Properties

Label 1323.2.o.e.881.24
Level $1323$
Weight $2$
Character 1323.881
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(440,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.440"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,24,0,0,0,0,0,0,24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 881.24
Character \(\chi\) \(=\) 1323.881
Dual form 1323.2.o.e.440.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.34591 - 1.35441i) q^{2} +(2.66888 - 4.62263i) q^{4} +(0.601464 - 1.04177i) q^{5} -9.04141i q^{8} -3.25853i q^{10} +(2.15351 - 1.24333i) q^{11} +(-1.63211 - 0.942300i) q^{13} +(-6.90806 - 11.9651i) q^{16} -1.20373 q^{17} +7.47013i q^{19} +(-3.21047 - 5.56070i) q^{20} +(3.36797 - 5.83350i) q^{22} +(-2.63359 - 1.52050i) q^{23} +(1.77648 + 3.07696i) q^{25} -5.10506 q^{26} +(0.173847 - 0.100371i) q^{29} +(3.03381 + 1.75157i) q^{31} +(-16.7513 - 9.67135i) q^{32} +(-2.82384 + 1.63034i) q^{34} +1.73092 q^{37} +(10.1177 + 17.5243i) q^{38} +(-9.41904 - 5.43809i) q^{40} +(3.36029 - 5.82020i) q^{41} +(0.00656005 + 0.0113623i) q^{43} -13.2732i q^{44} -8.23756 q^{46} +(-0.717403 - 1.24258i) q^{47} +(8.33495 + 4.81219i) q^{50} +(-8.71182 + 5.02977i) q^{52} +9.90831i q^{53} -2.99128i q^{55} +(0.271887 - 0.470923i) q^{58} +(6.10954 - 10.5820i) q^{59} +(-9.73903 + 5.62283i) q^{61} +9.48942 q^{62} -24.7638 q^{64} +(-1.96331 + 1.13352i) q^{65} +(2.57932 - 4.46752i) q^{67} +(-3.21260 + 5.56438i) q^{68} +12.0452i q^{71} -8.67204i q^{73} +(4.06058 - 2.34438i) q^{74} +(34.5317 + 19.9369i) q^{76} +(-2.74801 - 4.75969i) q^{79} -16.6198 q^{80} -18.2049i q^{82} +(1.60854 + 2.78607i) q^{83} +(-0.723998 + 1.25400i) q^{85} +(0.0307786 + 0.0177700i) q^{86} +(-11.2415 - 19.4708i) q^{88} -7.96728 q^{89} +(-14.0574 + 8.11607i) q^{92} +(-3.36593 - 1.94332i) q^{94} +(7.78214 + 4.49302i) q^{95} +(-2.06260 + 1.19084i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} + 24 q^{11} - 24 q^{16} + 48 q^{23} - 24 q^{25} - 120 q^{32} - 48 q^{50} - 48 q^{64} - 120 q^{65} + 168 q^{74} - 24 q^{79} - 24 q^{85} - 24 q^{86} + 144 q^{92} - 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34591 1.35441i 1.65881 0.957716i 0.685548 0.728027i \(-0.259563\pi\)
0.973264 0.229689i \(-0.0737707\pi\)
\(3\) 0 0
\(4\) 2.66888 4.62263i 1.33444 2.31132i
\(5\) 0.601464 1.04177i 0.268983 0.465892i −0.699616 0.714519i \(-0.746646\pi\)
0.968599 + 0.248626i \(0.0799791\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 9.04141i 3.19662i
\(9\) 0 0
\(10\) 3.25853i 1.03044i
\(11\) 2.15351 1.24333i 0.649309 0.374879i −0.138882 0.990309i \(-0.544351\pi\)
0.788191 + 0.615430i \(0.211018\pi\)
\(12\) 0 0
\(13\) −1.63211 0.942300i −0.452666 0.261347i 0.256289 0.966600i \(-0.417500\pi\)
−0.708956 + 0.705253i \(0.750833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −6.90806 11.9651i −1.72702 2.99128i
\(17\) −1.20373 −0.291947 −0.145973 0.989289i \(-0.546631\pi\)
−0.145973 + 0.989289i \(0.546631\pi\)
\(18\) 0 0
\(19\) 7.47013i 1.71377i 0.515511 + 0.856883i \(0.327602\pi\)
−0.515511 + 0.856883i \(0.672398\pi\)
\(20\) −3.21047 5.56070i −0.717883 1.24341i
\(21\) 0 0
\(22\) 3.36797 5.83350i 0.718054 1.24371i
\(23\) −2.63359 1.52050i −0.549141 0.317047i 0.199634 0.979870i \(-0.436025\pi\)
−0.748775 + 0.662824i \(0.769358\pi\)
\(24\) 0 0
\(25\) 1.77648 + 3.07696i 0.355296 + 0.615391i
\(26\) −5.10506 −1.00118
\(27\) 0 0
\(28\) 0 0
\(29\) 0.173847 0.100371i 0.0322826 0.0186384i −0.483772 0.875194i \(-0.660734\pi\)
0.516054 + 0.856556i \(0.327400\pi\)
\(30\) 0 0
\(31\) 3.03381 + 1.75157i 0.544889 + 0.314592i 0.747058 0.664759i \(-0.231466\pi\)
−0.202169 + 0.979351i \(0.564799\pi\)
\(32\) −16.7513 9.67135i −2.96124 1.70967i
\(33\) 0 0
\(34\) −2.82384 + 1.63034i −0.484285 + 0.279602i
\(35\) 0 0
\(36\) 0 0
\(37\) 1.73092 0.284561 0.142280 0.989826i \(-0.454557\pi\)
0.142280 + 0.989826i \(0.454557\pi\)
\(38\) 10.1177 + 17.5243i 1.64130 + 2.84282i
\(39\) 0 0
\(40\) −9.41904 5.43809i −1.48928 0.859837i
\(41\) 3.36029 5.82020i 0.524790 0.908963i −0.474793 0.880097i \(-0.657477\pi\)
0.999583 0.0288655i \(-0.00918944\pi\)
\(42\) 0 0
\(43\) 0.00656005 + 0.0113623i 0.00100040 + 0.00173274i 0.866525 0.499133i \(-0.166348\pi\)
−0.865525 + 0.500866i \(0.833015\pi\)
\(44\) 13.2732i 2.00101i
\(45\) 0 0
\(46\) −8.23756 −1.21456
\(47\) −0.717403 1.24258i −0.104644 0.181249i 0.808949 0.587879i \(-0.200037\pi\)
−0.913593 + 0.406631i \(0.866704\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8.33495 + 4.81219i 1.17874 + 0.680546i
\(51\) 0 0
\(52\) −8.71182 + 5.02977i −1.20811 + 0.697504i
\(53\) 9.90831i 1.36101i 0.732743 + 0.680506i \(0.238240\pi\)
−0.732743 + 0.680506i \(0.761760\pi\)
\(54\) 0 0
\(55\) 2.99128i 0.403344i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.271887 0.470923i 0.0357005 0.0618352i
\(59\) 6.10954 10.5820i 0.795394 1.37766i −0.127194 0.991878i \(-0.540597\pi\)
0.922588 0.385786i \(-0.126070\pi\)
\(60\) 0 0
\(61\) −9.73903 + 5.62283i −1.24696 + 0.719930i −0.970501 0.241097i \(-0.922493\pi\)
−0.276454 + 0.961027i \(0.589159\pi\)
\(62\) 9.48942 1.20516
\(63\) 0 0
\(64\) −24.7638 −3.09548
\(65\) −1.96331 + 1.13352i −0.243519 + 0.140596i
\(66\) 0 0
\(67\) 2.57932 4.46752i 0.315115 0.545794i −0.664347 0.747424i \(-0.731290\pi\)
0.979462 + 0.201630i \(0.0646237\pi\)
\(68\) −3.21260 + 5.56438i −0.389585 + 0.674781i
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0452i 1.42950i 0.699379 + 0.714751i \(0.253460\pi\)
−0.699379 + 0.714751i \(0.746540\pi\)
\(72\) 0 0
\(73\) 8.67204i 1.01499i −0.861656 0.507493i \(-0.830572\pi\)
0.861656 0.507493i \(-0.169428\pi\)
\(74\) 4.06058 2.34438i 0.472033 0.272528i
