Properties

Label 1323.2.i.d.1097.17
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.17
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83202i q^{2} -1.35631 q^{4} +(-0.322784 - 0.559079i) q^{5} -1.17925i q^{8} +(-1.02425 + 0.591348i) q^{10} +(4.60375 + 2.65797i) q^{11} +(4.44045 + 2.56370i) q^{13} -4.87304 q^{16} +(0.814931 + 1.41150i) q^{17} +(2.09039 + 1.20689i) q^{19} +(0.437796 + 0.758285i) q^{20} +(4.86947 - 8.43418i) q^{22} +(-1.27442 + 0.735784i) q^{23} +(2.29162 - 3.96920i) q^{25} +(4.69675 - 8.13502i) q^{26} +(6.43846 - 3.71724i) q^{29} +5.66726i q^{31} +6.56903i q^{32} +(2.58590 - 1.49297i) q^{34} +(3.99736 - 6.92362i) q^{37} +(2.21105 - 3.82965i) q^{38} +(-0.659294 + 0.380644i) q^{40} +(-5.99052 + 10.3759i) q^{41} +(-1.51281 - 2.62026i) q^{43} +(-6.24412 - 3.60504i) q^{44} +(1.34797 + 2.33476i) q^{46} -3.08353 q^{47} +(-7.27168 - 4.19830i) q^{50} +(-6.02264 - 3.47717i) q^{52} +(-2.04554 + 1.18100i) q^{53} -3.43181i q^{55} +(-6.81008 - 11.7954i) q^{58} +2.95836 q^{59} -10.6004i q^{61} +10.3825 q^{62} +2.28853 q^{64} -3.31008i q^{65} -10.1549 q^{67} +(-1.10530 - 1.91444i) q^{68} -4.76597i q^{71} +(10.2239 - 5.90277i) q^{73} +(-12.6842 - 7.32325i) q^{74} +(-2.83523 - 1.63692i) q^{76} +6.96209 q^{79} +(1.57294 + 2.72441i) q^{80} +(19.0089 + 10.9748i) q^{82} +(-3.51618 - 6.09021i) q^{83} +(0.526093 - 0.911221i) q^{85} +(-4.80038 + 2.77150i) q^{86} +(3.13442 - 5.42898i) q^{88} +(2.16337 - 3.74706i) q^{89} +(1.72850 - 0.997953i) q^{92} +5.64910i q^{94} -1.55826i q^{95} +(-14.3946 + 8.31075i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83202i 1.29544i −0.761880 0.647718i \(-0.775723\pi\)
0.761880 0.647718i \(-0.224277\pi\)
\(3\) 0 0
\(4\) −1.35631 −0.678156
\(5\) −0.322784 0.559079i −0.144353 0.250028i 0.784778 0.619777i \(-0.212777\pi\)
−0.929132 + 0.369749i \(0.879444\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.17925i 0.416928i
\(9\) 0 0
\(10\) −1.02425 + 0.591348i −0.323895 + 0.187001i
\(11\) 4.60375 + 2.65797i 1.38808 + 0.801410i 0.993099 0.117279i \(-0.0374171\pi\)
0.394983 + 0.918688i \(0.370750\pi\)
\(12\) 0 0
\(13\) 4.44045 + 2.56370i 1.23156 + 0.711041i 0.967355 0.253425i \(-0.0815572\pi\)
0.264205 + 0.964467i \(0.414890\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.87304 −1.21826
\(17\) 0.814931 + 1.41150i 0.197650 + 0.342339i 0.947766 0.318967i \(-0.103336\pi\)
−0.750116 + 0.661306i \(0.770002\pi\)
\(18\) 0 0
\(19\) 2.09039 + 1.20689i 0.479569 + 0.276879i 0.720237 0.693728i \(-0.244033\pi\)
−0.240668 + 0.970608i \(0.577366\pi\)
\(20\) 0.437796 + 0.758285i 0.0978942 + 0.169558i
\(21\) 0 0
\(22\) 4.86947 8.43418i 1.03818 1.79817i
\(23\) −1.27442 + 0.735784i −0.265734 + 0.153422i −0.626947 0.779062i \(-0.715696\pi\)
0.361213 + 0.932483i \(0.382363\pi\)
\(24\) 0 0
\(25\) 2.29162 3.96920i 0.458324 0.793841i
\(26\) 4.69675 8.13502i 0.921109 1.59541i
\(27\) 0 0
\(28\) 0 0
\(29\) 6.43846 3.71724i 1.19559 0.690275i 0.236022 0.971748i \(-0.424156\pi\)
0.959569 + 0.281473i \(0.0908229\pi\)
\(30\) 0 0
\(31\) 5.66726i 1.01787i 0.860805 + 0.508935i \(0.169961\pi\)
−0.860805 + 0.508935i \(0.830039\pi\)
\(32\) 6.56903i 1.16125i
\(33\) 0 0
\(34\) 2.58590 1.49297i 0.443479 0.256043i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.99736 6.92362i 0.657161 1.13824i −0.324186 0.945993i \(-0.605090\pi\)
0.981347 0.192244i \(-0.0615763\pi\)
\(38\) 2.21105 3.82965i 0.358680 0.621251i
\(39\) 0 0
\(40\) −0.659294 + 0.380644i −0.104244 + 0.0601851i
\(41\) −5.99052 + 10.3759i −0.935562 + 1.62044i −0.161934 + 0.986802i \(0.551773\pi\)
−0.773628 + 0.633640i \(0.781560\pi\)
\(42\) 0 0
\(43\) −1.51281 2.62026i −0.230701 0.399586i 0.727314 0.686305i \(-0.240769\pi\)
−0.958015 + 0.286719i \(0.907435\pi\)
\(44\) −6.24412 3.60504i −0.941336 0.543481i
\(45\) 0 0
\(46\) 1.34797 + 2.33476i 0.198748 + 0.344241i
\(47\) −3.08353 −0.449779 −0.224889 0.974384i \(-0.572202\pi\)
−0.224889 + 0.974384i \(0.572202\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −7.27168 4.19830i −1.02837 0.593730i
\(51\) 0 0
\(52\) −6.02264 3.47717i −0.835190 0.482197i
\(53\) −2.04554 + 1.18100i −0.280977 + 0.162222i −0.633866 0.773443i \(-0.718533\pi\)
0.352889 + 0.935665i \(0.385199\pi\)
\(54\) 0 0
\(55\) 3.43181i 0.462745i
\(56\) 0 0
\(57\) 0 0
\(58\) −6.81008 11.7954i −0.894207 1.54881i
\(59\) 2.95836 0.385146 0.192573 0.981283i \(-0.438317\pi\)
0.192573 + 0.981283i \(0.438317\pi\)
\(60\) 0 0
\(61\) 10.6004i 1.35724i −0.734491 0.678618i \(-0.762579\pi\)
0.734491 0.678618i \(-0.237421\pi\)
\(62\) 10.3825 1.31859
\(63\) 0 0
\(64\) 2.28853 0.286066
\(65\) 3.31008i 0.410565i
\(66\) 0 0
\(67\) −10.1549 −1.24062 −0.620312 0.784355i \(-0.712994\pi\)
−0.620312 + 0.784355i \(0.712994\pi\)
\(68\) −1.10530 1.91444i −0.134037 0.232159i
\(69\) 0 0
\(70\) 0 0
\(71\) 4.76597i 0.565617i −0.959176 0.282808i \(-0.908734\pi\)
0.959176 0.282808i \(-0.0912661\pi\)
\(72\) 0 0
\(73\) 10.2239 5.90277i 1.19662 0.690867i 0.236817 0.971554i \(-0.423896\pi\)
0.959799 + 0.280687i \(0.0905624\pi\)
\(74\) −12.6842 7.32325i −1.47451 0.851311i
\(75\) 0 0
\(76\) −2.83523 1.63692i −0.325223 0.187767i
\(77\) 0 0
\(78\) 0 0
\(79\) 6.96209 0.783296 0.391648 0.920115i \(-0.371905\pi\)
0.391648 + 0.920115i \(0.371905\pi\)
\(80\) 1.57294 + 2.72441i 0.175860 + 0.304599i
\(81\) 0 0
\(82\) 19.0089 + 10.9748i 2.09918 + 1.21196i
\(83\) −3.51618 6.09021i −0.385951 0.668487i 0.605949 0.795503i \(-0.292793\pi\)
−0.991901 + 0.127016i \(0.959460\pi\)
\(84\) 0 0
\(85\) 0.526093 0.911221i 0.0570628 0.0988357i
\(86\) −4.80038 + 2.77150i −0.517638 + 0.298859i
\(87\) 0 0
