Properties

Label 1323.2.s.d.962.18
Level $1323$
Weight $2$
Character 1323.962
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(656,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.656"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 962.18
Character \(\chi\) \(=\) 1323.962
Dual form 1323.2.s.d.656.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.58658 + 0.916012i) q^{2} +(0.678156 + 1.17460i) q^{4} +0.645568 q^{5} -1.17925i q^{8} +(1.02425 + 0.591348i) q^{10} -5.31595i q^{11} +(4.44045 + 2.56370i) q^{13} +(2.43652 - 4.22018i) q^{16} +(0.814931 - 1.41150i) q^{17} +(-2.09039 + 1.20689i) q^{19} +(0.437796 + 0.758285i) q^{20} +(4.86947 - 8.43418i) q^{22} -1.47157i q^{23} -4.58324 q^{25} +(4.69675 + 8.13502i) q^{26} +(6.43846 - 3.71724i) q^{29} +(4.90799 - 2.83363i) q^{31} +(5.68894 - 3.28451i) q^{32} +(2.58590 - 1.49297i) q^{34} +(3.99736 + 6.92362i) q^{37} -4.42210 q^{38} -0.761288i q^{40} +(-5.99052 + 10.3759i) q^{41} +(-1.51281 - 2.62026i) q^{43} +(6.24412 - 3.60504i) q^{44} +(1.34797 - 2.33476i) q^{46} +(1.54176 - 2.67041i) q^{47} +(-7.27168 - 4.19830i) q^{50} +6.95434i q^{52} +(2.04554 + 1.18100i) q^{53} -3.43181i q^{55} +13.6202 q^{58} +(-1.47918 - 2.56202i) q^{59} +(9.18018 + 5.30018i) q^{61} +10.3825 q^{62} +2.28853 q^{64} +(2.86662 + 1.65504i) q^{65} +(5.07747 + 8.79444i) q^{67} +2.21060 q^{68} -4.76597i q^{71} +(-10.2239 - 5.90277i) q^{73} +14.6465i q^{74} +(-2.83523 - 1.63692i) q^{76} +(-3.48104 + 6.02934i) q^{79} +(1.57294 - 2.72441i) q^{80} +(-19.0089 + 10.9748i) q^{82} +(-3.51618 - 6.09021i) q^{83} +(0.526093 - 0.911221i) q^{85} -5.54300i q^{86} -6.26884 q^{88} +(2.16337 + 3.74706i) q^{89} +(1.72850 - 0.997953i) q^{92} +(4.89226 - 2.82455i) q^{94} +(-1.34949 + 0.779129i) q^{95} +(-14.3946 + 8.31075i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 24 q^{16} + 48 q^{25} + 120 q^{32} - 96 q^{44} - 48 q^{50} - 48 q^{53} - 48 q^{64} + 120 q^{65} - 24 q^{79} - 24 q^{85} + 144 q^{92} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58658 + 0.916012i 1.12188 + 0.647718i 0.941880 0.335948i \(-0.109057\pi\)
0.180001 + 0.983667i \(0.442390\pi\)
\(3\) 0 0
\(4\) 0.678156 + 1.17460i 0.339078 + 0.587300i
\(5\) 0.645568 0.288707 0.144353 0.989526i \(-0.453890\pi\)
0.144353 + 0.989526i \(0.453890\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.17925i 0.416928i
\(9\) 0 0
\(10\) 1.02425 + 0.591348i 0.323895 + 0.187001i
\(11\) 5.31595i 1.60282i −0.598116 0.801410i \(-0.704084\pi\)
0.598116 0.801410i \(-0.295916\pi\)
\(12\) 0 0
\(13\) 4.44045 + 2.56370i 1.23156 + 0.711041i 0.967355 0.253425i \(-0.0815572\pi\)
0.264205 + 0.964467i \(0.414890\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 2.43652 4.22018i 0.609130 1.05504i
\(17\) 0.814931 1.41150i 0.197650 0.342339i −0.750116 0.661306i \(-0.770002\pi\)
0.947766 + 0.318967i \(0.103336\pi\)
\(18\) 0 0
\(19\) −2.09039 + 1.20689i −0.479569 + 0.276879i −0.720237 0.693728i \(-0.755967\pi\)
0.240668 + 0.970608i \(0.422634\pi\)
\(20\) 0.437796 + 0.758285i 0.0978942 + 0.169558i
\(21\) 0 0
\(22\) 4.86947 8.43418i 1.03818 1.79817i
\(23\) 1.47157i 0.306843i −0.988161 0.153422i \(-0.950971\pi\)
0.988161 0.153422i \(-0.0490292\pi\)
\(24\) 0 0
\(25\) −4.58324 −0.916648
\(26\) 4.69675 + 8.13502i 0.921109 + 1.59541i
\(27\) 0 0
\(28\) 0 0
\(29\) 6.43846 3.71724i 1.19559 0.690275i 0.236022 0.971748i \(-0.424156\pi\)
0.959569 + 0.281473i \(0.0908229\pi\)
\(30\) 0 0
\(31\) 4.90799 2.83363i 0.881501 0.508935i 0.0103477 0.999946i \(-0.496706\pi\)
0.871153 + 0.491012i \(0.163373\pi\)
\(32\) 5.68894 3.28451i 1.00567 0.580625i
\(33\) 0 0