\(75\) 0 0
\(76\) 34.5317 + 19.9369i 3.96106 + 2.28692i
\(77\) 0 0
\(78\) 0 0
\(79\) −2.74801 4.75969i −0.309175 0.535507i 0.669007 0.743256i \(-0.266719\pi\)
−0.978182 + 0.207749i \(0.933386\pi\)
\(80\) −16.6198 −1.85815
\(81\) 0 0
\(82\) 18.2049i 2.01040i
\(83\) 1.60854 + 2.78607i 0.176560 + 0.305811i 0.940700 0.339239i \(-0.110170\pi\)
−0.764140 + 0.645051i \(0.776836\pi\)
\(84\) 0 0
\(85\) −0.723998 + 1.25400i −0.0785286 + 0.136016i
\(86\) 0.0307786 + 0.0177700i 0.00331894 + 0.00191619i
\(87\) 0 0
\(88\) −11.2415 19.4708i −1.19835 2.07559i
\(89\) −7.96728 −0.844530 −0.422265 0.906473i \(-0.638765\pi\)
−0.422265 + 0.906473i \(0.638765\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −14.0574 + 8.11607i −1.46559 + 0.846159i
\(93\) 0 0
\(94\) −3.36593 1.94332i −0.347170 0.200438i
\(95\) 7.78214 + 4.49302i 0.798430 + 0.460974i
\(96\) 0 0
\(97\) −2.06260 + 1.19084i −0.209425 + 0.120912i −0.601044 0.799216i \(-0.705249\pi\)
0.391619 + 0.920128i \(0.371915\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 18.9648 1.89648
\(101\) −4.73272 8.19730i −0.470923 0.815662i 0.528524 0.848918i \(-0.322746\pi\)
−0.999447 + 0.0332561i \(0.989412\pi\)
\(102\) 0 0
\(103\) 14.9460 + 8.62908i 1.47267 + 0.850249i 0.999528 0.0307347i \(-0.00978469\pi\)
0.473147 + 0.880984i \(0.343118\pi\)
\(104\) −8.51973 + 14.7566i −0.835428 + 1.44700i
\(105\) 0 0
\(106\) 13.4200 + 23.2441i 1.30346 + 2.25766i
\(107\) 9.88349i 0.955473i 0.878503 + 0.477737i \(0.158543\pi\)
−0.878503 + 0.477737i \(0.841457\pi\)
\(108\) 0 0
\(109\) 10.4136 0.997438 0.498719 0.866764i \(-0.333804\pi\)
0.498719 + 0.866764i \(0.333804\pi\)
\(110\) −4.05143 7.01729i −0.386289 0.669072i
\(111\) 0 0
\(112\) 0 0
\(113\) 9.56137 + 5.52026i 0.899458 + 0.519303i 0.877024 0.480446i \(-0.159525\pi\)
0.0224339 + 0.999748i \(0.492858\pi\)
\(114\) 0 0
\(115\) −3.16802 + 1.82906i −0.295419 + 0.170560i
\(116\) 1.07151i 0.0994871i
\(117\) 0 0
\(118\) 33.0994i 3.04705i
\(119\) 0 0
\(120\) 0 0
\(121\) −2.40825 + 4.17121i −0.218932 + 0.379201i
\(122\) −15.2313 + 26.3814i −1.37898 + 2.38846i
\(123\) 0 0
\(124\) 16.1937 9.34946i 1.45424 0.839607i
\(125\) 10.2886 0.920241
\(126\) 0 0
\(127\) 13.8634 1.23018 0.615090 0.788457i \(-0.289119\pi\)
0.615090 + 0.788457i \(0.289119\pi\)
\(128\) −24.5913 + 14.1978i −2.17359 + 1.25492i
\(129\) 0 0
\(130\) −3.07051 + 5.31828i −0.269302 + 0.466444i
\(131\) −6.17975 + 10.7036i −0.539927 + 0.935181i 0.458981 + 0.888446i \(0.348215\pi\)
−0.998907 + 0.0467344i \(0.985119\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 13.9739i 1.20716i
\(135\) 0 0
\(136\) 10.8834i 0.933243i
\(137\) −10.0991 + 5.83070i −0.862822 + 0.498150i −0.864956 0.501847i \(-0.832654\pi\)
0.00213432 + 0.999998i \(0.499321\pi\)
\(138\) 0 0
\(139\) −8.73893 5.04543i −0.741227 0.427947i 0.0812884 0.996691i \(-0.474097\pi\)
−0.822515 + 0.568743i \(0.807430\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 16.3142 + 28.2570i 1.36906 + 2.37128i
\(143\) −4.68637 −0.391894
\(144\) 0 0
\(145\) 0.241478i 0.0200536i
\(146\) −11.7455 20.3439i −0.972067 1.68367i
\(147\) 0 0
\(148\) 4.61960 8.00138i 0.379729 0.657710i
\(149\) −4.15010 2.39606i −0.339990 0.196293i 0.320278 0.947324i \(-0.396224\pi\)
−0.660267 + 0.751031i \(0.729557\pi\)
\(150\) 0 0
\(151\) 5.65924 + 9.80209i 0.460542 + 0.797683i 0.998988 0.0449774i \(-0.0143216\pi\)
−0.538446 + 0.842660i \(0.680988\pi\)
\(152\) 67.5406 5.47826
\(153\) 0 0
\(154\) 0 0
\(155\) 3.64946 2.10702i 0.293132 0.169240i
\(156\) 0 0
\(157\) 12.7580 + 7.36581i 1.01820 + 0.587856i 0.913581 0.406657i \(-0.133306\pi\)
0.104615 + 0.994513i \(0.466639\pi\)
\(158\) −12.8932 7.44388i −1.02573 0.592203i
\(159\) 0 0
\(160\) −20.1506 + 11.6339i −1.59304 + 0.919744i
\(161\) 0 0
\(162\) 0 0
\(163\) −18.1580 −1.42224 −0.711122 0.703069i \(-0.751813\pi\)
−0.711122 + 0.703069i \(0.751813\pi\)
\(164\) −17.9364 31.0668i −1.40060 2.42591i
\(165\) 0 0
\(166\) 7.54700 + 4.35726i 0.585761 + 0.338189i
\(167\) 0.599436 1.03825i 0.0463857 0.0803425i −0.841900 0.539633i \(-0.818563\pi\)
0.888286 + 0.459291i \(0.151896\pi\)
\(168\) 0 0
\(169\) −4.72414 8.18245i −0.363395 0.629419i
\(170\) 3.92238i 0.300833i
\(171\) 0 0
\(172\) 0.0700319 0.00533988
\(173\) 9.00403 + 15.5954i 0.684564 + 1.18570i 0.973574 + 0.228373i \(0.0733405\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −29.7532 17.1780i −2.24273 1.29484i
\(177\) 0 0
\(178\) −18.6906 + 10.7910i −1.40092 + 0.808819i
\(179\) 15.1424i 1.13179i −0.824476 0.565897i \(-0.808530\pi\)
0.824476 0.565897i \(-0.191470\pi\)
\(180\) 0 0
\(181\) 7.98716i 0.593681i −0.954927 0.296840i \(-0.904067\pi\)
0.954927 0.296840i \(-0.0959329\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −13.7475 + 23.8114i −1.01348 + 1.75540i
\(185\) 1.04108 1.80321i 0.0765420 0.132575i
\(186\) 0 0
\(187\) −2.59224 + 1.49663i −0.189563 + 0.109445i
\(188\) −7.65865 −0.558564
\(189\) 0 0
\(190\) 24.3416 1.76593
\(191\) −13.8711 + 8.00848i −1.00368 + 0.579473i −0.909334 0.416067i \(-0.863408\pi\)
−0.0943426 + 0.995540i \(0.530075\pi\)
\(192\) 0 0
\(193\) 6.85468 11.8726i 0.493410 0.854612i −0.506561 0.862204i \(-0.669083\pi\)
0.999971 + 0.00759239i \(0.00241676\pi\)
\(194\) −3.22579 + 5.58724i −0.231598 + 0.401140i
\(195\) 0 0
\(196\) 0 0
\(197\) 18.9248i 1.34834i 0.738577 + 0.674170i \(0.235498\pi\)
−0.738577 + 0.674170i \(0.764502\pi\)
\(198\) 0 0
\(199\) 24.8325i 1.76033i −0.474672 0.880163i \(-0.657433\pi\)
0.474672 0.880163i \(-0.342567\pi\)
\(200\) 27.8200 16.0619i 1.96717 1.13575i
\(201\) 0 0
\(202\) −22.2051 12.8201i −1.56235 0.902020i
\(203\) 0 0
\(204\) 0 0
\(205\) −4.04219 7.00129i −0.282319 0.488991i