\(88\) 3.13442 5.42898i 0.334130 0.578731i
\(89\) 2.16337 3.74706i 0.229317 0.397188i −0.728289 0.685270i \(-0.759684\pi\)
0.957606 + 0.288082i \(0.0930176\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.72850 0.997953i 0.180209 0.104044i
\(93\) 0 0
\(94\) 5.64910i 0.582660i
\(95\) 1.55826i 0.159874i
\(96\) 0 0
\(97\) −14.3946 + 8.31075i −1.46156 + 0.843829i −0.999083 0.0428048i \(-0.986371\pi\)
−0.462472 + 0.886634i \(0.653037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.10815 + 5.38348i −0.310815 + 0.538348i
\(101\) −2.32577 + 4.02835i −0.231423 + 0.400836i −0.958227 0.286009i \(-0.907671\pi\)
0.726804 + 0.686845i \(0.241005\pi\)
\(102\) 0 0
\(103\) 8.92382 5.15217i 0.879290 0.507658i 0.00886554 0.999961i \(-0.497178\pi\)
0.870424 + 0.492303i \(0.163845\pi\)
\(104\) 3.02324 5.23641i 0.296453 0.513472i
\(105\) 0 0
\(106\) 2.16361 + 3.74749i 0.210149 + 0.363988i
\(107\) −0.267212 0.154275i −0.0258324 0.0149143i 0.487028 0.873386i \(-0.338081\pi\)
−0.512861 + 0.858472i \(0.671414\pi\)
\(108\) 0 0
\(109\) 3.14423 + 5.44596i 0.301162 + 0.521628i 0.976399 0.215972i \(-0.0692921\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(110\) −6.28716 −0.599457
\(111\) 0 0
\(112\) 0 0
\(113\) −7.72869 4.46216i −0.727054 0.419765i 0.0902895 0.995916i \(-0.471221\pi\)
−0.817343 + 0.576151i \(0.804554\pi\)
\(114\) 0 0
\(115\) 0.822722 + 0.474999i 0.0767192 + 0.0442939i
\(116\) −8.73256 + 5.04174i −0.810797 + 0.468114i
\(117\) 0 0
\(118\) 5.41979i 0.498932i
\(119\) 0 0
\(120\) 0 0
\(121\) 8.62966 + 14.9470i 0.784515 + 1.35882i
\(122\) −19.4201 −1.75821
\(123\) 0 0
\(124\) 7.68657i 0.690274i
\(125\) −6.18664 −0.553350
\(126\) 0 0
\(127\) −2.49989 −0.221829 −0.110915 0.993830i \(-0.535378\pi\)
−0.110915 + 0.993830i \(0.535378\pi\)
\(128\) 8.94541i 0.790670i
\(129\) 0 0
\(130\) −6.06415 −0.531861
\(131\) −1.26725 2.19494i −0.110720 0.191773i 0.805341 0.592812i \(-0.201982\pi\)
−0.916061 + 0.401039i \(0.868649\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 18.6041i 1.60715i
\(135\) 0 0
\(136\) 1.66452 0.961008i 0.142731 0.0824058i
\(137\) 1.05041 + 0.606456i 0.0897429 + 0.0518131i 0.544200 0.838956i \(-0.316833\pi\)
−0.454457 + 0.890769i \(0.650167\pi\)
\(138\) 0 0
\(139\) −6.11754 3.53196i −0.518883 0.299577i 0.217594 0.976039i \(-0.430179\pi\)
−0.736478 + 0.676462i \(0.763512\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.73137 −0.732721
\(143\) 13.6285 + 23.6052i 1.13967 + 1.97397i
\(144\) 0 0
\(145\) −4.15646 2.39974i −0.345175 0.199287i
\(146\) −10.8140 18.7304i −0.894974 1.55014i
\(147\) 0 0
\(148\) −5.42166 + 9.39060i −0.445658 + 0.771902i
\(149\) 6.00270 3.46566i 0.491760 0.283918i −0.233544 0.972346i \(-0.575032\pi\)
0.725304 + 0.688428i \(0.241699\pi\)
\(150\) 0 0
\(151\) −3.15939 + 5.47223i −0.257108 + 0.445323i −0.965466 0.260530i \(-0.916103\pi\)
0.708358 + 0.705853i \(0.249436\pi\)
\(152\) 1.42323 2.46510i 0.115439 0.199946i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.16844 1.82930i 0.254495 0.146933i
\(156\) 0 0
\(157\) 1.99028i 0.158842i −0.996841 0.0794208i \(-0.974693\pi\)
0.996841 0.0794208i \(-0.0253071\pi\)
\(158\) 12.7547i 1.01471i
\(159\) 0 0
\(160\) 3.67260 2.12038i 0.290345 0.167631i
\(161\) 0 0
\(162\) 0 0
\(163\) 2.99365 5.18515i 0.234480 0.406132i −0.724641 0.689126i \(-0.757994\pi\)
0.959122 + 0.282994i \(0.0913278\pi\)
\(164\) 8.12502 14.0729i 0.634457 1.09891i
\(165\) 0 0
\(166\) −11.1574 + 6.44173i −0.865983 + 0.499976i
\(167\) 0.697990 1.20895i 0.0540121 0.0935516i −0.837755 0.546046i \(-0.816132\pi\)
0.891767 + 0.452494i \(0.149466\pi\)
\(168\) 0 0
\(169\) 6.64508 + 11.5096i 0.511160 + 0.885355i
\(170\) −1.66938 0.963816i −0.128035 0.0739213i
\(171\) 0 0
\(172\) 2.05184 + 3.55389i 0.156451 + 0.270982i
\(173\) 7.61012 0.578586 0.289293 0.957241i \(-0.406580\pi\)
0.289293 + 0.957241i \(0.406580\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −22.4343 12.9524i −1.69105 0.976326i
\(177\) 0 0
\(178\) −6.86471 3.96334i −0.514532 0.297065i
\(179\) 8.00888 4.62393i 0.598612 0.345609i −0.169883 0.985464i \(-0.554339\pi\)
0.768495 + 0.639855i \(0.221006\pi\)
\(180\) 0 0
\(181\) 11.9634i 0.889234i −0.895721 0.444617i \(-0.853340\pi\)
0.895721 0.444617i \(-0.146660\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.867674 + 1.50286i 0.0639658 + 0.110792i
\(185\) −5.16113 −0.379454
\(186\) 0 0
\(187\) 8.66426i 0.633593i
\(188\) 4.18223 0.305020
\(189\) 0 0
\(190\) −2.85477 −0.207107
\(191\) 20.2749i 1.46704i 0.679666 + 0.733521i \(0.262125\pi\)
−0.679666 + 0.733521i \(0.737875\pi\)
\(192\) 0 0
\(193\) −16.8917 −1.21589 −0.607944 0.793980i \(-0.708006\pi\)
−0.607944 + 0.793980i \(0.708006\pi\)
\(194\) 15.2255 + 26.3713i 1.09313 + 1.89335i
\(195\) 0 0
\(196\) 0 0
\(197\) 18.7102i 1.33305i 0.745484 + 0.666524i \(0.232219\pi\)
−0.745484 + 0.666524i \(0.767781\pi\)
\(198\) 0 0
\(199\) −15.6271 + 9.02231i −1.10778 + 0.639574i −0.938252 0.345952i \(-0.887556\pi\)
−0.169523 + 0.985526i \(0.554223\pi\)
\(200\) −4.68069 2.70240i −0.330975 0.191088i
\(201\) 0 0
\(202\) 7.38004 + 4.26087i 0.519258 + 0.299794i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.73458 0.540207
\(206\) −9.43889 16.3486i −0.657639 1.13906i
\(207\) 0 0
\(208\) −21.6385 12.4930i −1.50036 0.866234i
\(209\) 6.41576 + 11.1124i 0.443788 + 0.768663i
\(210\) 0 0
\(211\) −4.03491 + 6.98868i −0.277775 + 0.481120i −0.970831 0.239763i \(-0.922930\pi\)
0.693057 + 0.720883i \(0.256264\pi\)
\(212\) 2.77440 1.60180i 0.190546 0.110012i
\(213\) 0 0
\(214\) −0.282636 + 0.489540i −0.0193206 + 0.0334642i
