.7959i −0.164047 0.468845i
\(634\) −18.8127 32.5845i −0.747147 1.29410i
\(635\) −16.6767 −0.661795
\(636\) 69.4330 + 59.7539i 2.75320 + 2.36940i
\(637\) 0 0
\(638\) 1.35218i 0.0535335i
\(639\) −35.7322 + 5.38457i −1.41354 + 0.213010i
\(640\) 29.5816 + 17.0789i 1.16931 + 0.675104i
\(641\) 10.4732i 0.413665i 0.978376 + 0.206833i \(0.0663155\pi\)
−0.978376 + 0.206833i \(0.933684\pi\)
\(642\) −30.2482 + 35.1479i −1.19380 + 1.38718i
\(643\) 3.37572 + 1.94897i 0.133125 + 0.0768600i 0.565084 0.825034i \(-0.308844\pi\)
−0.431958 + 0.901894i \(0.642177\pi\)
\(644\) 0 0
\(645\) −0.0268595 0.00508254i −0.00105759 0.000200125i
\(646\) −12.1789 + 21.0945i −0.479172 + 0.829950i
\(647\) −6.20269 + 10.7434i −0.243853 + 0.422366i −0.961809 0.273723i \(-0.911745\pi\)
0.717955 + 0.696089i \(0.245078\pi\)
\(648\) −23.9800 77.7591i −0.942023 3.05467i
\(649\) 26.3140 15.1924i 1.03291 0.596353i
\(650\) −9.06905 15.7081i −0.355717 0.616120i
\(651\) 0 0
\(652\) −48.4615 + 83.9377i −1.89790 + 3.28726i
\(653\) 14.1738i 0.554664i 0.960774 + 0.277332i \(0.0894502\pi\)
−0.960774 + 0.277332i \(0.910550\pi\)
\(654\) −9.08417 + 48.0067i −0.355219 + 1.87721i
\(655\) −14.8676 −0.580925
\(656\) 46.4263 + 80.4126i 1.81264 + 3.13959i
\(657\) −9.50554 + 24.2174i −0.370846 + 0.944811i
\(658\) 0 0
\(659\) −17.2962 + 9.98594i −0.673763 + 0.388997i −0.797501 0.603318i \(-0.793845\pi\)
0.123738 + 0.992315i \(0.460512\pi\)
\(660\) −5.14186 + 27.1730i −0.200146 + 1.05771i
\(661\) 21.0493 12.1528i 0.818721 0.472689i −0.0312540 0.999511i \(-0.509950\pi\)
0.849975 + 0.526823i \(0.176617\pi\)
\(662\) −10.5205 + 6.07401i −0.408891 + 0.236073i
\(663\) 0.730552 3.86072i 0.0283723 0.149938i
\(664\) −25.1900 + 14.5435i −0.977563 + 0.564396i
\(665\) 0 0
\(666\) −13.9092 + 2.09602i −0.538971 + 0.0812190i
\(667\) 0.305228 + 0.528670i 0.0118185 + 0.0204702i
\(668\) 6.39929 0.247596
\(669\) −7.83520 + 41.4063i −0.302926 + 1.60086i
\(670\) 16.8096i 0.649411i
\(671\) −13.9821 + 24.2177i −0.539773 + 0.934914i
\(672\) 0 0
\(673\) −1.82521 3.16135i −0.0703566 0.121861i 0.828701 0.559692i \(-0.189080\pi\)
−0.899058 + 0.437830i \(0.855747\pi\)
\(674\) −76.9508 + 44.4275i −2.96403 + 1.71129i
\(675\) 15.6315 + 9.82300i 0.601658 + 0.378087i
\(676\) 25.2163 43.6759i 0.969858 1.67984i
\(677\) −0.968676 + 1.67780i −0.0372292 + 0.0644829i −0.884040 0.467412i \(-0.845187\pi\)
0.846810 + 0.531895i \(0.178520\pi\)
\(678\) −50.8970 9.63109i −1.95469 0.369880i
\(679\) 0 0