\(206\) 46.7494 3.25719
\(207\) 0 0
\(208\) 26.0379i 1.80540i
\(209\) 9.28786 + 16.0870i 0.642454 + 1.11276i
\(210\) 0 0
\(211\) 3.60761 6.24857i 0.248358 0.430169i −0.714712 0.699419i \(-0.753442\pi\)
0.963070 + 0.269250i \(0.0867757\pi\)
\(212\) 45.8025 + 26.4441i 3.14573 + 1.81619i
\(213\) 0 0
\(214\) 13.3863 + 23.1858i 0.915072 + 1.58495i
\(215\) 0.0157825 0.00107636
\(216\) 0 0
\(217\) 0 0
\(218\) 24.4293 14.1043i 1.65456 0.955262i
\(219\) 0 0
\(220\) −13.8276 7.98336i −0.932255 0.538238i
\(221\) 1.96462 + 1.13427i 0.132154 + 0.0762994i
\(222\) 0 0
\(223\) 21.0706 12.1651i 1.41099 0.814635i 0.415508 0.909590i \(-0.363604\pi\)
0.995482 + 0.0949545i \(0.0302705\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 29.9069 1.98938
\(227\) −0.240288 0.416192i −0.0159485 0.0276236i 0.857941 0.513748i \(-0.171743\pi\)
−0.873890 + 0.486125i \(0.838410\pi\)
\(228\) 0 0
\(229\) −7.80442 4.50588i −0.515730 0.297757i 0.219456 0.975622i \(-0.429572\pi\)
−0.735186 + 0.677865i \(0.762905\pi\)
\(230\) −4.95460 + 8.58162i −0.326697 + 0.565855i
\(231\) 0 0
\(232\) −0.907493 1.57182i −0.0595799 0.103195i
\(233\) 11.1168i 0.728285i −0.931343 0.364143i \(-0.881362\pi\)
0.931343 0.364143i \(-0.118638\pi\)
\(234\) 0 0
\(235\) −1.72597 −0.112590
\(236\) −32.6112 56.4843i −2.12281 3.67682i
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0446 6.95395i −0.779100 0.449813i 0.0570114 0.998374i \(-0.481843\pi\)
−0.836111 + 0.548560i \(0.815176\pi\)
\(240\) 0 0
\(241\) −10.7181 + 6.18807i −0.690411 + 0.398609i −0.803766 0.594946i \(-0.797173\pi\)
0.113355 + 0.993555i \(0.463840\pi\)
\(242\) 13.0471i 0.838698i
\(243\) 0 0
\(244\) 60.0266i 3.84281i
\(245\) 0 0
\(246\) 0 0
\(247\) 7.03911 12.1921i 0.447888 0.775764i
\(248\) 15.8367 27.4299i 1.00563 1.74180i
\(249\) 0 0
\(250\) 24.1362 13.9350i 1.52651 0.881329i
\(251\) −19.7147 −1.24438 −0.622191 0.782866i \(-0.713757\pi\)
−0.622191 + 0.782866i \(0.713757\pi\)
\(252\) 0 0
\(253\) −7.56196 −0.475416
\(254\) 32.5224 18.7768i 2.04064 1.17816i
\(255\) 0 0
\(256\) −13.6956 + 23.7214i −0.855973 + 1.48259i
\(257\) −5.62025 + 9.73456i −0.350581 + 0.607225i −0.986351 0.164654i \(-0.947349\pi\)
0.635770 + 0.771879i \(0.280683\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 12.1009i 0.750466i
\(261\) 0 0
\(262\) 33.4797i 2.06839i
\(263\) 2.82146 1.62897i 0.173979 0.100447i −0.410482 0.911869i \(-0.634640\pi\)
0.584461 + 0.811422i \(0.301306\pi\)
\(264\) 0 0
\(265\) 10.3221 + 5.95949i 0.634084 + 0.366089i
\(266\) 0 0
\(267\) 0 0
\(268\) −13.7678 23.8465i −0.841002 1.45666i
\(269\) 0.242293 0.0147729 0.00738644 0.999973i \(-0.497649\pi\)
0.00738644 + 0.999973i \(0.497649\pi\)
\(270\) 0 0
\(271\) 1.07305i 0.0651830i 0.999469 + 0.0325915i \(0.0103760\pi\)
−0.999469 + 0.0325915i \(0.989624\pi\)
\(272\) 8.31542 + 14.4027i 0.504196 + 0.873294i
\(273\) 0 0
\(274\) −15.7944 + 27.3567i −0.954173 + 1.65268i
\(275\) 7.65136 + 4.41751i 0.461394 + 0.266386i
\(276\) 0 0
\(277\) 2.45076 + 4.24485i 0.147252 + 0.255048i 0.930211 0.367025i \(-0.119624\pi\)
−0.782959 + 0.622074i \(0.786290\pi\)
\(278\) −27.3344 −1.63941
\(279\) 0 0
\(280\) 0 0
\(281\) −11.5613 + 6.67494i −0.689691 + 0.398194i −0.803496 0.595310i \(-0.797029\pi\)
0.113805 + 0.993503i \(0.463696\pi\)
\(282\) 0 0
\(283\) 3.25329 + 1.87829i 0.193388 + 0.111653i 0.593568 0.804784i \(-0.297719\pi\)
−0.400180 + 0.916437i \(0.631052\pi\)
\(284\) 55.6805 + 32.1472i 3.30403 + 1.90758i
\(285\) 0 0
\(286\) −10.9938 + 6.34729i −0.650078 + 0.375323i
\(287\) 0 0
\(288\) 0 0
\(289\) −15.5510 −0.914767
\(290\) −0.327061 0.566486i −0.0192057 0.0332652i
\(291\) 0 0
\(292\) −40.0876 23.1446i −2.34595 1.35444i
\(293\) 6.38430 11.0579i 0.372975 0.646011i −0.617047 0.786926i \(-0.711671\pi\)
0.990022 + 0.140915i \(0.0450045\pi\)
\(294\) 0 0
\(295\) −7.34934 12.7294i −0.427895 0.741136i
\(296\) 15.6499i 0.909633i
\(297\) 0 0
\(298\) −12.9810 −0.751972
\(299\) 2.86554 + 4.96326i 0.165718 + 0.287033i
\(300\) 0 0
\(301\) 0 0
\(302\) 26.5522 + 15.3299i 1.52791 + 0.882137i
\(303\) 0 0
\(304\) 89.3810 51.6042i 5.12635 2.95970i
\(305\) 13.5277i 0.774596i
\(306\) 0 0
\(307\) 10.7257i 0.612148i 0.952008 + 0.306074i \(0.0990155\pi\)
−0.952008 + 0.306074i \(0.900984\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 5.70755 9.88576i 0.324167 0.561473i
\(311\) −9.41743 + 16.3115i −0.534013 + 0.924938i 0.465197 + 0.885207i \(0.345983\pi\)
−0.999210 + 0.0397310i \(0.987350\pi\)
\(312\) 0 0
\(313\) −22.5774 + 13.0351i −1.27615 + 0.736787i −0.976139 0.217148i \(-0.930324\pi\)
−0.300013 + 0.953935i \(0.596991\pi\)
\(314\) 39.9054 2.25199
\(315\) 0 0
\(316\) −29.3364 −1.65030
\(317\) −12.0290 + 6.94495i −0.675616 + 0.390067i −0.798201 0.602391i \(-0.794215\pi\)
0.122585 + 0.992458i \(0.460882\pi\)
\(318\) 0 0
\(319\) 0.249588 0.432300i 0.0139743 0.0242041i
\(320\) −14.8946 + 25.7981i −0.832631 + 1.44216i
\(321\) 0 0
\(322\) 0 0
\(323\) 8.99200i 0.500328i
\(324\) 0 0
\(325\) 6.69592i 0.371423i
\(326\) −42.5971 + 24.5935i −2.35924 + 1.36211i
\(327\) 0 0
\(328\) −52.6228 30.3818i −2.90561 1.67755i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.24230 3.88378i −0.123248 0.213472i 0.797799 0.602924i \(-0.205998\pi\)
−0.921047 + 0.389452i \(0.872664\pi\)
\(332\) 17.1720 0.942435
\(333\) 0 0
\(334\) 3.24754i 0.177697i
\(335\) −3.10274 5.37411i −0.169521 0.293619i
\(336\) 0 0
\(337\) −16.4010 + 28.4074i −0.893420 + 1.54745i −0.0576723 + 0.998336i \(0.518368\pi\)
−0.835748 + 0.549113i \(0.814965\pi\)
\(338\) −22.1649 12.7969i −1.20561 0.696059i
\(339\) 0 0
\(340\) 3.86453 + 6.69356i 0.209583 + 0.363009i
\(341\) 8.71114 0.471735