\(215\) −0.976621 + 1.69156i −0.0666050 + 0.115363i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.97713 5.76030i 0.675736 0.390137i
\(219\) 0 0
\(220\) 4.65460i 0.313813i
\(221\) 8.35694i 0.562148i
\(222\) 0 0
\(223\) −20.2450 + 11.6884i −1.35570 + 0.782716i −0.989041 0.147638i \(-0.952833\pi\)
−0.366662 + 0.930354i \(0.619500\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −8.17479 + 14.1591i −0.543779 + 0.941852i
\(227\) 7.22154 12.5081i 0.479310 0.830190i −0.520408 0.853918i \(-0.674220\pi\)
0.999718 + 0.0237280i \(0.00755356\pi\)
\(228\) 0 0
\(229\) −11.3568 + 6.55685i −0.750479 + 0.433289i −0.825867 0.563865i \(-0.809314\pi\)
0.0753881 + 0.997154i \(0.475980\pi\)
\(230\) 0.870209 1.50725i 0.0573799 0.0993849i
\(231\) 0 0
\(232\) −4.38357 7.59256i −0.287795 0.498476i
\(233\) 7.31966 + 4.22601i 0.479527 + 0.276855i 0.720219 0.693746i \(-0.244041\pi\)
−0.240692 + 0.970601i \(0.577374\pi\)
\(234\) 0 0
\(235\) 0.995314 + 1.72393i 0.0649271 + 0.112457i
\(236\) −4.01246 −0.261189
\(237\) 0 0
\(238\) 0 0
\(239\) 24.2111 + 13.9783i 1.56608 + 0.904179i 0.996619 + 0.0821642i \(0.0261832\pi\)
0.569466 + 0.822015i \(0.307150\pi\)
\(240\) 0 0
\(241\) 19.4058 + 11.2039i 1.25004 + 0.721710i 0.971117 0.238605i \(-0.0766900\pi\)
0.278921 + 0.960314i \(0.410023\pi\)
\(242\) 27.3833 15.8097i 1.76026 1.01629i
\(243\) 0 0
\(244\) 14.3774i 0.920418i
\(245\) 0 0
\(246\) 0 0
\(247\) 6.18819 + 10.7183i 0.393745 + 0.681987i
\(248\) 6.68312 0.424379
\(249\) 0 0
\(250\) 11.3341i 0.716829i
\(251\) 6.39587 0.403704 0.201852 0.979416i \(-0.435304\pi\)
0.201852 + 0.979416i \(0.435304\pi\)
\(252\) 0 0
\(253\) −7.82278 −0.491814
\(254\) 4.57985i 0.287366i
\(255\) 0 0
\(256\) 20.9653 1.31033
\(257\) 1.65705 + 2.87009i 0.103364 + 0.179031i 0.913069 0.407806i \(-0.133706\pi\)
−0.809705 + 0.586837i \(0.800373\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.48950i 0.278427i
\(261\) 0 0
\(262\) −4.02118 + 2.32163i −0.248429 + 0.143431i
\(263\) 19.6502 + 11.3451i 1.21169 + 0.699567i 0.963126 0.269050i \(-0.0867096\pi\)
0.248559 + 0.968617i \(0.420043\pi\)
\(264\) 0 0
\(265\) 1.32054 + 0.762413i 0.0811200 + 0.0468347i
\(266\) 0 0
\(267\) 0 0
\(268\) 13.7733 0.841336
\(269\) −1.38050 2.39110i −0.0841707 0.145788i 0.820867 0.571120i \(-0.193491\pi\)
−0.905038 + 0.425332i \(0.860157\pi\)
\(270\) 0 0
\(271\) −5.27342 3.04461i −0.320337 0.184947i 0.331206 0.943559i \(-0.392545\pi\)
−0.651543 + 0.758612i \(0.725878\pi\)
\(272\) −3.97119 6.87830i −0.240789 0.417058i
\(273\) 0 0
\(274\) 1.11104 1.92438i 0.0671205 0.116256i
\(275\) 21.1001 12.1821i 1.27238 0.734611i
\(276\) 0 0
\(277\) 4.71684 8.16980i 0.283407 0.490876i −0.688814 0.724938i \(-0.741869\pi\)
0.972222 + 0.234062i \(0.0752019\pi\)
\(278\) −6.47064 + 11.2075i −0.388083 + 0.672180i
\(279\) 0 0
\(280\) 0 0
\(281\) −4.57153 + 2.63938i −0.272715 + 0.157452i −0.630121 0.776497i \(-0.716995\pi\)
0.357406 + 0.933949i \(0.383661\pi\)
\(282\) 0 0
\(283\) 19.6699i 1.16926i −0.811302 0.584628i \(-0.801241\pi\)
0.811302 0.584628i \(-0.198759\pi\)
\(284\) 6.46414i 0.383576i
\(285\) 0 0
\(286\) 43.2453 24.9677i 2.55715 1.47637i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.17178 12.4219i 0.421869 0.730699i
\(290\) −4.39637 + 7.61474i −0.258164 + 0.447153i
\(291\) 0 0
\(292\) −13.8668 + 8.00600i −0.811493 + 0.468516i
\(293\) −9.11647 + 15.7902i −0.532590 + 0.922473i 0.466686 + 0.884423i \(0.345448\pi\)
−0.999276 + 0.0380495i \(0.987886\pi\)
\(294\) 0 0
\(295\) −0.954912 1.65396i −0.0555971 0.0962970i
\(296\) −8.16470 4.71389i −0.474563 0.273989i
\(297\) 0 0
\(298\) −6.34917 10.9971i −0.367797 0.637044i
\(299\) −7.54531 −0.436356
\(300\) 0 0
\(301\) 0 0
\(302\) 10.0253 + 5.78808i 0.576888 + 0.333067i
\(303\) 0 0
\(304\) −10.1866 5.88122i −0.584240 0.337311i
\(305\) −5.92643 + 3.42163i −0.339347 + 0.195922i
\(306\) 0 0
\(307\) 26.0447i 1.48645i 0.669042 + 0.743224i \(0.266704\pi\)
−0.669042 + 0.743224i \(0.733296\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.35132 5.80466i −0.190342 0.329683i
\(311\) −28.2866 −1.60398 −0.801992 0.597334i \(-0.796227\pi\)
−0.801992 + 0.597334i \(0.796227\pi\)
\(312\) 0 0
\(313\) 5.57595i 0.315171i 0.987505 + 0.157586i \(0.0503710\pi\)
−0.987505 + 0.157586i \(0.949629\pi\)
\(314\) −3.64624 −0.205769
\(315\) 0 0
\(316\) −9.44276 −0.531197
\(317\) 33.5681i 1.88537i −0.333680 0.942686i \(-0.608291\pi\)
0.333680 0.942686i \(-0.391709\pi\)
\(318\) 0 0
\(319\) 39.5214 2.21277
\(320\) −0.738701 1.27947i −0.0412947 0.0715244i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.93412i 0.218901i
\(324\) 0 0
\(325\) 20.3517 11.7500i 1.12891 0.651775i
\(326\) −9.49931 5.48443i −0.526118 0.303755i
\(327\) 0 0
\(328\) 12.2358 + 7.06433i 0.675608 + 0.390063i
\(329\) 0 0
\(330\) 0 0
\(331\) −30.3735 −1.66948 −0.834739 0.550646i \(-0.814381\pi\)
−0.834739 + 0.550646i \(0.814381\pi\)
\(332\) 4.76904 + 8.26023i 0.261735 + 0.453339i
\(333\) 0 0
\(334\) −2.21483 1.27873i −0.121190 0.0699692i
\(335\) 3.27785 + 5.67741i 0.179088 + 0.310190i
\(336\) 0 0
\(337\) 1.86121 3.22371i 0.101387 0.175607i −0.810870 0.585227i \(-0.801005\pi\)
0.912256 + 0.409620i \(0.134339\pi\)
\(338\) 21.0859 12.1739i 1.14692 0.662175i
\(339\) 0 0
\(340\) −0.713547 + 1.23590i −0.0386975 + 0.0670261i
\(341\) −15.0634 + 26.0906i −0.815730 + 1.41289i
\(342\) 0 0
\(343\) 0 0
\(344\) −3.08995 + 1.78398i −0.166599 + 0.0961858i
\(345\) 0 0
\(346\) 13.9419i 0.749522i
\(347\) 7.13637i 0.383100i 0.981483 + 0.191550i \(0.0613515\pi\)
−0.981483 + 0.191550i \(0.938649\pi\)
\(348\) 0 0
\(349\) 13.2087 7.62607i 0.707047 0.408214i −0.102920 0.994690i \(-0.532818\pi\)