\(680\) −11.3379 6.54597i −0.434790 0.251026i
\(681\) 0.542963 0.630914i 0.0208064 0.0241767i
\(682\) 23.5970i 0.903575i
\(683\) −16.8815 9.74656i −0.645954 0.372942i 0.140950 0.990017i \(-0.454984\pi\)
−0.786905 + 0.617075i \(0.788318\pi\)
\(684\) −43.7062 + 111.351i −1.67115 + 4.25761i
\(685\) 14.0278i 0.535976i
\(686\) 0 0
\(687\) −11.8309 10.1816i −0.451377 0.388454i
\(688\) −0.181269 −0.00691081
\(689\) 9.33660 + 16.1715i 0.355696 + 0.616084i
\(690\) 5.66840 + 16.2002i 0.215792 + 0.616731i
\(691\) 35.7855 + 20.6608i 1.36134 + 0.785972i 0.989803 0.142444i \(-0.0454960\pi\)
0.371541 + 0.928416i \(0.378829\pi\)
\(692\) 96.1226 3.65403
\(693\) 0 0
\(694\) −36.3186 −1.37863
\(695\) −10.5123 6.06929i −0.398755 0.230221i
\(696\) −3.08884 0.584491i −0.117082 0.0221551i
\(697\) −4.04488 7.00593i −0.153211 0.265369i
\(698\) 60.4545 2.28824
\(699\) 3.58001 18.9191i 0.135408 0.715586i
\(700\) 0 0
\(701\) 27.3333i 1.03236i −0.856479 0.516182i \(-0.827353\pi\)
0.856479 0.516182i \(-0.172647\pi\)
\(702\) 0.993152 26.5081i 0.0374841 1.00048i
\(703\) 11.1979 + 6.46508i 0.422335 + 0.243835i
\(704\) 61.5793i 2.32086i
\(705\) −0.987313 2.82172i −0.0371843 0.106272i
\(706\) −40.3893 23.3187i −1.52007 0.877613i
\(707\) 0 0
\(708\) 37.3094 + 106.630i 1.40217 + 4.00739i
\(709\) −1.35635 + 2.34926i −0.0509387 + 0.0882283i −0.890370 0.455237i \(-0.849555\pi\)
0.839432 + 0.543465i \(0.182888\pi\)
\(710\) −19.6248 + 33.9912i −0.736506 + 1.27567i
\(711\) 15.3481 + 6.02425i 0.575598 + 0.225927i
\(712\) −62.3845 + 36.0177i −2.33796 + 1.34982i
\(713\) −5.32654 9.22584i −0.199480 0.345510i
\(714\) 0 0
\(715\) −2.81868 + 4.88210i −0.105413 + 0.182580i
\(716\) 80.8262i 3.02062i
\(717\) 22.7375 7.95578i 0.849148 0.297114i
\(718\) 17.6058 0.657044
\(719\) −8.13931 14.0977i −0.303545 0.525756i 0.673391 0.739286i \(-0.264837\pi\)
−0.976936 + 0.213531i \(0.931504\pi\)
\(720\) −46.4123 18.2172i −1.72968 0.678915i
\(721\) 0 0
\(722\) 86.3365 49.8464i 3.21311 1.85509i
\(723\) 16.2477 + 13.9828i 0.604260 + 0.520025i
\(724\) −36.9217 + 21.3167i −1.37218 + 0.792231i
\(725\) 0.617673 0.356614i 0.0229398 0.0132443i
\(726\) 21.3302 7.46337i 0.791638 0.276992i
\(727\) −0.980123 + 0.565874i −0.0363508 + 0.0209871i −0.518065 0.855341i \(-0.673348\pi\)
0.481714 + 0.876328i \(0.340014\pi\)
\(728\) 0 0
\(729\) 11.7125 + 24.3273i 0.433796 + 0.901011i
\(730\) 14.1290 + 24.4722i 0.522939 + 0.905757i
\(731\) 0.0157930 0.000584125
\(732\) −78.8046 67.8190i −2.91270 2.50666i