\(342\) 0 0
\(343\) 0 0
\(344\) 0.102732 0.0593121i 0.00553891 0.00319789i
\(345\) 0 0
\(346\) 42.2454 + 24.3904i 2.27112 + 1.31123i
\(347\) −11.6112 6.70374i −0.623323 0.359876i 0.154839 0.987940i \(-0.450514\pi\)
−0.778162 + 0.628064i \(0.783848\pi\)
\(348\) 0 0
\(349\) −19.3276 + 11.1588i −1.03458 + 0.597316i −0.918294 0.395899i \(-0.870433\pi\)
−0.116288 + 0.993215i \(0.537100\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −48.0988 −2.56368
\(353\) 8.60842 + 14.9102i 0.458180 + 0.793591i 0.998865 0.0476341i \(-0.0151682\pi\)
−0.540685 + 0.841225i \(0.681835\pi\)
\(354\) 0 0
\(355\) 12.5483 + 7.24476i 0.665994 + 0.384512i
\(356\) −21.2637 + 36.8298i −1.12697 + 1.95198i
\(357\) 0 0
\(358\) −20.5090 35.5227i −1.08394 1.87743i
\(359\) 6.49943i 0.343027i −0.985182 0.171513i \(-0.945134\pi\)
0.985182 0.171513i \(-0.0548656\pi\)
\(360\) 0 0
\(361\) −36.8029 −1.93699
\(362\) −10.8179 18.7372i −0.568577 0.984805i
\(363\) 0 0
\(364\) 0 0
\(365\) −9.03424 5.21592i −0.472874 0.273014i
\(366\) 0 0
\(367\) 7.79734 4.50180i 0.407018 0.234992i −0.282490 0.959270i \(-0.591160\pi\)
0.689508 + 0.724278i \(0.257827\pi\)
\(368\) 42.0149i 2.19018i
\(369\) 0 0
\(370\) 5.64024i 0.293222i
\(371\) 0 0
\(372\) 0 0
\(373\) −5.75312 + 9.96470i −0.297885 + 0.515953i −0.975652 0.219324i \(-0.929615\pi\)
0.677767 + 0.735277i \(0.262948\pi\)
\(374\) −4.05412 + 7.02194i −0.209633 + 0.363096i
\(375\) 0 0
\(376\) −11.2347 + 6.48634i −0.579384 + 0.334507i
\(377\) −0.378318 −0.0194844
\(378\) 0 0
\(379\) 17.0982 0.878275 0.439138 0.898420i \(-0.355284\pi\)
0.439138 + 0.898420i \(0.355284\pi\)
\(380\) 41.5391 23.9826i 2.13091 1.23028i
\(381\) 0 0
\(382\) −21.6936 + 37.5744i −1.10994 + 1.92247i
\(383\) 8.10778 14.0431i 0.414288 0.717569i −0.581065 0.813857i \(-0.697364\pi\)
0.995353 + 0.0962885i \(0.0306971\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 37.1363i 1.89019i
\(387\) 0 0
\(388\) 12.7129i 0.645398i
\(389\) 16.2358 9.37376i 0.823189 0.475269i −0.0283257 0.999599i \(-0.509018\pi\)
0.851515 + 0.524330i \(0.175684\pi\)
\(390\) 0 0
\(391\) 3.17012 + 1.83027i 0.160320 + 0.0925607i
\(392\) 0 0
\(393\) 0 0
\(394\) 25.6321 + 44.3961i 1.29133 + 2.23664i
\(395\) −6.61131 −0.332651
\(396\) 0 0
\(397\) 30.9709i 1.55438i −0.629264 0.777192i \(-0.716643\pi\)
0.629264 0.777192i \(-0.283357\pi\)
\(398\) −33.6334 58.2548i −1.68589 2.92005i
\(399\) 0 0
\(400\) 24.5441 42.5116i 1.22720 2.12558i
\(401\) 0.801065 + 0.462495i 0.0400033 + 0.0230959i 0.519868 0.854246i \(-0.325981\pi\)
−0.479865 + 0.877342i \(0.659314\pi\)
\(402\) 0 0
\(403\) −3.30101 5.71752i −0.164435 0.284810i
\(404\) −50.5242 −2.51367
\(405\) 0 0
\(406\) 0 0
\(407\) 3.72755 2.15210i 0.184768 0.106676i
\(408\) 0 0
\(409\) −6.56585 3.79079i −0.324660 0.187443i 0.328808 0.944397i \(-0.393353\pi\)
−0.653468 + 0.756954i \(0.726687\pi\)
\(410\) −18.9653 10.9496i −0.936629 0.540763i
\(411\) 0 0
\(412\) 79.7782 46.0599i 3.93039 2.26921i
\(413\) 0 0
\(414\) 0 0
\(415\) 3.86992 0.189967
\(416\) 18.2266 + 31.5695i 0.893635 + 1.54782i
\(417\) 0 0
\(418\) 43.5770 + 25.1592i 2.13142 + 1.23058i
\(419\) 2.85061 4.93740i 0.139262 0.241208i −0.787956 0.615732i \(-0.788860\pi\)
0.927217 + 0.374524i \(0.122194\pi\)
\(420\) 0 0
\(421\) −5.86189 10.1531i −0.285691 0.494832i 0.687085 0.726577i \(-0.258890\pi\)
−0.972777 + 0.231745i \(0.925557\pi\)
\(422\) 19.5448i 0.951426i
\(423\) 0 0
\(424\) 89.5851 4.35064
\(425\) −2.13840 3.70381i −0.103728 0.179661i
\(426\) 0 0
\(427\) 0 0
\(428\) 45.6877 + 26.3778i 2.20840 + 1.27502i
\(429\) 0 0
\(430\) 0.0370245 0.0213761i 0.00178548 0.00103085i
\(431\) 26.9014i 1.29579i −0.761728 0.647897i \(-0.775649\pi\)
0.761728 0.647897i \(-0.224351\pi\)
\(432\) 0 0
\(433\) 28.1028i 1.35053i 0.737574 + 0.675266i \(0.235971\pi\)
−0.737574 + 0.675266i \(0.764029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 27.7925 48.1381i 1.33102 2.30539i
\(437\) 11.3584 19.6733i 0.543344 0.941099i
\(438\) 0 0
\(439\) −8.07680 + 4.66314i −0.385485 + 0.222560i −0.680202 0.733025i \(-0.738108\pi\)
0.294717 + 0.955585i \(0.404775\pi\)
\(440\) −27.0454 −1.28934
\(441\) 0 0
\(442\) 6.14510 0.292292
\(443\) −9.82131 + 5.67034i −0.466624 + 0.269406i −0.714826 0.699303i \(-0.753494\pi\)
0.248201 + 0.968709i \(0.420161\pi\)
\(444\) 0 0
\(445\) −4.79203 + 8.30004i −0.227164 + 0.393460i
\(446\) 32.9532 57.0766i 1.56038 2.70265i
\(447\) 0 0
\(448\) 0 0
\(449\) 15.3295i 0.723444i −0.932286 0.361722i \(-0.882189\pi\)
0.932286 0.361722i \(-0.117811\pi\)
\(450\) 0 0
\(451\) 16.7118i 0.786930i
\(452\) 51.0363 29.4658i 2.40054 1.38596i
\(453\) 0 0
\(454\) −1.12739 0.650900i −0.0529111 0.0305483i
\(455\) 0 0
\(456\) 0 0
\(457\) 4.58649 + 7.94404i 0.214547 + 0.371606i 0.953132 0.302554i \(-0.0978391\pi\)
−0.738585 + 0.674160i \(0.764506\pi\)
\(458\) −24.4113 −1.14067
\(459\) 0 0
\(460\) 19.5261i 0.910410i
\(461\) 16.5365 + 28.6420i 0.770181 + 1.33399i 0.937464 + 0.348083i \(0.113167\pi\)
−0.167283 + 0.985909i \(0.553499\pi\)
\(462\) 0 0
\(463\) 3.91594 6.78260i 0.181989 0.315214i −0.760569 0.649257i \(-0.775080\pi\)
0.942558 + 0.334043i \(0.108413\pi\)
\(464\) −2.40190 1.38674i −0.111505 0.0643776i
\(465\) 0 0
\(466\) −15.0567 26.0790i −0.697490 1.20809i
\(467\) 20.6770 0.956816 0.478408 0.878138i \(-0.341214\pi\)
0.478408 + 0.878138i \(0.341214\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.04898 + 2.33768i −0.186765 + 0.107829i
\(471\) 0 0
\(472\) −95.6765 55.2389i −4.40387 2.54257i
\(473\) 0.0282543 + 0.0163126i 0.00129913 + 0.000750056i
\(474\) 0 0
\(475\) −22.9853 + 13.2706i −1.05464 + 0.608895i
\(476\) 0 0
\(477\) 0 0