0.809967 + 0.586476i \(0.199485\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −17.4603 + 30.2421i −0.930637 + 1.61191i
\(353\) 17.2359 29.8534i 0.917373 1.58894i 0.113985 0.993482i \(-0.463638\pi\)
0.803389 0.595455i \(-0.203028\pi\)
\(354\) 0 0
\(355\) −2.66455 + 1.53838i −0.141420 + 0.0816487i
\(356\) −2.93420 + 5.08219i −0.155512 + 0.269355i
\(357\) 0 0
\(358\) −8.47115 14.6725i −0.447714 0.775464i
\(359\) 5.73791 + 3.31278i 0.302835 + 0.174842i 0.643716 0.765265i \(-0.277392\pi\)
−0.340881 + 0.940107i \(0.610725\pi\)
\(360\) 0 0
\(361\) −6.58684 11.4087i −0.346676 0.600460i
\(362\) −21.9173 −1.15195
\(363\) 0 0
\(364\) 0 0
\(365\) −6.60022 3.81064i −0.345472 0.199458i
\(366\) 0 0
\(367\) 2.68222 + 1.54858i 0.140011 + 0.0808352i 0.568369 0.822774i \(-0.307575\pi\)
−0.428358 + 0.903609i \(0.640908\pi\)
\(368\) 6.21028 3.58551i 0.323733 0.186907i
\(369\) 0 0
\(370\) 9.45532i 0.491559i
\(371\) 0 0
\(372\) 0 0
\(373\) −4.84999 8.40043i −0.251123 0.434958i 0.712712 0.701457i \(-0.247467\pi\)
−0.963835 + 0.266499i \(0.914133\pi\)
\(374\) 15.8731 0.820780
\(375\) 0 0
\(376\) 3.63625i 0.187526i
\(377\) 38.1195 1.96326
\(378\) 0 0
\(379\) 7.76103 0.398657 0.199329 0.979933i \(-0.436124\pi\)
0.199329 + 0.979933i \(0.436124\pi\)
\(380\) 2.11349i 0.108420i
\(381\) 0 0
\(382\) 37.1442 1.90046
\(383\) −12.3063 21.3152i −0.628825 1.08916i −0.987788 0.155804i \(-0.950203\pi\)
0.358963 0.933352i \(-0.383130\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.9459i 1.57511i
\(387\) 0 0
\(388\) 19.5236 11.2720i 0.991162 0.572248i
\(389\) 5.56578 + 3.21340i 0.282196 + 0.162926i 0.634417 0.772991i \(-0.281240\pi\)
−0.352221 + 0.935917i \(0.614573\pi\)
\(390\) 0 0
\(391\) −2.07712 1.19923i −0.105044 0.0606474i
\(392\) 0 0
\(393\) 0 0
\(394\) 34.2776 1.72688
\(395\) −2.24725 3.89235i −0.113071 0.195846i
\(396\) 0 0
\(397\) −11.4835 6.62998i −0.576338 0.332749i 0.183339 0.983050i \(-0.441310\pi\)
−0.759677 + 0.650301i \(0.774643\pi\)
\(398\) 16.5291 + 28.6292i 0.828528 + 1.43505i
\(399\) 0 0
\(400\) −11.1672 + 19.3421i −0.558358 + 0.967105i
\(401\) −13.6877 + 7.90259i −0.683530 + 0.394636i −0.801184 0.598418i \(-0.795796\pi\)
0.117653 + 0.993055i \(0.462463\pi\)
\(402\) 0 0
\(403\) −14.5291 + 25.1652i −0.723747 + 1.25357i
\(404\) 3.15447 5.46370i 0.156941 0.271829i
\(405\) 0 0
\(406\) 0 0
\(407\) 36.8056 21.2497i 1.82439 1.05331i
\(408\) 0 0
\(409\) 5.41851i 0.267928i −0.990986 0.133964i \(-0.957229\pi\)
0.990986 0.133964i \(-0.0427707\pi\)
\(410\) 14.1699i 0.699803i
\(411\) 0 0
\(412\) −12.1035 + 6.98795i −0.596296 + 0.344271i
\(413\) 0 0
\(414\) 0 0
\(415\) −2.26994 + 3.93165i −0.111427 + 0.192997i
\(416\) −16.8410 + 29.1694i −0.825697 + 1.43015i
\(417\) 0 0
\(418\) 20.3582 11.7538i 0.995754 0.574899i
\(419\) −12.2469 + 21.2123i −0.598302 + 1.03629i 0.394770 + 0.918780i \(0.370824\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(420\) 0 0
\(421\) 5.99347 + 10.3810i 0.292104 + 0.505939i 0.974307 0.225224i \(-0.0723113\pi\)
−0.682203 + 0.731163i \(0.738978\pi\)
\(422\) 12.8034 + 7.39206i 0.623261 + 0.359840i
\(423\) 0 0
\(424\) 1.39269 + 2.41221i 0.0676350 + 0.117147i
\(425\) 7.47005 0.362351
\(426\) 0 0
\(427\) 0 0
\(428\) 0.362424 + 0.209245i 0.0175184 + 0.0101143i
\(429\) 0 0
\(430\) 3.09897 + 1.78919i 0.149446 + 0.0862825i
\(431\) −26.6926 + 15.4110i −1.28574 + 0.742320i −0.977891 0.209117i \(-0.932941\pi\)
−0.307845 + 0.951437i \(0.599608\pi\)
\(432\) 0 0
\(433\) 6.06173i 0.291308i −0.989336 0.145654i \(-0.953471\pi\)
0.989336 0.145654i \(-0.0465287\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.26455 7.38642i −0.204235 0.353745i
\(437\) −3.55204 −0.169917
\(438\) 0 0
\(439\) 27.1448i 1.29555i 0.761831 + 0.647776i \(0.224301\pi\)
−0.761831 + 0.647776i \(0.775699\pi\)
\(440\) −4.04697 −0.192932
\(441\) 0 0
\(442\) 15.3101 0.728228
\(443\) 5.35163i 0.254264i 0.991886 + 0.127132i \(0.0405771\pi\)
−0.991886 + 0.127132i \(0.959423\pi\)
\(444\) 0 0
\(445\) −2.79320 −0.132411
\(446\) 21.4135 + 37.0893i 1.01396 + 1.75623i
\(447\) 0 0
\(448\) 0 0
\(449\) 34.2418i 1.61597i −0.589204 0.807985i \(-0.700558\pi\)
0.589204 0.807985i \(-0.299442\pi\)
\(450\) 0 0
\(451\) −55.1577 + 31.8453i −2.59727 + 1.49954i
\(452\) 10.4825 + 6.05208i 0.493056 + 0.284666i
\(453\) 0 0
\(454\) −22.9151 13.2300i −1.07546 0.620916i
\(455\) 0 0
\(456\) 0 0
\(457\) −15.8604 −0.741917 −0.370958 0.928649i \(-0.620971\pi\)
−0.370958 + 0.928649i \(0.620971\pi\)
\(458\) 12.0123 + 20.8059i 0.561299 + 0.972198i
\(459\) 0 0
\(460\) −1.11587 0.644247i −0.0520276 0.0300382i
\(461\) −6.50676 11.2700i −0.303050 0.524898i 0.673775 0.738936i \(-0.264672\pi\)
−0.976825 + 0.214038i \(0.931338\pi\)
\(462\) 0 0
\(463\) −6.01941 + 10.4259i −0.279746 + 0.484534i −0.971321 0.237770i \(-0.923583\pi\)
0.691576 + 0.722304i \(0.256917\pi\)
\(464\) −31.3749 + 18.1143i −1.45654 + 0.840935i
\(465\) 0 0
\(466\) 7.74215 13.4098i 0.358648 0.621197i
\(467\) 10.1728 17.6199i 0.470743 0.815351i −0.528697 0.848811i \(-0.677319\pi\)
0.999440 + 0.0334596i \(0.0106525\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3.15829 1.82344i 0.145681 0.0841090i
\(471\) 0 0
\(472\) 3.48865i 0.160578i
\(473\) 16.0840i 0.739544i
\(474\) 0 0
\(475\) 9.58078 5.53146i 0.439596 0.253801i
\(476\) 0 0
\(477\) 0 0
\(478\) 25.6085 44.3553i 1.17131 2.02876i
\(479\) −12.1492 + 21.0430i −0.555109 + 0.961477i 0.442786 + 0.896627i \(0.353990\pi\)
−0.997895 + 0.0648499i \(0.979343\pi\)
\(480\) 0 0
\(481\) 35.5001 20.4960i 1.61867 0.934538i
\(482\) 20.5259 35.5519i 0.934929 1.61934i