\(733\) 38.3459i 1.41634i −0.706043 0.708169i \(-0.749522\pi\)
0.706043 0.708169i \(-0.250478\pi\)
\(734\) 12.1946 21.1217i 0.450111 0.779615i
\(735\) 0 0
\(736\) 29.4106 + 50.9407i 1.08409 + 1.87770i
\(737\) 11.1092 6.41391i 0.409213 0.236259i
\(738\) −34.0504 42.7007i −1.25341 1.57183i
\(739\) −5.36489 + 9.29226i −0.197351 + 0.341821i −0.947669 0.319256i \(-0.896567\pi\)
0.750318 + 0.661077i \(0.229900\pi\)
\(740\) −5.55705 + 9.62509i −0.204281 + 0.353825i
\(741\) −15.9058 + 18.4823i −0.584314 + 0.678963i
\(742\) 0 0
\(743\) −11.3308 6.54185i −0.415687 0.239997i 0.277543 0.960713i \(-0.410480\pi\)
−0.693230 + 0.720716i \(0.743813\pi\)
\(744\) 53.9033 + 10.2000i 1.97619 + 0.373949i
\(745\) 5.76458i 0.211198i
\(746\) 26.9927 + 15.5842i 0.988272 + 0.570579i
\(747\) 7.54584 6.01721i 0.276088 0.220158i
\(748\) 15.9773i 0.584188i
\(749\) 0 0
\(750\) 45.5637 15.9426i 1.66375 0.582142i
\(751\) 26.3354 0.960991 0.480495 0.876997i \(-0.340457\pi\)
0.480495 + 0.876997i \(0.340457\pi\)
\(752\) −9.91173 17.1676i −0.361444 0.626039i
\(753\) −22.2740 + 25.8820i −0.811710 + 0.943193i
\(754\) −0.887501 0.512399i −0.0323209 0.0186605i
\(755\) 13.6153 0.495512
\(756\) 0 0
\(757\) −32.6280 −1.18588 −0.592942 0.805245i \(-0.702034\pi\)
−0.592942 + 0.805245i \(0.702034\pi\)
\(758\) 40.1109 + 23.1580i 1.45689 + 0.841138i
\(759\) −8.54362 + 9.92754i −0.310114 + 0.360347i
\(760\) 40.6232 + 70.3615i 1.47356 + 2.55228i
\(761\) 25.3454 0.918770 0.459385 0.888237i \(-0.348070\pi\)
0.459385 + 0.888237i \(0.348070\pi\)
\(762\) 61.3951 21.4820i 2.22411 0.778210i
\(763\) 0 0
\(764\) 85.4946i 3.09309i
\(765\) 4.04366 + 1.58717i 0.146199 + 0.0573842i
\(766\) −38.0403 21.9626i −1.37445 0.793541i
\(767\) 23.0281i 0.831496i
\(768\) −46.6156 8.82093i −1.68210 0.318298i
\(769\) −11.4964 6.63744i −0.414570 0.239352i 0.278181 0.960529i \(-0.410268\pi\)
−0.692752 + 0.721176i \(0.743602\pi\)
\(770\) 0 0
\(771\) 12.6997 14.7568i 0.457368 0.531454i
\(772\) −36.5886 + 63.3733i −1.31685 + 2.28085i
\(773\) 8.00680 13.8682i 0.287985 0.498804i −0.685344 0.728219i \(-0.740348\pi\)
0.973329 + 0.229416i \(0.0736815\pi\)
\(774\) 0.105430 0.0158875i 0.00378960 0.000571065i
\(775\) −10.7790 + 6.22327i −0.387194 + 0.223546i
\(776\) 10.7669 + 18.6488i 0.386509 + 0.669454i
\(777\) 0 0
\(778\) 25.3919 43.9801i 0.910344 1.57676i
\(779\) 50.2037i 1.79873i
\(780\) −15.8864 13.6718i −0.568824 0.489529i
\(781\) −29.9524 −1.07178
\(782\) −4.95789 8.58731i −0.177294 0.307082i