\(478\) −37.6741 −1.72317
\(479\) −1.32999 2.30361i −0.0607688 0.105255i 0.834040 0.551703i \(-0.186022\pi\)
−0.894809 + 0.446449i \(0.852689\pi\)
\(480\) 0 0
\(481\) −2.82505 1.63104i −0.128811 0.0743691i
\(482\) −16.7624 + 29.0334i −0.763508 + 1.32243i
\(483\) 0 0
\(484\) 12.8547 + 22.2649i 0.584303 + 1.01204i
\(485\) 2.86500i 0.130093i
\(486\) 0 0
\(487\) −1.04380 −0.0472991 −0.0236495 0.999720i \(-0.507529\pi\)
−0.0236495 + 0.999720i \(0.507529\pi\)
\(488\) 50.8383 + 88.0546i 2.30134 + 3.98604i
\(489\) 0 0
\(490\) 0 0
\(491\) −36.0415 20.8085i −1.62653 0.939076i −0.985118 0.171878i \(-0.945016\pi\)
−0.641410 0.767198i \(-0.721650\pi\)
\(492\) 0 0
\(493\) −0.209265 + 0.120819i −0.00942480 + 0.00544141i
\(494\) 38.1355i 1.71580i
\(495\) 0 0
\(496\) 48.3999i 2.17322i
\(497\) 0 0
\(498\) 0 0
\(499\) 16.1447 27.9635i 0.722738 1.25182i −0.237161 0.971470i \(-0.576217\pi\)
0.959898 0.280348i \(-0.0904499\pi\)
\(500\) 27.4590 47.5604i 1.22800 2.12697i
\(501\) 0 0
\(502\) −46.2490 + 26.7019i −2.06420 + 1.19176i
\(503\) −39.9702 −1.78218 −0.891091 0.453825i \(-0.850059\pi\)
−0.891091 + 0.453825i \(0.850059\pi\)
\(504\) 0 0
\(505\) −11.3862 −0.506681
\(506\) −17.7397 + 10.2420i −0.788626 + 0.455314i
\(507\) 0 0
\(508\) 36.9998 64.0856i 1.64160 2.84334i
\(509\) 11.3631 19.6815i 0.503661 0.872367i −0.496330 0.868134i \(-0.665319\pi\)
0.999991 0.00423260i \(-0.00134728\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 17.4067i 0.769277i
\(513\) 0 0
\(514\) 30.4486i 1.34303i
\(515\) 17.9790 10.3802i 0.792249 0.457405i
\(516\) 0 0
\(517\) −3.08988 1.78394i −0.135893 0.0784576i
\(518\) 0 0
\(519\) 0 0
\(520\) 10.2486 + 17.7511i 0.449432 + 0.778439i
\(521\) −30.0359 −1.31590 −0.657948 0.753063i \(-0.728575\pi\)
−0.657948 + 0.753063i \(0.728575\pi\)
\(522\) 0 0
\(523\) 0.779769i 0.0340969i 0.999855 + 0.0170485i \(0.00542696\pi\)
−0.999855 + 0.0170485i \(0.994573\pi\)
\(524\) 32.9860 + 57.1334i 1.44100 + 2.49588i
\(525\) 0 0
\(526\) 4.41260 7.64285i 0.192399 0.333244i
\(527\) −3.65188 2.10841i −0.159078 0.0918439i
\(528\) 0 0
\(529\) −6.87614 11.9098i −0.298963 0.517819i
\(530\) 32.2865 1.40244
\(531\) 0 0
\(532\) 0 0
\(533\) −10.9688 + 6.33281i −0.475110 + 0.274305i
\(534\) 0 0
\(535\) 10.2963 + 5.94457i 0.445147 + 0.257006i
\(536\) −40.3927 23.3207i −1.74470 1.00730i
\(537\) 0 0
\(538\) 0.568399 0.328165i 0.0245054 0.0141482i
\(539\) 0 0
\(540\) 0 0
\(541\) 2.04030 0.0877196 0.0438598 0.999038i \(-0.486035\pi\)
0.0438598 + 0.999038i \(0.486035\pi\)
\(542\) 1.45335 + 2.51728i 0.0624268 + 0.108126i
\(543\) 0 0
\(544\) 20.1640 + 11.6417i 0.864522 + 0.499132i
\(545\) 6.26338 10.8485i 0.268294 0.464699i
\(546\) 0 0
\(547\) −8.93590 15.4774i −0.382071 0.661767i 0.609287 0.792950i \(-0.291456\pi\)
−0.991358 + 0.131183i \(0.958123\pi\)
\(548\) 62.2457i 2.65901i
\(549\) 0 0
\(550\) 23.9326 1.02049
\(551\) 0.749783 + 1.29866i 0.0319418 + 0.0553249i
\(552\) 0 0
\(553\) 0 0
\(554\) 11.4986 + 6.63870i 0.488527 + 0.282051i
\(555\) 0 0
\(556\) −46.6463 + 26.9313i −1.97824 + 1.14214i
\(557\) 42.9605i 1.82029i 0.414285 + 0.910147i \(0.364032\pi\)
−0.414285 + 0.910147i \(0.635968\pi\)
\(558\) 0 0
\(559\) 0.0247261i 0.00104580i
\(560\) 0 0
\(561\) 0 0
\(562\) −18.0813 + 31.3177i −0.762713 + 1.32106i
\(563\) −0.773739 + 1.34016i −0.0326092 + 0.0564808i −0.881869 0.471494i \(-0.843715\pi\)
0.849260 + 0.527975i \(0.177048\pi\)
\(564\) 0 0
\(565\) 11.5016 6.64048i 0.483878 0.279367i
\(566\) 10.1759 0.427726
\(567\) 0 0
\(568\) 108.906 4.56958
\(569\) 8.65905 4.99931i 0.363006 0.209582i −0.307392 0.951583i \(-0.599456\pi\)
0.670399 + 0.742001i \(0.266123\pi\)
\(570\) 0 0
\(571\) 1.39715 2.41994i 0.0584689 0.101271i −0.835309 0.549780i \(-0.814711\pi\)
0.893778 + 0.448509i \(0.148045\pi\)
\(572\) −12.5073 + 21.6634i −0.522958 + 0.905790i
\(573\) 0 0
\(574\) 0 0
\(575\) 10.8046i 0.450582i
\(576\) 0 0
\(577\) 3.73764i 0.155600i −0.996969 0.0778000i \(-0.975210\pi\)
0.996969 0.0778000i \(-0.0247896\pi\)
\(578\) −36.4814 + 21.0626i −1.51743 + 0.876087i
\(579\) 0 0
\(580\) −1.11626 0.644475i −0.0463503 0.0267604i
\(581\) 0 0
\(582\) 0 0
\(583\) 12.3193 + 21.3377i 0.510214 + 0.883717i
\(584\) −78.4074 −3.24452
\(585\) 0 0
\(586\) 34.5879i 1.42881i
\(587\) −13.1249 22.7331i −0.541725 0.938295i −0.998805 0.0488692i \(-0.984438\pi\)
0.457081 0.889425i \(-0.348895\pi\)
\(588\) 0 0
\(589\) −13.0845 + 22.6630i −0.539136 + 0.933812i
\(590\) −34.4819 19.9081i −1.41960 0.819604i
\(591\) 0 0
\(592\) −11.9573 20.7106i −0.491441 0.851201i
\(593\) −3.59667 −0.147698 −0.0738488 0.997269i \(-0.523528\pi\)
−0.0738488 + 0.997269i \(0.523528\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22.1522 + 12.7896i −0.907391 + 0.523882i
\(597\) 0 0
\(598\) 13.4446 + 7.76226i 0.549792 + 0.317422i
\(599\) −20.6400 11.9165i −0.843326 0.486895i 0.0150672 0.999886i \(-0.495204\pi\)
−0.858394 + 0.512992i \(0.828537\pi\)
\(600\) 0 0
\(601\) 14.6034 8.43126i 0.595684 0.343918i −0.171658 0.985157i \(-0.554912\pi\)
0.767342 + 0.641238i \(0.221579\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 60.4153 2.45826
\(605\) 2.89695 + 5.01767i 0.117778 + 0.203997i
\(606\) 0 0
\(607\) 9.07737 + 5.24082i 0.368439 + 0.212718i 0.672776 0.739846i \(-0.265102\pi\)
−0.304337 + 0.952564i \(0.598435\pi\)
\(608\) 72.2463 125.134i 2.92997 5.07487i
\(609\) 0 0
\(610\) 18.3222 + 31.7349i 0.741842 + 1.28491i
\(611\) 2.70404i 0.109394i
\(612\) 0 0
\(613\) −47.9001 −1.93467 −0.967333 0.253510i \(-0.918415\pi\)
−0.967333 + 0.253510i \(0.918415\pi\)
\(614\) 14.5270 + 25.1616i 0.586264 + 1.01544i
\(615\) 0 0
\(616\) 0 0
\(617\) −4.69477 2.71053i −0.189004 0.109122i 0.402512 0.915415i \(-0.368137\pi\)