\(483\) 0 0
\(484\) −11.7045 20.2728i −0.532023 0.921491i
\(485\) 9.29273 + 5.36516i 0.421961 + 0.243619i
\(486\) 0 0
\(487\) 13.6546 + 23.6504i 0.618747 + 1.07170i 0.989715 + 0.143055i \(0.0456927\pi\)
−0.370968 + 0.928646i \(0.620974\pi\)
\(488\) −12.5005 −0.565871
\(489\) 0 0
\(490\) 0 0
\(491\) 13.2899 + 7.67290i 0.599763 + 0.346273i 0.768948 0.639311i \(-0.220780\pi\)
−0.169185 + 0.985584i \(0.554114\pi\)
\(492\) 0 0
\(493\) 10.4938 + 6.05859i 0.472616 + 0.272865i
\(494\) 19.6361 11.3369i 0.883471 0.510072i
\(495\) 0 0
\(496\) 27.6168i 1.24003i
\(497\) 0 0
\(498\) 0 0
\(499\) 5.15504 + 8.92879i 0.230771 + 0.399707i 0.958035 0.286650i \(-0.0925418\pi\)
−0.727264 + 0.686358i \(0.759208\pi\)
\(500\) 8.39101 0.375257
\(501\) 0 0
\(502\) 11.7174i 0.522972i
\(503\) −24.6770 −1.10029 −0.550146 0.835068i \(-0.685428\pi\)
−0.550146 + 0.835068i \(0.685428\pi\)
\(504\) 0 0
\(505\) 3.00289 0.133627
\(506\) 14.3315i 0.637114i
\(507\) 0 0
\(508\) 3.39063 0.150435
\(509\) −2.58601 4.47911i −0.114623 0.198533i 0.803006 0.595971i \(-0.203233\pi\)
−0.917629 + 0.397438i \(0.869899\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 20.5181i 0.906778i
\(513\) 0 0
\(514\) 5.25807 3.03575i 0.231924 0.133901i
\(515\) −5.76093 3.32608i −0.253857 0.146564i
\(516\) 0 0
\(517\) −14.1958 8.19594i −0.624330 0.360457i
\(518\) 0 0
\(519\) 0 0
\(520\) −3.90342 −0.171176
\(521\) −19.1664 33.1972i −0.839696 1.45440i −0.890149 0.455669i \(-0.849400\pi\)
0.0504538 0.998726i \(-0.483933\pi\)
\(522\) 0 0
\(523\) −23.6468 13.6525i −1.03400 0.596982i −0.115874 0.993264i \(-0.536967\pi\)
−0.918129 + 0.396282i \(0.870300\pi\)
\(524\) 1.71878 + 2.97702i 0.0750855 + 0.130052i
\(525\) 0 0
\(526\) 20.7844 35.9997i 0.906245 1.56966i
\(527\) −7.99934 + 4.61842i −0.348457 + 0.201182i
\(528\) 0 0
\(529\) −10.4172 + 18.0432i −0.452924 + 0.784487i
\(530\) 1.39676 2.41926i 0.0606714 0.105086i
\(531\) 0 0
\(532\) 0 0
\(533\) −53.2012 + 30.7158i −2.30440 + 1.33045i
\(534\) 0 0
\(535\) 0.199190i 0.00861175i
\(536\) 11.9752i 0.517251i
\(537\) 0 0
\(538\) −4.38055 + 2.52911i −0.188859 + 0.109038i
\(539\) 0 0
\(540\) 0 0
\(541\) −9.78052 + 16.9404i −0.420498 + 0.728323i −0.995988 0.0894853i \(-0.971478\pi\)
0.575491 + 0.817808i \(0.304811\pi\)
\(542\) −5.57779 + 9.66102i −0.239587 + 0.414977i
\(543\) 0 0
\(544\) −9.27219 + 5.35330i −0.397542 + 0.229521i
\(545\) 2.02981 3.51574i 0.0869476 0.150598i
\(546\) 0 0
\(547\) 12.6246 + 21.8665i 0.539790 + 0.934944i 0.998915 + 0.0465723i \(0.0148298\pi\)
−0.459125 + 0.888372i \(0.651837\pi\)
\(548\) −1.42469 0.822544i −0.0608597 0.0351373i
\(549\) 0 0
\(550\) −22.3180 38.6559i −0.951642 1.64829i
\(551\) 17.9452 0.764492
\(552\) 0 0
\(553\) 0 0
\(554\) −14.9673 8.64136i −0.635898 0.367136i
\(555\) 0 0
\(556\) 8.29730 + 4.79045i 0.351884 + 0.203160i
\(557\) −28.8204 + 16.6395i −1.22116 + 0.705036i −0.965165 0.261642i \(-0.915736\pi\)
−0.255994 + 0.966678i \(0.582403\pi\)
\(558\) 0 0
\(559\) 15.5135i 0.656152i
\(560\) 0 0
\(561\) 0 0
\(562\) 4.83540 + 8.37516i 0.203969 + 0.353285i
\(563\) 30.5175 1.28616 0.643079 0.765800i \(-0.277657\pi\)
0.643079 + 0.765800i \(0.277657\pi\)
\(564\) 0 0
\(565\) 5.76126i 0.242378i
\(566\) −36.0358 −1.51470
\(567\) 0 0
\(568\) −5.62028 −0.235822
\(569\) 15.4781i 0.648876i −0.945907 0.324438i \(-0.894825\pi\)
0.945907 0.324438i \(-0.105175\pi\)
\(570\) 0 0
\(571\) −24.4085 −1.02146 −0.510731 0.859740i \(-0.670625\pi\)
−0.510731 + 0.859740i \(0.670625\pi\)
\(572\) −18.4845 32.0160i −0.772875 1.33866i
\(573\) 0 0
\(574\) 0 0
\(575\) 6.74455i 0.281267i
\(576\) 0 0
\(577\) −12.6901 + 7.32664i −0.528296 + 0.305012i −0.740322 0.672252i \(-0.765327\pi\)
0.212026 + 0.977264i \(0.431994\pi\)
\(578\) −22.7572 13.1389i −0.946574 0.546505i
\(579\) 0 0
\(580\) 5.63746 + 3.25479i 0.234083 + 0.135148i
\(581\) 0 0
\(582\) 0 0
\(583\) −12.5562 −0.520026
\(584\) −6.96085 12.0565i −0.288042 0.498904i
\(585\) 0 0
\(586\) 28.9280 + 16.7016i 1.19500 + 0.689936i
\(587\) −11.6129 20.1141i −0.479314 0.830197i 0.520404 0.853920i \(-0.325781\pi\)
−0.999719 + 0.0237232i \(0.992448\pi\)
\(588\) 0 0
\(589\) −6.83975 + 11.8468i −0.281827 + 0.488139i
\(590\) −3.03009 + 1.74942i −0.124747 + 0.0720225i
\(591\) 0 0
\(592\) −19.4793 + 33.7391i −0.800594 + 1.38667i
\(593\) 5.55605 9.62337i 0.228160 0.395184i −0.729103 0.684404i \(-0.760062\pi\)
0.957263 + 0.289220i \(0.0933958\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.14153 + 4.70051i −0.333490 + 0.192541i
\(597\) 0 0
\(598\) 13.8232i 0.565272i
\(599\) 15.6555i 0.639667i −0.947474 0.319833i \(-0.896373\pi\)
0.947474 0.319833i \(-0.103627\pi\)
\(600\) 0 0
\(601\) −30.5665 + 17.6476i −1.24684 + 0.719861i −0.970477 0.241194i \(-0.922461\pi\)
−0.276358 + 0.961055i \(0.589128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.28512 7.42205i 0.174359 0.301999i
\(605\) 5.57104 9.64932i 0.226495 0.392301i
\(606\) 0 0
\(607\) 33.6062 19.4025i 1.36403 0.787524i 0.373874 0.927479i \(-0.378029\pi\)
0.990158 + 0.139955i \(0.0446959\pi\)
\(608\) −7.92809 + 13.7318i −0.321526 + 0.556900i
\(609\) 0 0
\(610\) 6.26850 + 10.8574i 0.253804 + 0.439602i
\(611\) −13.6923 7.90523i −0.553929 0.319811i
\(612\) 0 0
\(613\) −15.8786 27.5025i −0.641330 1.11082i −0.985136 0.171776i \(-0.945049\pi\)
0.343806 0.939041i \(-0.388284\pi\)
\(614\) 47.7145 1.92560
\(615\) 0 0
\(616\) 0 0
\(617\) −1.25518 0.724680i −0.0505317 0.0291745i 0.474521 0.880244i \(-0.342621\pi\)
−0.525053 + 0.851070i \(0.675955\pi\)
\(618\) 0 0
\(619\) −25.2590 14.5833i −1.01524 0.586152i −0.102522 0.994731i \(-0.532691\pi\)