\(783\) 1.04235 + 0.0390528i 0.0372506 + 0.00139563i
\(784\) 0 0
\(785\) −15.3469 + 8.86054i −0.547755 + 0.316246i
\(786\) 54.7348 19.1515i 1.95233 0.683113i
\(787\) −4.24659 + 2.45177i −0.151375 + 0.0873961i −0.573774 0.819014i \(-0.694521\pi\)
0.422400 + 0.906410i \(0.361188\pi\)
\(788\) 87.4826 50.5081i 3.11644 1.79928i
\(789\) −4.27711 3.68087i −0.152269 0.131043i
\(790\) 15.5096 8.95445i 0.551806 0.318585i
\(791\) 0 0
\(792\) −10.0506 66.6958i −0.357131 2.36993i
\(793\) −10.5968 18.3542i −0.376303 0.651776i
\(794\) 83.8948 2.97732
\(795\) −19.4859 + 6.81806i −0.691094 + 0.241812i
\(796\) 132.550i 4.69809i
\(797\) −21.3994 + 37.0649i −0.758006 + 1.31290i 0.185860 + 0.982576i \(0.440493\pi\)
−0.943866 + 0.330328i \(0.892841\pi\)
\(798\) 0 0
\(799\) 0.863557 + 1.49572i 0.0305505 + 0.0529149i
\(800\) 59.5167 34.3620i 2.10423 1.21488i
\(801\) 18.6877 14.9019i 0.660297 0.526534i
\(802\) −1.25282 + 2.16995i −0.0442386 + 0.0766235i
\(803\) −10.7822 + 18.6754i −0.380496 + 0.659039i
\(804\) 15.7513 + 45.0169i 0.555505 + 1.58763i
\(805\) 0 0
\(806\) 15.4878 + 8.94188i 0.545534 + 0.314964i
\(807\) 0.138600 + 0.396116i 0.00487895 + 0.0139440i
\(808\) 85.5809i 3.01072i
\(809\) −30.5649 17.6467i −1.07461 0.620424i −0.145169 0.989407i \(-0.546373\pi\)
−0.929436 + 0.368983i \(0.879706\pi\)
\(810\) 28.5910 + 6.52767i 1.00459 + 0.229359i
\(811\) 21.0223i 0.738193i 0.929391 + 0.369096i \(0.120333\pi\)
−0.929391 + 0.369096i \(0.879667\pi\)
\(812\) 0 0
\(813\) −0.345560 + 1.82617i −0.0121193 + 0.0640465i
\(814\) −11.6594 −0.408660
\(815\) −10.9214 18.9164i −0.382559 0.662612i
\(816\) 28.3032 + 5.35573i 0.990810 + 0.187488i
\(817\) −0.0848782 0.0490044i −0.00296951 0.00171445i
\(818\) −20.5372 −0.718067
\(819\) 0 0
\(820\) −43.1525 −1.50695
\(821\) 29.8623 + 17.2410i 1.04220 + 0.601716i 0.920456 0.390845i \(-0.127817\pi\)
0.121746 + 0.992561i \(0.461151\pi\)
\(822\) 18.0698 + 51.6433i 0.630258 + 1.80127i
\(823\) 19.4950 + 33.7663i 0.679552 + 1.17702i 0.975116 + 0.221695i \(0.0711590\pi\)
−0.295564 + 0.955323i \(0.595508\pi\)
\(824\) −156.038 −5.43585
\(825\) 11.5989 + 9.98195i 0.403820 + 0.347527i
\(826\) 0 0
\(827\) 47.2537i 1.64317i 0.570086 + 0.821585i \(0.306910\pi\)
−0.570086 + 0.821585i \(0.693090\pi\)
\(828\) −30.3605 38.0734i −1.05510 1.32314i
\(829\) 42.5588 + 24.5713i 1.47813 + 0.853397i 0.999694 0.0247275i \(-0.00787180\pi\)
0.478432 + 0.878124i \(0.341205\pi\)
\(830\) 10.4829i 0.363868i
\(831\) −5.53782 + 6.43486i −0.192105 + 0.223223i