−0.591516 + 0.806293i \(0.701470\pi\)
\(618\) 0 0
\(619\) −27.9729 + 16.1501i −1.12432 + 0.649129i −0.942501 0.334202i \(-0.891533\pi\)
−0.181823 + 0.983331i \(0.558200\pi\)
\(620\) 22.4935i 0.903359i
\(621\) 0 0
\(622\) 51.0204i 2.04573i
\(623\) 0 0
\(624\) 0 0
\(625\) −2.69418 + 4.66646i −0.107767 + 0.186658i
\(626\) −35.3098 + 61.1584i −1.41126 + 2.44438i
\(627\) 0 0
\(628\) 68.0989 39.3169i 2.71744 1.56892i
\(629\) −2.08355 −0.0830765
\(630\) 0 0
\(631\) −18.3539 −0.730656 −0.365328 0.930879i \(-0.619043\pi\)
−0.365328 + 0.930879i \(0.619043\pi\)
\(632\) −43.0343 + 24.8459i −1.71181 + 0.988315i
\(633\) 0 0
\(634\) −18.8127 + 32.5845i −0.747147 + 1.29410i
\(635\) 8.33836 14.4425i 0.330898 0.573132i
\(636\) 0 0
\(637\) 0 0
\(638\) 1.35218i 0.0535335i
\(639\) 0 0
\(640\) 34.1579i 1.35021i
\(641\) −9.07003 + 5.23658i −0.358245 + 0.206833i −0.668310 0.743882i \(-0.732982\pi\)
0.310066 + 0.950715i \(0.399649\pi\)
\(642\) 0 0
\(643\) −3.37572 1.94897i −0.133125 0.0768600i 0.431958 0.901894i \(-0.357823\pi\)
−0.565084 + 0.825034i \(0.691156\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.1789 21.0945i −0.479172 0.829950i
\(647\) 12.4054 0.487706 0.243853 0.969812i \(-0.421589\pi\)
0.243853 + 0.969812i \(0.421589\pi\)
\(648\) 0 0
\(649\) 30.3847i 1.19271i
\(650\) −9.06905 15.7081i −0.355717 0.616120i
\(651\) 0 0
\(652\) −48.4615 + 83.9377i −1.89790 + 3.28726i
\(653\) 12.2749 + 7.08690i 0.480353 + 0.277332i 0.720564 0.693389i \(-0.243883\pi\)
−0.240211 + 0.970721i \(0.577216\pi\)
\(654\) 0 0
\(655\) 7.43379 + 12.8757i 0.290462 + 0.503095i
\(656\) −92.8525 −3.62528
\(657\) 0 0
\(658\) 0 0
\(659\) 17.2962 9.98594i 0.673763 0.388997i −0.123738 0.992315i \(-0.539488\pi\)
0.797501 + 0.603318i \(0.206155\pi\)
\(660\) 0 0
\(661\) 21.0493 + 12.1528i 0.818721 + 0.472689i 0.849975 0.526823i \(-0.176617\pi\)
−0.0312540 + 0.999511i \(0.509950\pi\)
\(662\) −10.5205 6.07401i −0.408891 0.236073i
\(663\) 0 0
\(664\) 25.1900 14.5435i 0.977563 0.564396i
\(665\) 0 0
\(666\) 0 0
\(667\) −0.610456 −0.0236370
\(668\) −3.19964 5.54194i −0.123798 0.214424i
\(669\) 0 0
\(670\) −14.5575 8.40480i −0.562407 0.324706i
\(671\) −13.9821 + 24.2177i −0.539773 + 0.934914i
\(672\) 0 0
\(673\) −1.82521 3.16135i −0.0703566 0.121861i 0.828701 0.559692i \(-0.189080\pi\)
−0.899058 + 0.437830i \(0.855747\pi\)
\(674\) 88.8551i 3.42257i
\(675\) 0 0
\(676\) −50.4326 −1.93972
\(677\) −0.968676 1.67780i −0.0372292 0.0644829i 0.846810 0.531895i \(-0.178520\pi\)
−0.884040 + 0.467412i \(0.845187\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 11.3379 + 6.54597i 0.434790 + 0.251026i
\(681\) 0 0
\(682\) 20.4356 11.7985i 0.782519 0.451788i
\(683\) 19.4931i 0.745884i −0.927855 0.372942i \(-0.878349\pi\)
0.927855 0.372942i \(-0.121651\pi\)
\(684\) 0 0
\(685\) 14.0278i 0.535976i
\(686\) 0 0
\(687\) 0 0
\(688\) 0.0906345 0.156983i 0.00345541 0.00598494i
\(689\) 9.33660 16.1715i 0.355696 0.616084i
\(690\) 0 0
\(691\) 35.7855 20.6608i 1.36134 0.785972i 0.371541 0.928416i \(-0.378829\pi\)
0.989803 + 0.142444i \(0.0454960\pi\)
\(692\) 96.1226 3.65403
\(693\) 0 0
\(694\) −36.3186 −1.37863
\(695\) −10.5123 + 6.06929i −0.398755 + 0.230221i
\(696\) 0 0
\(697\) −4.04488 + 7.00593i −0.153211 + 0.265369i
\(698\) −30.2273 + 52.3552i −1.14412 + 1.98167i
\(699\) 0 0
\(700\) 0 0
\(701\) 27.3333i 1.03236i 0.856479 + 0.516182i \(0.172647\pi\)
−0.856479 + 0.516182i \(0.827353\pi\)
\(702\) 0 0
\(703\) 12.9302i 0.487671i
\(704\) −53.3293 + 30.7897i −2.00992 + 1.16043i
\(705\) 0 0
\(706\) 40.3893 + 23.3187i 1.52007 + 0.877613i
\(707\) 0 0
\(708\) 0 0
\(709\) −1.35635 2.34926i −0.0509387 0.0882283i 0.839432 0.543465i \(-0.182888\pi\)
−0.890370 + 0.455237i \(0.849555\pi\)
\(710\) 39.2496 1.47301
\(711\) 0 0
\(712\) 72.0354i 2.69964i
\(713\) −5.32654 9.22584i −0.199480 0.345510i
\(714\) 0 0
\(715\) −2.81868 + 4.88210i −0.105413 + 0.182580i
\(716\) −69.9976 40.4131i −2.61593 1.51031i
\(717\) 0 0
\(718\) −8.80292 15.2471i −0.328522 0.569017i
\(719\) 16.2786 0.607090 0.303545 0.952817i \(-0.401830\pi\)
0.303545 + 0.952817i \(0.401830\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −86.3365 + 49.8464i −3.21311 + 1.85509i
\(723\) 0 0
\(724\) −36.9217 21.3167i −1.37218 0.792231i
\(725\) 0.617673 + 0.356614i 0.0229398 + 0.0132443i
\(726\) 0 0
\(727\) 0.980123 0.565874i 0.0363508 0.0209871i −0.481714 0.876328i \(-0.659986\pi\)
0.518065 + 0.855341i \(0.326652\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −28.2581 −1.04588
\(731\) −0.00789650 0.0136771i −0.000292063 0.000505867i
\(732\) 0 0
\(733\) −33.2085 19.1729i −1.22658 0.708169i −0.260270 0.965536i \(-0.583812\pi\)
−0.966314 + 0.257367i \(0.917145\pi\)
\(734\) 12.1946 21.1217i 0.450111 0.779615i
\(735\) 0 0
\(736\) 29.4106 + 50.9407i 1.08409 + 1.87770i
\(737\) 12.8278i 0.472519i
\(738\) 0 0
\(739\) 10.7298 0.394701 0.197351 0.980333i \(-0.436766\pi\)
0.197351 + 0.980333i \(0.436766\pi\)
\(740\) −5.55705 9.62509i −0.204281 0.353825i
\(741\) 0 0
\(742\) 0 0
\(743\) 11.3308 + 6.54185i 0.415687 + 0.239997i 0.693230 0.720716i \(-0.256187\pi\)
−0.277543 + 0.960713i \(0.589520\pi\)
\(744\) 0 0
\(745\) −4.99228 + 2.88229i −0.182903 + 0.105599i
\(746\) 31.1685i 1.14116i
\(747\) 0 0
\(748\) 15.9773i 0.584188i
\(749\) 0 0
\(750\) 0 0
\(751\) −13.1677 + 22.8071i −0.480495 + 0.832242i −0.999750 0.0223774i \(-0.992876\pi\)
0.519254 + 0.854620i \(0.326210\pi\)
\(752\) −9.91173 + 17.1676i −0.361444 + 0.626039i
\(753\) 0 0
\(754\) −0.887501 + 0.512399i −0.0323209 + 0.0186605i
\(755\) 13.6153 0.495512
\(756\) 0 0
\(757\) −32.6280 −1.18588 −0.592942 0.805245i \(-0.702034\pi\)