−0.912723 + 0.408579i \(0.866024\pi\)
\(620\) −4.29740 + 2.48110i −0.172588 + 0.0996435i
\(621\) 0 0
\(622\) 51.8217i 2.07786i
\(623\) 0 0
\(624\) 0 0
\(625\) −9.46116 16.3872i −0.378446 0.655488i
\(626\) 10.2153 0.408284
\(627\) 0 0
\(628\) 2.69944i 0.107719i
\(629\) 13.0303 0.519551
\(630\) 0 0
\(631\) 11.7428 0.467473 0.233736 0.972300i \(-0.424905\pi\)
0.233736 + 0.972300i \(0.424905\pi\)
\(632\) 8.21005i 0.326578i
\(633\) 0 0
\(634\) −61.4976 −2.44238
\(635\) 0.806924 + 1.39763i 0.0320218 + 0.0554634i
\(636\) 0 0
\(637\) 0 0
\(638\) 72.4041i 2.86651i
\(639\) 0 0
\(640\) 5.00119 2.88744i 0.197689 0.114136i
\(641\) −10.0267 5.78891i −0.396030 0.228648i 0.288740 0.957408i \(-0.406764\pi\)
−0.684770 + 0.728760i \(0.740097\pi\)
\(642\) 0 0
\(643\) 13.1240 + 7.57712i 0.517558 + 0.298812i 0.735935 0.677052i \(-0.236743\pi\)
−0.218377 + 0.975865i \(0.570076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 7.20741 0.283572
\(647\) 6.22057 + 10.7743i 0.244556 + 0.423583i 0.962007 0.273026i \(-0.0880246\pi\)
−0.717451 + 0.696609i \(0.754691\pi\)
\(648\) 0 0
\(649\) 13.6195 + 7.86325i 0.534614 + 0.308659i
\(650\) −21.5264 37.2847i −0.844333 1.46243i
\(651\) 0 0
\(652\) −4.06032 + 7.03268i −0.159014 + 0.275421i
\(653\) −3.97013 + 2.29216i −0.155363 + 0.0896990i −0.575666 0.817685i \(-0.695257\pi\)
0.420303 + 0.907384i \(0.361924\pi\)
\(654\) 0 0
\(655\) −0.818096 + 1.41698i −0.0319656 + 0.0553661i
\(656\) 29.1921 50.5621i 1.13976 1.97412i
\(657\) 0 0
\(658\) 0 0
\(659\) −15.6110 + 9.01301i −0.608118 + 0.351097i −0.772228 0.635345i \(-0.780858\pi\)
0.164111 + 0.986442i \(0.447525\pi\)
\(660\) 0 0
\(661\) 0.640781i 0.0249235i 0.999922 + 0.0124617i \(0.00396680\pi\)
−0.999922 + 0.0124617i \(0.996033\pi\)
\(662\) 55.6449i 2.16270i
\(663\) 0 0
\(664\) −7.18189 + 4.14647i −0.278711 + 0.160914i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.47018 + 9.47462i −0.211806 + 0.366859i
\(668\) −0.946692 + 1.63972i −0.0366286 + 0.0634426i
\(669\) 0 0
\(670\) 10.4012 6.00511i 0.401832 0.231998i
\(671\) 28.1755 48.8014i 1.08770 1.88396i
\(672\) 0 0
\(673\) −11.0695 19.1729i −0.426697 0.739061i 0.569880 0.821728i \(-0.306990\pi\)
−0.996577 + 0.0826667i \(0.973656\pi\)
\(674\) −5.90591 3.40978i −0.227487 0.131340i
\(675\) 0 0
\(676\) −9.01280 15.6106i −0.346646 0.600409i
\(677\) −20.0320 −0.769893 −0.384947 0.922939i \(-0.625780\pi\)
−0.384947 + 0.922939i \(0.625780\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.07456 0.620397i −0.0412074 0.0237911i
\(681\) 0 0
\(682\) 47.7986 + 27.5966i 1.83030 + 1.05673i
\(683\) 18.1316 10.4683i 0.693786 0.400558i −0.111243 0.993793i \(-0.535483\pi\)
0.805029 + 0.593235i \(0.202150\pi\)
\(684\) 0 0
\(685\) 0.783018i 0.0299176i
\(686\) 0 0
\(687\) 0 0
\(688\) 7.37198 + 12.7686i 0.281054 + 0.486800i
\(689\) −12.1109 −0.461387
\(690\) 0 0
\(691\) 1.54072i 0.0586116i 0.999570 + 0.0293058i \(0.00932966\pi\)
−0.999570 + 0.0293058i \(0.990670\pi\)
\(692\) −10.3217 −0.392372
\(693\) 0 0
\(694\) 13.0740 0.496282
\(695\) 4.56025i 0.172980i
\(696\) 0 0
\(697\) −19.5274 −0.739654
\(698\) −13.9711 24.1987i −0.528815 0.915935i
\(699\) 0 0
\(700\) 0 0
\(701\) 31.6641i 1.19593i 0.801520 + 0.597967i \(0.204025\pi\)
−0.801520 + 0.597967i \(0.795975\pi\)
\(702\) 0 0
\(703\) 16.7121 9.64873i 0.630309 0.363909i
\(704\) 10.5358 + 6.08286i 0.397083 + 0.229256i
\(705\) 0 0
\(706\) −54.6922 31.5766i −2.05837 1.18840i
\(707\) 0 0
\(708\) 0 0
\(709\) 22.3524 0.839463 0.419732 0.907648i \(-0.362124\pi\)
0.419732 + 0.907648i \(0.362124\pi\)
\(710\) 2.81835 + 4.88152i 0.105771 + 0.183200i
\(711\) 0 0
\(712\) −4.41873 2.55116i −0.165599 0.0956086i
\(713\) −4.16988 7.22244i −0.156163 0.270482i
\(714\) 0 0
\(715\) 8.79812 15.2388i 0.329031 0.569898i
\(716\) −10.8625 + 6.27149i −0.405952 + 0.234377i
\(717\) 0 0
\(718\) 6.06910 10.5120i 0.226497 0.392304i
\(719\) −19.4544 + 33.6959i −0.725525 + 1.25665i 0.233232 + 0.972421i \(0.425070\pi\)
−0.958757 + 0.284226i \(0.908264\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.9011 + 12.0672i −0.777858 + 0.449096i
\(723\) 0 0
\(724\) 16.2261i 0.603039i
\(725\) 34.0741i 1.26548i
\(726\) 0 0
\(727\) 11.4647 6.61915i 0.425202 0.245491i −0.272098 0.962269i \(-0.587718\pi\)
0.697301 + 0.716779i \(0.254384\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.98119 + 12.0918i −0.258385 + 0.447536i
\(731\) 2.46567 4.27066i 0.0911960 0.157956i
\(732\) 0 0
\(733\) −28.1222 + 16.2364i −1.03872 + 0.599704i −0.919470 0.393161i \(-0.871382\pi\)
−0.119248 + 0.992865i \(0.538048\pi\)
\(734\) 2.83703 4.91389i 0.104717 0.181375i
\(735\) 0 0
\(736\) −4.83338 8.37167i −0.178161 0.308584i
\(737\) −46.7508 26.9916i −1.72209 0.994248i
\(738\) 0 0
\(739\) 6.91965 + 11.9852i 0.254543 + 0.440882i 0.964771 0.263090i \(-0.0847415\pi\)
−0.710228 + 0.703972i \(0.751408\pi\)
\(740\) 7.00011 0.257329
\(741\) 0 0
\(742\) 0 0
\(743\) −31.8593 18.3940i −1.16880 0.674810i −0.215406 0.976525i \(-0.569108\pi\)
−0.953398 + 0.301715i \(0.902441\pi\)
\(744\) 0 0
\(745\) −3.87515 2.23732i −0.141975 0.0819690i
\(746\) −15.3898 + 8.88530i −0.563461 + 0.325314i
\(747\) 0 0
\(748\) 11.7514i 0.429675i
\(749\) 0 0
\(750\) 0 0
\(751\) 1.82952 + 3.16883i 0.0667602 + 0.115632i 0.897473 0.441068i \(-0.145400\pi\)
−0.830713 + 0.556701i \(0.812067\pi\)
\(752\) 15.0262 0.547948
\(753\) 0 0
\(754\) 69.8359i 2.54327i
\(755\) 4.07921 0.148458
\(756\) 0 0
\(757\) 13.8901 0.504842 0.252421 0.967617i \(-0.418773\pi\)
0.252421 + 0.967617i \(0.418773\pi\)
\(758\) 14.2184i 0.516435i
\(759\) 0 0
\(760\) −1.83758 −0.0666560