\(832\) −40.4174 23.3350i −1.40122 0.808995i
\(833\) 0 0
\(834\) 46.5190 + 8.80266i 1.61082 + 0.304811i
\(835\) −0.721079 + 1.24894i −0.0249540 + 0.0432215i
\(836\) −49.5763 + 85.8687i −1.71463 + 2.96983i
\(837\) −18.1901 0.681511i −0.628742 0.0235565i
\(838\) 13.3746 7.72182i 0.462017 0.266746i
\(839\) 26.0780 + 45.1684i 0.900312 + 1.55939i 0.827090 + 0.562070i \(0.189995\pi\)
0.0732219 + 0.997316i \(0.476672\pi\)
\(840\) 0 0
\(841\) −14.4799 + 25.0798i −0.499305 + 0.864822i
\(842\) 31.7577i 1.09444i
\(843\) 4.29914 22.7195i 0.148070 0.782501i
\(844\) 38.5131 1.32568
\(845\) 5.68280 + 9.84290i 0.195494 + 0.338606i
\(846\) 7.26956 + 9.11634i 0.249932 + 0.313426i
\(847\) 0 0
\(848\) −118.554 + 68.4472i −4.07116 + 2.35049i
\(849\) 1.20975 6.39313i 0.0415186 0.219411i
\(850\) −10.0330 + 5.79255i −0.344129 + 0.198683i
\(851\) −4.55852 + 2.63186i −0.156264 + 0.0902190i
\(852\) 20.7051 109.419i 0.709345 3.74864i
\(853\) −13.4028 + 7.73808i −0.458902 + 0.264947i −0.711582 0.702603i \(-0.752021\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(854\) 0 0
\(855\) −16.8074 21.0772i −0.574802 0.720827i
\(856\) −44.6804 77.3886i −1.52714 2.64509i
\(857\) −48.8713 −1.66941 −0.834706 0.550696i \(-0.814362\pi\)
−0.834706 + 0.550696i \(0.814362\pi\)
\(858\) 4.08811 21.6043i 0.139566 0.737557i
\(859\) 9.75722i 0.332912i 0.986049 + 0.166456i \(0.0532324\pi\)
−0.986049 + 0.166456i \(0.946768\pi\)
\(860\) 0.0421217 0.0729569i 0.00143634 0.00248781i
\(861\) 0 0
\(862\) −36.4356 63.1083i −1.24100 2.14948i
\(863\) 23.9462 13.8253i 0.815138 0.470620i −0.0335987 0.999435i \(-0.510697\pi\)
0.848737 + 0.528815i \(0.177363\pi\)
\(864\) 100.437 + 3.76298i 3.41694 + 0.128019i
\(865\) −10.8312 + 18.7602i −0.368272 + 0.637866i
\(866\) 38.0628 65.9267i 1.29343 2.24028i
\(867\) 26.4655 + 5.00799i 0.898817 + 0.170080i
\(868\) 0 0
\(869\) 11.8357 + 6.83337i 0.401500 + 0.231806i
\(870\) 0.739038 0.858749i 0.0250557 0.0291143i
\(871\) 9.72199i 0.329417i
\(872\) −81.5391 47.0766i −2.76126 1.59422i
\(873\) −4.45469 5.58638i −0.150768 0.189070i
\(874\) 61.5357i 2.08148i
\(875\) 0 0
\(876\) −60.7697 52.2983i −2.05322 1.76700i
\(877\) −1.86524 −0.0629848 −0.0314924 0.999504i \(-0.510026\pi\)
−0.0314924 + 0.999504i \(0.510026\pi\)
\(878\) −12.6317 21.8787i −0.426298 0.738370i
\(879\) −7.30407 20.8749i −0.246360 0.704093i
\(880\) −35.7910 20.6639i −1.20651 0.696581i
\(881\) 0.0273875 0.000922707 0.000461353 1.00000i \(-0.499853\pi\)