−0.592942 + 0.805245i \(0.702034\pi\)
\(758\) 40.1109 23.1580i 1.45689 0.841138i
\(759\) 0 0
\(760\) 40.6232 70.3615i 1.47356 2.55228i
\(761\) −12.6727 + 21.9498i −0.459385 + 0.795679i −0.998929 0.0462793i \(-0.985264\pi\)
0.539543 + 0.841958i \(0.318597\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 85.4946i 3.09309i
\(765\) 0 0
\(766\) 43.9252i 1.58708i
\(767\) −19.9429 + 11.5140i −0.720097 + 0.415748i
\(768\) 0 0
\(769\) 11.4964 + 6.63744i 0.414570 + 0.239352i 0.692752 0.721176i \(-0.256398\pi\)
−0.278181 + 0.960529i \(0.589732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −36.5886 63.3733i −1.31685 2.28085i
\(773\) −16.0136 −0.575969 −0.287985 0.957635i \(-0.592985\pi\)
−0.287985 + 0.957635i \(0.592985\pi\)
\(774\) 0 0
\(775\) 12.4465i 0.447093i
\(776\) 10.7669 + 18.6488i 0.386509 + 0.669454i
\(777\) 0 0
\(778\) 25.3919 43.9801i 0.910344 1.57676i
\(779\) 43.4777 + 25.1019i 1.55775 + 0.899367i
\(780\) 0 0
\(781\) 14.9762 + 25.9395i 0.535890 + 0.928189i
\(782\) 9.91577 0.354587
\(783\) 0 0
\(784\) 0 0
\(785\) 15.3469 8.86054i 0.547755 0.316246i
\(786\) 0 0
\(787\) −4.24659 2.45177i −0.151375 0.0873961i 0.422400 0.906410i \(-0.361188\pi\)
−0.573774 + 0.819014i \(0.694521\pi\)
\(788\) 87.4826 + 50.5081i 3.11644 + 1.79928i
\(789\) 0 0
\(790\) −15.5096 + 8.95445i −0.551806 + 0.318585i
\(791\) 0 0
\(792\) 0 0
\(793\) 21.1936 0.752606
\(794\) −41.9474 72.6551i −1.48866 2.57843i
\(795\) 0 0
\(796\) −114.791 66.2748i −4.06867 2.34905i
\(797\) −21.3994 + 37.0649i −0.758006 + 1.31290i 0.185860 + 0.982576i \(0.440493\pi\)
−0.943866 + 0.330328i \(0.892841\pi\)
\(798\) 0 0
\(799\) 0.863557 + 1.49572i 0.0305505 + 0.0529149i
\(800\) 68.7239i 2.42976i
\(801\) 0 0
\(802\) 2.50564 0.0884772
\(803\) −10.7822 18.6754i −0.380496 0.659039i
\(804\) 0 0
\(805\) 0 0
\(806\) −15.4878 8.94188i −0.545534 0.314964i
\(807\) 0 0
\(808\) −74.1152 + 42.7904i −2.60736 + 1.50536i
\(809\) 35.2933i 1.24085i −0.784267 0.620424i \(-0.786961\pi\)
0.784267 0.620424i \(-0.213039\pi\)
\(810\) 0 0
\(811\) 21.0223i 0.738193i −0.929391 0.369096i \(-0.879667\pi\)
0.929391 0.369096i \(-0.120333\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.82968 10.0973i 0.204330 0.353910i
\(815\) −10.9214 + 18.9164i −0.382559 + 0.662612i
\(816\) 0 0
\(817\) −0.0848782 + 0.0490044i −0.00296951 + 0.00171445i
\(818\) −20.5372 −0.718067
\(819\) 0 0
\(820\) −43.1525 −1.50695
\(821\) 29.8623 17.2410i 1.04220 0.601716i 0.121746 0.992561i \(-0.461151\pi\)
0.920456 + 0.390845i \(0.127817\pi\)
\(822\) 0 0
\(823\) 19.4950 33.7663i 0.679552 1.17702i −0.295564 0.955323i \(-0.595508\pi\)
0.975116 0.221695i \(-0.0711590\pi\)
\(824\) 78.0191 135.133i 2.71792 4.70758i
\(825\) 0 0
\(826\) 0 0
\(827\) 47.2537i 1.64317i −0.570086 0.821585i \(-0.693090\pi\)
0.570086 0.821585i \(-0.306910\pi\)
\(828\) 0 0
\(829\) 49.1426i 1.70679i 0.521262 + 0.853397i \(0.325462\pi\)
−0.521262 + 0.853397i \(0.674538\pi\)
\(830\) 9.07850 5.24147i 0.315119 0.181934i
\(831\) 0 0
\(832\) 40.4174 + 23.3350i 1.40122 + 0.808995i
\(833\) 0 0
\(834\) 0 0
\(835\) −0.721079 1.24894i −0.0249540 0.0432215i
\(836\) 99.1526 3.42926
\(837\) 0 0
\(838\) 15.4436i 0.533492i
\(839\) 26.0780 + 45.1684i 0.900312 + 1.55939i 0.827090 + 0.562070i \(0.189995\pi\)
0.0732219 + 0.997316i \(0.476672\pi\)
\(840\) 0 0
\(841\) −14.4799 + 25.0798i −0.499305 + 0.864822i
\(842\) −27.5030 15.8789i −0.947816 0.547222i
\(843\) 0 0
\(844\) −19.2565 33.3533i −0.662838 1.14807i
\(845\) −11.3656 −0.390989
\(846\) 0 0
\(847\) 0 0
\(848\) 118.554 68.4472i 4.07116 2.35049i
\(849\) 0 0
\(850\) −10.0330 5.79255i −0.344129 0.198683i
\(851\) −4.55852 2.63186i −0.156264 0.0902190i
\(852\) 0 0
\(853\) 13.4028 7.73808i 0.458902 0.264947i −0.252681 0.967550i \(-0.581312\pi\)
0.711582 + 0.702603i \(0.247979\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 89.3607 3.05429
\(857\) 24.4356 + 42.3238i 0.834706 + 1.44575i 0.894270 + 0.447528i \(0.147696\pi\)
−0.0595642 + 0.998224i \(0.518971\pi\)
\(858\) 0 0
\(859\) 8.45000 + 4.87861i 0.288310 + 0.166456i 0.637180 0.770715i \(-0.280101\pi\)
−0.348869 + 0.937171i \(0.613434\pi\)
\(860\) 0.0421217 0.0729569i 0.00143634 0.00248781i
\(861\) 0 0
\(862\) −36.4356 63.1083i −1.24100 2.14948i
\(863\) 27.6507i 0.941241i −0.882336 0.470620i \(-0.844030\pi\)
0.882336 0.470620i \(-0.155970\pi\)
\(864\) 0 0
\(865\) 21.6624 0.736544
\(866\) 38.0628 + 65.9267i 1.29343 + 2.24028i
\(867\) 0 0
\(868\) 0 0
\(869\) −11.8357 6.83337i −0.401500 0.231806i
\(870\) 0 0
\(871\) −8.41949 + 4.86100i −0.285284 + 0.164709i
\(872\) 94.1533i 3.18843i
\(873\) 0 0
\(874\) 61.5357i 2.08148i
\(875\) 0 0
\(876\) 0 0
\(877\) 0.932622 1.61535i 0.0314924 0.0545465i −0.849850 0.527025i \(-0.823307\pi\)
0.881342 + 0.472479i \(0.156641\pi\)
\(878\) −12.6317 + 21.8787i −0.426298 + 0.738370i
\(879\) 0 0
\(880\) −35.7910 + 20.6639i −1.20651 + 0.696581i
\(881\) 0.0273875 0.000922707 0.000461353 1.00000i \(-0.499853\pi\)
0.000461353 1.00000i \(0.499853\pi\)
\(882\) 0 0
\(883\) 36.2074 1.21848 0.609239 0.792987i \(-0.291475\pi\)
0.609239 + 0.792987i \(0.291475\pi\)
\(884\) 10.4866 6.05447i 0.352704 0.203634i
\(885\) 0 0
\(886\) −15.3600 + 26.6043i −0.516028 + 0.893787i
\(887\) −12.6626 + 21.9323i −0.425170 + 0.736415i −0.996436 0.0843491i \(-0.973119\pi\)
0.571267 + 0.820765i \(0.306452\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 25.9616i 0.870235i
\(891\) 0 0
\(892\) 129.869i 4.34832i
\(893\) 9.28223 5.35910i 0.310618 0.179335i
\(894\) 0 0
\(895\) −15.7748 9.10759i −0.527294 0.304433i
\(896\) 0 0
\(897\) 0 0
\(898\) −20.7625 35.9617i −0.692854 1.20006i
\(899\) 0.703226 0.0234539