\(761\) −6.82083 11.8140i −0.247255 0.428258i 0.715508 0.698604i \(-0.246195\pi\)
−0.962763 + 0.270346i \(0.912862\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 27.4991i 0.994884i
\(765\) 0 0
\(766\) −39.0500 + 22.5455i −1.41093 + 0.814602i
\(767\) 13.1365 + 7.58434i 0.474330 + 0.273855i
\(768\) 0 0
\(769\) 22.9328 + 13.2402i 0.826976 + 0.477455i 0.852816 0.522211i \(-0.174893\pi\)
−0.0258399 + 0.999666i \(0.508226\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 22.9104 0.824562
\(773\) −13.1109 22.7087i −0.471566 0.816776i 0.527905 0.849303i \(-0.322978\pi\)
−0.999471 + 0.0325274i \(0.989644\pi\)
\(774\) 0 0
\(775\) 22.4945 + 12.9872i 0.808026 + 0.466514i
\(776\) 9.80047 + 16.9749i 0.351816 + 0.609364i
\(777\) 0 0
\(778\) 5.88703 10.1966i 0.211060 0.365567i
\(779\) −25.0451 + 14.4598i −0.897334 + 0.518076i
\(780\) 0 0
\(781\) 12.6678 21.9413i 0.453291 0.785123i
\(782\) −2.19701 + 3.80533i −0.0785649 + 0.136078i
\(783\) 0 0
\(784\) 0 0
\(785\) −1.11272 + 0.642430i −0.0397148 + 0.0229293i
\(786\) 0 0
\(787\) 29.0470i 1.03541i 0.855558 + 0.517706i \(0.173214\pi\)
−0.855558 + 0.517706i \(0.826786\pi\)
\(788\) 25.3769i 0.904014i
\(789\) 0 0
\(790\) −7.13088 + 4.11702i −0.253705 + 0.146477i
\(791\) 0 0
\(792\) 0 0
\(793\) 27.1761 47.0704i 0.965052 1.67152i
\(794\) −12.1463 + 21.0380i −0.431055 + 0.746610i
\(795\) 0 0
\(796\) 21.1952 12.2371i 0.751245 0.433731i
\(797\) −15.8184 + 27.3983i −0.560317 + 0.970498i 0.437151 + 0.899388i \(0.355987\pi\)
−0.997469 + 0.0711097i \(0.977346\pi\)
\(798\) 0 0
\(799\) −2.51286 4.35240i −0.0888986 0.153977i
\(800\) 26.0738 + 15.0537i 0.921848 + 0.532229i
\(801\) 0 0
\(802\) 14.4777 + 25.0762i 0.511227 + 0.885470i
\(803\) 62.7577 2.21467
\(804\) 0 0
\(805\) 0 0
\(806\) 46.1032 + 26.6177i 1.62392 + 0.937569i
\(807\) 0 0
\(808\) 4.75044 + 2.74267i 0.167120 + 0.0964868i
\(809\) −34.5466 + 19.9455i −1.21459 + 0.701245i −0.963756 0.266784i \(-0.914039\pi\)
−0.250836 + 0.968029i \(0.580706\pi\)
\(810\) 0 0
\(811\) 28.9516i 1.01663i −0.861172 0.508314i \(-0.830269\pi\)
0.861172 0.508314i \(-0.169731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −38.9300 67.4288i −1.36450 2.36338i
\(815\) −3.86521 −0.135392
\(816\) 0 0
\(817\) 7.30317i 0.255505i
\(818\) −9.92684 −0.347084
\(819\) 0 0
\(820\) −10.4905 −0.366344
\(821\) 0.414973i 0.0144826i −0.999974 0.00724132i \(-0.997695\pi\)
0.999974 0.00724132i \(-0.00230500\pi\)
\(822\) 0 0
\(823\) −13.0963 −0.456508 −0.228254 0.973602i \(-0.573302\pi\)
−0.228254 + 0.973602i \(0.573302\pi\)
\(824\) −6.07570 10.5234i −0.211657 0.366601i
\(825\) 0 0
\(826\) 0 0
\(827\) 35.2637i 1.22624i −0.789990 0.613120i \(-0.789914\pi\)
0.789990 0.613120i \(-0.210086\pi\)
\(828\) 0 0
\(829\) 29.0164 16.7526i 1.00778 0.581842i 0.0972388 0.995261i \(-0.468999\pi\)
0.910541 + 0.413419i \(0.135666\pi\)
\(830\) 7.20287 + 4.15858i 0.250015 + 0.144346i
\(831\) 0 0
\(832\) 10.1621 + 5.86710i 0.352308 + 0.203405i
\(833\) 0 0
\(834\) 0 0
\(835\) −0.901200 −0.0311873
\(836\) −8.70178 15.0719i −0.300957 0.521273i
\(837\) 0 0
\(838\) 38.8615 + 22.4367i 1.34245 + 0.775062i
\(839\) 22.4984 + 38.9684i 0.776731 + 1.34534i 0.933816 + 0.357753i \(0.116457\pi\)
−0.157085 + 0.987585i \(0.550210\pi\)
\(840\) 0 0
\(841\) 13.1358 22.7519i 0.452959 0.784548i
\(842\) 19.0182 10.9802i 0.655412 0.378402i
\(843\) 0 0
\(844\) 5.47260 9.47882i 0.188375 0.326275i
\(845\) 4.28985 7.43024i 0.147575 0.255608i
\(846\) 0 0
\(847\) 0 0
\(848\) 9.96802 5.75504i 0.342303 0.197629i
\(849\) 0 0
\(850\) 13.6853i 0.469402i
\(851\) 11.7648i 0.403291i
\(852\) 0 0
\(853\) 15.8457 9.14854i 0.542548 0.313240i −0.203563 0.979062i \(-0.565252\pi\)
0.746111 + 0.665822i \(0.231919\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.181929 + 0.315111i −0.00621822 + 0.0107703i
\(857\) −5.28926 + 9.16126i −0.180678 + 0.312943i −0.942111 0.335300i \(-0.891162\pi\)
0.761434 + 0.648243i \(0.224496\pi\)
\(858\) 0 0
\(859\) −28.2972 + 16.3374i −0.965488 + 0.557425i −0.897858 0.440286i \(-0.854877\pi\)
−0.0676303 + 0.997710i \(0.521544\pi\)
\(860\) 1.32460 2.29428i 0.0451686 0.0782343i
\(861\) 0 0
\(862\) 28.2332 + 48.9014i 0.961628 + 1.66559i
\(863\) 8.09878 + 4.67583i 0.275686 + 0.159167i 0.631469 0.775401i \(-0.282452\pi\)
−0.355783 + 0.934569i \(0.615786\pi\)
\(864\) 0 0
\(865\) −2.45643 4.25465i −0.0835210 0.144663i
\(866\) −11.1052 −0.377372
\(867\) 0 0
\(868\) 0 0
\(869\) 32.0517 + 18.5050i 1.08728 + 0.627741i
\(870\) 0 0
\(871\) −45.0925 26.0342i −1.52790 0.882135i
\(872\) 6.42216 3.70783i 0.217482 0.125563i
\(873\) 0 0
\(874\) 6.50742i 0.220117i
\(875\) 0 0
\(876\) 0 0
\(877\) −0.619077 1.07227i −0.0209048 0.0362081i 0.855384 0.517995i \(-0.173321\pi\)
−0.876289 + 0.481787i \(0.839988\pi\)
\(878\) 49.7300 1.67831
\(879\) 0 0
\(880\) 16.7233i 0.563744i
\(881\) −37.3480 −1.25828 −0.629142 0.777290i \(-0.716594\pi\)
−0.629142 + 0.777290i \(0.716594\pi\)
\(882\) 0 0
\(883\) 3.90708 0.131484 0.0657419 0.997837i \(-0.479059\pi\)
0.0657419 + 0.997837i \(0.479059\pi\)
\(884\) 11.3346i 0.381224i
\(885\) 0 0
\(886\) 9.80432 0.329383
\(887\) −7.25578 12.5674i −0.243625 0.421972i 0.718119 0.695920i \(-0.245003\pi\)
−0.961744 + 0.273949i \(0.911670\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 5.11722i 0.171530i
\(891\) 0 0
\(892\) 27.4585 15.8532i 0.919379 0.530804i
\(893\) −6.44579 3.72148i −0.215700 0.124534i
\(894\) 0 0
\(895\) −5.17028 2.98506i −0.172823 0.0997797i
\(896\) 0 0
\(897\) 0 0
\(898\) −62.7317 −2.09339
\(899\) 21.0666 + 36.4884i 0.702610 + 1.21696i
\(900\) 0 0
\(901\) −3.33395 1.92486i −0.111070 0.0641263i