0.000461353 1.00000i \(0.499853\pi\)
\(882\) 0 0
\(883\) 36.2074 1.21848 0.609239 0.792987i \(-0.291475\pi\)
0.609239 + 0.792987i \(0.291475\pi\)
\(884\) 10.4866 + 6.05447i 0.352704 + 0.203634i
\(885\) −25.0149 4.73350i −0.840868 0.159115i
\(886\) −15.3600 26.6043i −0.516028 0.893787i
\(887\) 25.3253 0.850339 0.425170 0.905114i \(-0.360214\pi\)
0.425170 + 0.905114i \(0.360214\pi\)
\(888\) 5.03984 26.6338i 0.169126 0.893772i
\(889\) 0 0
\(890\) 25.9616i 0.870235i
\(891\) 6.59523 + 21.3861i 0.220948 + 0.716462i
\(892\) −112.470 64.9343i −3.76576 2.17416i
\(893\) 10.7182i 0.358671i
\(894\) −7.42560 21.2222i −0.248349 0.709778i
\(895\) 15.7748 + 9.10759i 0.527294 + 0.304433i
\(896\) 0 0
\(897\) −3.27837 9.36953i −0.109462 0.312840i
\(898\) −20.7625 + 35.9617i −0.692854 + 1.20006i
\(899\) −0.351613 + 0.609012i −0.0117270 + 0.0203117i
\(900\) −44.4831 + 35.4717i −1.48277 + 1.18239i
\(901\) 10.3290 5.96345i 0.344109 0.198671i
\(902\) −22.6348 39.2046i −0.753655 1.30537i
\(903\) 0 0
\(904\) 49.9110 86.4483i 1.66001 2.87523i
\(905\) 9.60798i 0.319380i
\(906\) −50.1246 + 17.5385i −1.66528 + 0.582676i
\(907\) −38.8120 −1.28873 −0.644366 0.764717i \(-0.722879\pi\)
−0.644366 + 0.764717i \(0.722879\pi\)
\(908\) 1.28260 + 2.22153i 0.0425646 + 0.0737240i
\(909\) −4.23134 28.0793i −0.140345 0.931331i
\(910\) 0 0
\(911\) −43.6110 + 25.1788i −1.44490 + 0.834211i −0.998171 0.0604602i \(-0.980743\pi\)
−0.446725 + 0.894671i \(0.647410\pi\)
\(912\) −135.495 116.606i −4.48668 3.86122i
\(913\) 6.92803 3.99990i 0.229284 0.132377i
\(914\) 21.5190 12.4240i 0.711787 0.410950i
\(915\) 22.1160 7.73832i 0.731132 0.255821i
\(916\) 41.6581 24.0513i 1.37642 0.794677i
\(917\) 0 0
\(918\) −16.9312 0.634343i −0.558812 0.0209364i
\(919\) 1.49845 + 2.59539i 0.0494293 + 0.0856140i 0.889681 0.456582i \(-0.150926\pi\)
−0.840252 + 0.542196i \(0.817593\pi\)
\(920\) −33.0745 −1.09043
\(921\) −14.0810 12.1181i −0.463985 0.399304i
\(922\) 89.5890i 2.95046i
\(923\) 11.3502 19.6591i 0.373596 0.647088i
\(924\) 0 0
\(925\) 3.07494 + 5.32595i 0.101103 + 0.175116i
\(926\) 18.3729 10.6076i 0.603771 0.348588i
\(927\) 51.1965 7.71493i 1.68151 0.253392i
\(928\) 1.94144 3.36268i 0.0637310 0.110385i
\(929\) −16.1108 + 27.9047i −0.528577 + 0.915522i 0.470868 + 0.882204i \(0.343941\pi\)
−0.999445 + 0.0333184i \(0.989392\pi\)
\(930\) −12.8970 + 14.9860i −0.422908 + 0.491412i
\(931\) 0 0
\(932\) 51.3888 + 29.6694i 1.68330 + 0.971852i
\(933\) −32.0541 6.06550i −1.04940 0.198576i