\(900\) 0 0
\(901\) 11.9269i 0.397342i
\(902\) −22.6348 39.2046i −0.753655 1.30537i
\(903\) 0 0
\(904\) 49.9110 86.4483i 1.66001 2.87523i
\(905\) −8.32075 4.80399i −0.276591 0.159690i
\(906\) 0 0
\(907\) 19.4060 + 33.6122i 0.644366 + 1.11608i 0.984447 + 0.175679i \(0.0562121\pi\)
−0.340081 + 0.940396i \(0.610455\pi\)
\(908\) −2.56520 −0.0851292
\(909\) 0 0
\(910\) 0 0
\(911\) 43.6110 25.1788i 1.44490 0.834211i 0.446725 0.894671i \(-0.352590\pi\)
0.998171 + 0.0604602i \(0.0192568\pi\)
\(912\) 0 0
\(913\) 6.92803 + 3.99990i 0.229284 + 0.132377i
\(914\) 21.5190 + 12.4240i 0.711787 + 0.410950i
\(915\) 0 0
\(916\) −41.6581 + 24.0513i −1.37642 + 0.794677i
\(917\) 0 0
\(918\) 0 0
\(919\) −2.99690 −0.0988585 −0.0494293 0.998778i \(-0.515740\pi\)
−0.0494293 + 0.998778i \(0.515740\pi\)
\(920\) 16.5372 + 28.6434i 0.545217 + 0.944343i
\(921\) 0 0
\(922\) 77.5863 + 44.7945i 2.55517 + 1.47523i
\(923\) 11.3502 19.6591i 0.373596 0.647088i
\(924\) 0 0
\(925\) 3.07494 + 5.32595i 0.101103 + 0.175116i
\(926\) 21.2152i 0.697175i
\(927\) 0 0
\(928\) −3.88289 −0.127462
\(929\) −16.1108 27.9047i −0.528577 0.915522i −0.999445 0.0333184i \(-0.989392\pi\)
0.470868 0.882204i \(-0.343941\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −51.3888 29.6694i −1.68330 0.971852i
\(933\) 0 0
\(934\) 48.5064 28.0052i 1.58718 0.916358i
\(935\) 3.60068i 0.117755i
\(936\) 0 0
\(937\) 3.07038i 0.100305i −0.998742 0.0501525i \(-0.984029\pi\)
0.998742 0.0501525i \(-0.0159708\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −4.60640 + 7.97852i −0.150244 + 0.260231i
\(941\) 19.4136 33.6253i 0.632865 1.09615i −0.354099 0.935208i \(-0.615212\pi\)
0.986963 0.160946i \(-0.0514543\pi\)
\(942\) 0 0
\(943\) −17.6993 + 10.2187i −0.576367 + 0.332766i
\(944\) −168.820 −5.49464
\(945\) 0 0
\(946\) 0.0883763 0.00287336
\(947\) −16.2391 + 9.37567i −0.527701 + 0.304668i −0.740080 0.672519i \(-0.765212\pi\)
0.212379 + 0.977187i \(0.431879\pi\)
\(948\) 0 0
\(949\) −8.17166 + 14.1537i −0.265263 + 0.459450i
\(950\) −35.9477 + 62.2632i −1.16630 + 2.02008i
\(951\) 0 0
\(952\) 0 0
\(953\) 47.6453i 1.54338i 0.635997 + 0.771692i \(0.280589\pi\)
−0.635997 + 0.771692i \(0.719411\pi\)
\(954\) 0 0
\(955\) 19.2672i 0.623474i
\(956\) −64.2911 + 37.1185i −2.07932 + 1.20050i
\(957\) 0 0
\(958\) −6.24009 3.60272i −0.201608 0.116398i
\(959\) 0 0
\(960\) 0 0
\(961\) −9.36399 16.2189i −0.302064 0.523191i
\(962\) −8.83643 −0.284898
\(963\) 0 0
\(964\) 66.0608i 2.12768i
\(965\) −8.24569 14.2819i −0.265438 0.459752i
\(966\) 0 0
\(967\) 25.8005 44.6878i 0.829689 1.43706i −0.0685936 0.997645i \(-0.521851\pi\)
0.898282 0.439419i \(-0.144815\pi\)
\(968\) 37.7137 + 21.7740i 1.21216 + 0.699843i
\(969\) 0 0
\(970\) 3.88040 + 6.72104i 0.124592 + 0.215800i
\(971\) 28.3866 0.910971 0.455485 0.890243i \(-0.349466\pi\)
0.455485 + 0.890243i \(0.349466\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.44867 + 1.41374i −0.0784603 + 0.0452991i
\(975\) 0 0
\(976\) 134.556 + 77.6858i 4.30702 + 2.48666i
\(977\) −35.6722 20.5954i −1.14126 0.658904i −0.194515 0.980900i \(-0.562313\pi\)
−0.946741 + 0.321995i \(0.895647\pi\)
\(978\) 0 0
\(979\) −17.1576 + 9.90597i −0.548361 + 0.316596i
\(980\) 0 0
\(981\) 0 0
\(982\) −112.734 −3.59747
\(983\) −26.4017 45.7291i −0.842085 1.45853i −0.888129 0.459594i \(-0.847995\pi\)
0.0460447 0.998939i \(-0.485338\pi\)
\(984\) 0 0
\(985\) 19.7153 + 11.3826i 0.628181 + 0.362680i
\(986\) −0.327278 + 0.566862i −0.0104227 + 0.0180526i
\(987\) 0 0
\(988\) −37.5731 65.0784i −1.19536 2.07042i
\(989\) 0.0398983i 0.00126869i
\(990\) 0 0
\(991\) 16.4897 0.523813 0.261907 0.965093i \(-0.415649\pi\)
0.261907 + 0.965093i \(0.415649\pi\)
\(992\) −33.8801 58.6821i −1.07570 1.86316i
\(993\) 0 0
\(994\) 0 0
\(995\) −25.8696 14.9358i −0.820122 0.473498i
\(996\) 0 0
\(997\) 42.4857 24.5291i 1.34553 0.776845i 0.357921 0.933752i \(-0.383486\pi\)
0.987613 + 0.156907i \(0.0501523\pi\)
\(998\) 87.4667i 2.76871i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.o.e.881.24 48
3.2 odd 2 441.2.o.e.293.2 yes 48
7.2 even 3 1323.2.s.d.962.2 48
7.3 odd 6 1323.2.i.d.1097.6 48
7.4 even 3 1323.2.i.d.1097.21 48
7.5 odd 6 1323.2.s.d.962.1 48
7.6 odd 2 inner 1323.2.o.e.881.23 48
9.2 odd 6 inner 1323.2.o.e.440.23 48
9.7 even 3 441.2.o.e.146.1 48
21.2 odd 6 441.2.s.d.374.23 48
21.5 even 6 441.2.s.d.374.24 48
21.11 odd 6 441.2.i.d.68.1 48
21.17 even 6 441.2.i.d.68.2 48
21.20 even 2 441.2.o.e.293.1 yes 48
63.2 odd 6 1323.2.i.d.521.6 48
63.11 odd 6 1323.2.s.d.656.1 48
63.16 even 3 441.2.i.d.227.24 48
63.20 even 6 inner 1323.2.o.e.440.24 48
63.25 even 3 441.2.s.d.362.24 48
63.34 odd 6 441.2.o.e.146.2 yes 48
63.38 even 6 1323.2.s.d.656.2 48
63.47 even 6 1323.2.i.d.521.21 48
63.52 odd 6 441.2.s.d.362.23 48
63.61 odd 6 441.2.i.d.227.23 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.1 48 21.11 odd 6
441.2.i.d.68.2 48 21.17 even 6
441.2.i.d.227.23 48 63.61 odd 6
441.2.i.d.227.24 48 63.16 even 3
441.2.o.e.146.1 48 9.7 even 3
441.2.o.e.146.2 yes 48 63.34 odd 6
441.2.o.e.293.1 yes 48 21.20 even 2
441.2.o.e.293.2 yes 48 3.2 odd 2
441.2.s.d.362.23 48 63.52 odd 6
441.2.s.d.362.24 48 63.25 even 3
441.2.s.d.374.23 48 21.2 odd 6
441.2.s.d.374.24 48 21.5 even 6
1323.2.i.d.521.6 48 63.2 odd 6
1323.2.i.d.521.21 48 63.47 even 6
1323.2.i.d.1097.6 48 7.3 odd 6
1323.2.i.d.1097.21 48 7.4 even 3
1323.2.o.e.440.23 48 9.2 odd 6 inner
1323.2.o.e.440.24 48 63.20 even 6 inner
1323.2.o.e.881.23 48 7.6 odd 2 inner
1323.2.o.e.881.24 48 1.1 even 1 trivial
1323.2.s.d.656.1 48 63.11 odd 6
1323.2.s.d.656.2 48 63.38 even 6
1323.2.s.d.962.1 48 7.5 odd 6
1323.2.s.d.962.2 48 7.2 even 3