\(902\) 58.3414 + 101.050i 1.94256 + 3.36460i
\(903\) 0 0
\(904\) −5.26201 + 9.11407i −0.175012 + 0.303129i
\(905\) −6.68849 + 3.86160i −0.222333 + 0.128364i
\(906\) 0 0
\(907\) 9.60695 16.6397i 0.318993 0.552513i −0.661285 0.750135i \(-0.729989\pi\)
0.980278 + 0.197622i \(0.0633219\pi\)
\(908\) −9.79466 + 16.9648i −0.325047 + 0.562998i
\(909\) 0 0
\(910\) 0 0
\(911\) −10.1252 + 5.84579i −0.335463 + 0.193680i −0.658264 0.752787i \(-0.728709\pi\)
0.322801 + 0.946467i \(0.395376\pi\)
\(912\) 0 0
\(913\) 37.3837i 1.23722i
\(914\) 29.0566i 0.961106i
\(915\) 0 0
\(916\) 15.4034 8.89314i 0.508942 0.293838i
\(917\) 0 0
\(918\) 0 0
\(919\) −19.9930 + 34.6289i −0.659508 + 1.14230i 0.321236 + 0.946999i \(0.395902\pi\)
−0.980743 + 0.195301i \(0.937432\pi\)
\(920\) 0.560143 0.970196i 0.0184674 0.0319864i
\(921\) 0 0
\(922\) −20.6470 + 11.9205i −0.679972 + 0.392582i
\(923\) 12.2185 21.1631i 0.402177 0.696591i
\(924\) 0 0
\(925\) −18.3209 31.7326i −0.602386 1.04336i
\(926\) 19.1005 + 11.0277i 0.627683 + 0.362393i
\(927\) 0 0
\(928\) 24.4187 + 42.2944i 0.801582 + 1.38838i
\(929\) −12.7672 −0.418877 −0.209439 0.977822i \(-0.567164\pi\)
−0.209439 + 0.977822i \(0.567164\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9.92775 5.73179i −0.325194 0.187751i
\(933\) 0 0
\(934\) −32.2801 18.6369i −1.05624 0.609818i
\(935\) 4.84400 2.79669i 0.158416 0.0914614i
\(936\) 0 0
\(937\) 11.9436i 0.390179i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0624997\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.34996 2.33819i −0.0440307 0.0762634i
\(941\) 25.0317 0.816011 0.408006 0.912979i \(-0.366224\pi\)
0.408006 + 0.912979i \(0.366224\pi\)
\(942\) 0 0
\(943\) 17.6309i 0.574142i
\(944\) −14.4162 −0.469208
\(945\) 0 0
\(946\) −29.4663 −0.958032
\(947\) 32.7555i 1.06441i 0.846615 + 0.532205i \(0.178637\pi\)
−0.846615 + 0.532205i \(0.821363\pi\)
\(948\) 0 0
\(949\) 60.5316 1.96494
\(950\) −10.1338 17.5522i −0.328783 0.569469i
\(951\) 0 0
\(952\) 0 0
\(953\) 6.77705i 0.219530i −0.993958 0.109765i \(-0.964990\pi\)
0.993958 0.109765i \(-0.0350099\pi\)
\(954\) 0 0
\(955\) 11.3353 6.54443i 0.366801 0.211773i
\(956\) −32.8378 18.9589i −1.06205 0.613175i
\(957\) 0 0
\(958\) 38.5512 + 22.2575i 1.24553 + 0.719109i
\(959\) 0 0
\(960\) 0 0
\(961\) −1.11779 −0.0360578
\(962\) −37.5492 65.0371i −1.21063 2.09688i
\(963\) 0 0
\(964\) −26.3203 15.1960i −0.847721 0.489432i
\(965\) 5.45236 + 9.44377i 0.175518 + 0.304006i
\(966\) 0 0
\(967\) 20.7901 36.0096i 0.668566 1.15799i −0.309739 0.950822i \(-0.600242\pi\)
0.978305 0.207169i \(-0.0664249\pi\)
\(968\) 17.6263 10.1765i 0.566530 0.327086i
\(969\) 0 0
\(970\) 9.82910 17.0245i 0.315593 0.546624i
\(971\) −20.6257 + 35.7248i −0.661910 + 1.14646i 0.318203 + 0.948023i \(0.396921\pi\)
−0.980113 + 0.198439i \(0.936413\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 43.3281 25.0155i 1.38832 0.801547i
\(975\) 0 0
\(976\) 51.6560i 1.65347i
\(977\) 4.57847i 0.146478i 0.997314 + 0.0732391i \(0.0233336\pi\)
−0.997314 + 0.0732391i \(0.976666\pi\)
\(978\) 0 0
\(979\) 19.9192 11.5004i 0.636621 0.367553i
\(980\) 0 0
\(981\) 0 0
\(982\) 14.0569 24.3473i 0.448575 0.776955i
\(983\) −12.2401 + 21.2004i −0.390397 + 0.676188i −0.992502 0.122229i \(-0.960996\pi\)
0.602105 + 0.798417i \(0.294329\pi\)
\(984\) 0 0
\(985\) 10.4605 6.03936i 0.333299 0.192430i
\(986\) 11.0995 19.2249i 0.353480 0.612245i
\(987\) 0 0
\(988\) −8.39312 14.5373i −0.267021 0.462494i
\(989\) 3.85589 + 2.22620i 0.122610 + 0.0707890i
\(990\) 0 0
\(991\) 21.0927 + 36.5337i 0.670032 + 1.16053i 0.977894 + 0.209099i \(0.0670531\pi\)
−0.307862 + 0.951431i \(0.599614\pi\)
\(992\) −37.2284 −1.18200
\(993\) 0 0
\(994\) 0 0
\(995\) 10.0884 + 5.82452i 0.319822 + 0.184650i
\(996\) 0 0
\(997\) −8.38168 4.83917i −0.265451 0.153258i 0.361368 0.932423i \(-0.382310\pi\)
−0.626818 + 0.779165i \(0.715643\pi\)
\(998\) 16.3578 9.44415i 0.517796 0.298949i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.17 48
3.2 odd 2 441.2.i.d.68.18 48
7.2 even 3 1323.2.o.e.881.8 48
7.3 odd 6 1323.2.s.d.962.17 48
7.4 even 3 1323.2.s.d.962.18 48
7.5 odd 6 1323.2.o.e.881.7 48
7.6 odd 2 inner 1323.2.i.d.1097.15 48
9.2 odd 6 1323.2.s.d.656.17 48
9.7 even 3 441.2.s.d.362.8 48
21.2 odd 6 441.2.o.e.293.17 yes 48
21.5 even 6 441.2.o.e.293.18 yes 48
21.11 odd 6 441.2.s.d.374.7 48
21.17 even 6 441.2.s.d.374.8 48
21.20 even 2 441.2.i.d.68.17 48
63.2 odd 6 1323.2.o.e.440.7 48
63.11 odd 6 inner 1323.2.i.d.521.15 48
63.16 even 3 441.2.o.e.146.18 yes 48
63.20 even 6 1323.2.s.d.656.18 48
63.25 even 3 441.2.i.d.227.7 48
63.34 odd 6 441.2.s.d.362.7 48
63.38 even 6 inner 1323.2.i.d.521.17 48
63.47 even 6 1323.2.o.e.440.8 48
63.52 odd 6 441.2.i.d.227.8 48
63.61 odd 6 441.2.o.e.146.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.17 48 21.20 even 2
441.2.i.d.68.18 48 3.2 odd 2
441.2.i.d.227.7 48 63.25 even 3
441.2.i.d.227.8 48 63.52 odd 6
441.2.o.e.146.17 48 63.61 odd 6
441.2.o.e.146.18 yes 48 63.16 even 3
441.2.o.e.293.17 yes 48 21.2 odd 6
441.2.o.e.293.18 yes 48 21.5 even 6
441.2.s.d.362.7 48 63.34 odd 6
441.2.s.d.362.8 48 9.7 even 3
441.2.s.d.374.7 48 21.11 odd 6
441.2.s.d.374.8 48 21.17 even 6
1323.2.i.d.521.15 48 63.11 odd 6 inner
1323.2.i.d.521.17 48 63.38 even 6 inner
1323.2.i.d.1097.15 48 7.6 odd 2 inner
1323.2.i.d.1097.17 48 1.1 even 1 trivial
1323.2.o.e.440.7 48 63.2 odd 6
1323.2.o.e.440.8 48 63.47 even 6
1323.2.o.e.881.7 48 7.5 odd 6
1323.2.o.e.881.8 48 7.2 even 3
1323.2.s.d.656.17 48 9.2 odd 6
1323.2.s.d.656.18 48 63.20 even 6
1323.2.s.d.962.17 48 7.3 odd 6
1323.2.s.d.962.18 48 7.4 even 3