\(934\) 56.0104i 1.83272i
\(935\) 3.11828 + 1.80034i 0.101979 + 0.0588774i
\(936\) 47.5841 + 18.6772i 1.55534 + 0.610482i
\(937\) 3.07038i 0.100305i 0.998742 + 0.0501525i \(0.0159708\pi\)
−0.998742 + 0.0501525i \(0.984029\pi\)
\(938\) 0 0
\(939\) −42.6212 + 14.9130i −1.39089 + 0.486668i
\(940\) 9.21280 0.300489
\(941\) 19.4136 + 33.6253i 0.632865 + 1.09615i 0.986963 + 0.160946i \(0.0514543\pi\)
−0.354099 + 0.935208i \(0.615212\pi\)
\(942\) 45.0858 52.3890i 1.46898 1.70692i
\(943\) −17.6993 10.2187i −0.576367 0.332766i
\(944\) −168.820 −5.49464
\(945\) 0 0
\(946\) 0.0883763 0.00287336
\(947\) −16.2391 9.37567i −0.527701 0.304668i 0.212379 0.977187i \(-0.431879\pi\)
−0.740080 + 0.672519i \(0.765212\pi\)
\(948\) −33.1447 + 38.5136i −1.07649 + 1.25086i
\(949\) −8.17166 14.1537i −0.265263 0.459450i
\(950\) 71.8953 2.33259
\(951\) −22.7081 + 7.94549i −0.736360 + 0.257650i
\(952\) 0 0
\(953\) 47.6453i 1.54338i −0.635997 0.771692i \(-0.719411\pi\)
0.635997 0.771692i \(-0.280589\pi\)
\(954\) 62.9545 50.2012i 2.03823 1.62532i
\(955\) 16.6859 + 9.63362i 0.539944 + 0.311737i
\(956\) 74.2370i 2.40099i
\(957\) 0.849524 + 0.160753i 0.0274612 + 0.00519640i
\(958\) 6.24009 + 3.60272i 0.201608 + 0.116398i
\(959\) 0 0
\(960\) 33.6562 39.1080i 1.08625 1.26220i
\(961\) −9.36399 + 16.2189i −0.302064 + 0.523191i
\(962\) 4.41821 7.65257i 0.142449 0.246729i
\(963\) 18.4860 + 23.1823i 0.595704 + 0.747038i
\(964\) −57.2104 + 33.0304i −1.84262 + 1.06384i
\(965\) −8.24569 14.2819i −0.265438 0.459752i
\(966\) 0 0
\(967\) 25.8005 44.6878i 0.829689 1.43706i −0.0685936 0.997645i \(-0.521851\pi\)
0.898282 0.439419i \(-0.144815\pi\)
\(968\) 43.5480i 1.39969i
\(969\) 11.8049 + 10.1593i 0.379229 + 0.326364i
\(970\) −7.76079 −0.249184
\(971\) −14.1933 24.5836i −0.455485 0.788924i 0.543231 0.839584i \(-0.317201\pi\)
−0.998716 + 0.0506597i \(0.983868\pi\)
\(972\) −82.6849 + 9.30958i −2.65212 + 0.298605i
\(973\) 0 0
\(974\) 2.44867 1.41374i 0.0784603 0.0452991i
\(975\) −10.9469 + 3.83029i −0.350582 + 0.122667i
\(976\) 134.556 77.6858i 4.30702 2.48666i
\(977\) −35.6722 + 20.5954i −1.14126 + 0.658904i −0.946741 0.321995i \(-0.895647\pi\)
−0.194515 + 0.980900i \(0.562313\pi\)
\(978\) 64.5739 + 55.5722i 2.06485 + 1.77700i
\(979\) 17.1576 9.90597i 0.548361 0.316596i
\(980\) 0 0
\(981\) 29.0808 + 11.4144i 0.928477 + 0.364435i
\(982\) 56.3668 + 97.6302i 1.79874 + 3.11550i
\(983\) 52.8035 1.68417 0.842085 0.539346i \(-0.181328\pi\)
0.842085 + 0.539346i \(0.181328\pi\)
\(984\) 99.3402 34.7588i 3.16685 1.10807i
\(985\) 22.7652i 0.725361i
\(986\) −0.327278 + 0.566862i −0.0104227 + 0.0180526i
\(987\) 0 0
\(988\) −37.5731 65.0784i −1.19536 2.07042i
\(989\) 0.0345529 0.0199491i 0.00109872 0.000634346i
\(990\) 22.6279 + 8.88166i 0.719163 + 0.282278i
\(991\) −8.24486 + 14.2805i −0.261907 + 0.453636i −0.966749 0.255729i \(-0.917685\pi\)
0.704842 + 0.709364i \(0.251018\pi\)
\(992\) −33.8801 + 58.6821i −1.07570 + 1.86316i
\(993\) 2.56534 + 7.33171i 0.0814087 + 0.232665i
\(994\) 0 0
\(995\) 25.8696 + 14.9358i 0.820122 + 0.473498i
\(996\) 9.82296 + 28.0739i 0.311252 + 0.889554i
\(997\) 49.0582i 1.55369i −0.629692 0.776845i \(-0.716819\pi\)
0.629692 0.776845i \(-0.283181\pi\)
\(998\) −75.7484 43.7333i −2.39777 1.38435i
\(999\) −0.336737 + 8.98779i −0.0106539 + 0.284361i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.s.d.374.24 48
3.2 odd 2 1323.2.s.d.962.1 48
7.2 even 3 441.2.i.d.68.2 48
7.3 odd 6 441.2.o.e.293.2 yes 48
7.4 even 3 441.2.o.e.293.1 yes 48
7.5 odd 6 441.2.i.d.68.1 48
7.6 odd 2 inner 441.2.s.d.374.23 48
9.2 odd 6 441.2.i.d.227.23 48
9.7 even 3 1323.2.i.d.521.21 48
21.2 odd 6 1323.2.i.d.1097.6 48
21.5 even 6 1323.2.i.d.1097.21 48
21.11 odd 6 1323.2.o.e.881.23 48
21.17 even 6 1323.2.o.e.881.24 48
21.20 even 2 1323.2.s.d.962.2 48
63.2 odd 6 inner 441.2.s.d.362.23 48
63.11 odd 6 441.2.o.e.146.2 yes 48
63.16 even 3 1323.2.s.d.656.2 48
63.20 even 6 441.2.i.d.227.24 48
63.25 even 3 1323.2.o.e.440.24 48
63.34 odd 6 1323.2.i.d.521.6 48
63.38 even 6 441.2.o.e.146.1 48
63.47 even 6 inner 441.2.s.d.362.24 48
63.52 odd 6 1323.2.o.e.440.23 48
63.61 odd 6 1323.2.s.d.656.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.1 48 7.5 odd 6
441.2.i.d.68.2 48 7.2 even 3
441.2.i.d.227.23 48 9.2 odd 6
441.2.i.d.227.24 48 63.20 even 6
441.2.o.e.146.1 48 63.38 even 6
441.2.o.e.146.2 yes 48 63.11 odd 6
441.2.o.e.293.1 yes 48 7.4 even 3
441.2.o.e.293.2 yes 48 7.3 odd 6
441.2.s.d.362.23 48 63.2 odd 6 inner
441.2.s.d.362.24 48 63.47 even 6 inner
441.2.s.d.374.23 48 7.6 odd 2 inner
441.2.s.d.374.24 48 1.1 even 1 trivial
1323.2.i.d.521.6 48 63.34 odd 6
1323.2.i.d.521.21 48 9.7 even 3
1323.2.i.d.1097.6 48 21.2 odd 6
1323.2.i.d.1097.21 48 21.5 even 6
1323.2.o.e.440.23 48 63.52 odd 6
1323.2.o.e.440.24 48 63.25 even 3
1323.2.o.e.881.23 48 21.11 odd 6
1323.2.o.e.881.24 48 21.17 even 6
1323.2.s.d.656.1 48 63.61 odd 6
1323.2.s.d.656.2 48 63.16 even 3
1323.2.s.d.962.1 48 3.2 odd 2
1323.2.s.d.962.2 48 21.20 even 2