\(34\) 2.58590 1.49297i 0.443479 0.256043i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.99736 + 6.92362i 0.657161 + 1.13824i 0.981347 + 0.192244i \(0.0615763\pi\)
−0.324186 + 0.945993i \(0.605090\pi\)
\(38\) −4.42210 −0.717359
\(39\) 0 0
\(40\) 0.761288i 0.120370i
\(41\) −5.99052 + 10.3759i −0.935562 + 1.62044i −0.161934 + 0.986802i \(0.551773\pi\)
−0.773628 + 0.633640i \(0.781560\pi\)
\(42\) 0 0
\(43\) −1.51281 2.62026i −0.230701 0.399586i 0.727314 0.686305i \(-0.240769\pi\)
−0.958015 + 0.286719i \(0.907435\pi\)
\(44\) 6.24412 3.60504i 0.941336 0.543481i
\(45\) 0 0
\(46\) 1.34797 2.33476i 0.198748 0.344241i
\(47\) 1.54176 2.67041i 0.224889 0.389520i −0.731397 0.681952i \(-0.761131\pi\)
0.956286 + 0.292432i \(0.0944646\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −7.27168 4.19830i −1.02837 0.593730i
\(51\) 0 0
\(52\) 6.95434i 0.964394i
\(53\) 2.04554 + 1.18100i 0.280977 + 0.162222i 0.633866 0.773443i \(-0.281467\pi\)
−0.352889 + 0.935665i \(0.614801\pi\)
\(54\) 0 0
\(55\) 3.43181i 0.462745i
\(56\) 0 0
\(57\) 0 0
\(58\) 13.6202 1.78841
\(59\) −1.47918 2.56202i −0.192573 0.333546i 0.753529 0.657414i \(-0.228350\pi\)
−0.946102 + 0.323868i \(0.895017\pi\)
\(60\) 0 0
\(61\) 9.18018 + 5.30018i 1.17540 + 0.678618i 0.954946 0.296779i \(-0.0959124\pi\)
0.220455 + 0.975397i \(0.429246\pi\)
\(62\) 10.3825 1.31859
\(63\) 0 0
\(64\) 2.28853 0.286066
\(65\) 2.86662 + 1.65504i 0.355560 + 0.205283i
\(66\) 0 0
\(67\) 5.07747 + 8.79444i 0.620312 + 1.07441i 0.989428 + 0.145028i \(0.0463273\pi\)
−0.369116 + 0.929383i \(0.620339\pi\)
\(68\) 2.21060 0.268075
\(69\) 0 0
\(70\) 0 0
\(71\) 4.76597i 0.565617i −0.959176 0.282808i \(-0.908734\pi\)
0.959176 0.282808i \(-0.0912661\pi\)
\(72\) 0 0
\(73\) −10.2239 5.90277i −1.19662 0.690867i −0.236817 0.971554i \(-0.576104\pi\)
−0.959799 + 0.280687i \(0.909438\pi\)
\(74\) 14.6465i 1.70262i
\(75\) 0 0
\(76\) −2.83523 1.63692i −0.325223 0.187767i
\(77\) 0 0
\(78\) 0 0
\(79\) −3.48104 + 6.02934i −0.391648 + 0.678354i −0.992667 0.120881i \(-0.961428\pi\)
0.601019 + 0.799235i \(0.294762\pi\)
\(80\) 1.57294 2.72441i 0.175860 0.304599i
\(81\) 0 0
\(82\) −19.0089 + 10.9748i −2.09918 + 1.21196i
\(83\) −3.51618 6.09021i −0.385951 0.668487i 0.605949 0.795503i \(-0.292793\pi\)
−0.991901 + 0.127016i \(0.959460\pi\)
\(84\) 0 0
\(85\) 0.526093 0.911221i 0.0570628 0.0988357i
\(86\) 5.54300i 0.597717i
\(87\) 0 0
\(88\) −6.26884 −0.668261
\(89\) 2.16337 + 3.74706i 0.229317 + 0.397188i 0.957606 0.288082i \(-0.0930176\pi\)
−0.728289 + 0.685270i \(0.759684\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.72850 0.997953i 0.180209 0.104044i
\(93\) 0 0
\(94\) 4.89226 2.82455i 0.504598 0.291330i
\(95\) −1.34949 + 0.779129i −0.138455 + 0.0799370i
\(96\) 0 0
\(97\) −14.3946 + 8.31075i −1.46156 + 0.843829i −0.999083 0.0428048i \(-0.986371\pi\)
−0.462472 + 0.886634i \(0.653037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.10815 5.38348i −0.310815 0.538348i
\(101\) 4.65154 0.462846 0.231423 0.972853i \(-0.425662\pi\)
0.231423 + 0.972853i \(0.425662\pi\)
\(102\) 0 0
\(103\) 10.3043i 1.01532i 0.861559 + 0.507658i \(0.169489\pi\)
−0.861559 + 0.507658i \(0.830511\pi\)
\(104\) 3.02324 5.23641i 0.296453 0.513472i
\(105\) 0 0
\(106\) 2.16361 + 3.74749i 0.210149 + 0.363988i
\(107\) 0.267212 0.154275i 0.0258324 0.0149143i −0.487028 0.873386i \(-0.661919\pi\)
0.512861 + 0.858472i \(0.328586\pi\)
\(108\) 0 0
\(109\) 3.14423 5.44596i 0.301162 0.521628i −0.675237 0.737601i \(-0.735959\pi\)
0.976399 + 0.215972i \(0.0692921\pi\)
\(110\) 3.14358 5.44484i 0.299728 0.519145i
\(111\) 0 0
\(112\) 0 0
\(113\) −7.72869 4.46216i −0.727054 0.419765i 0.0902895 0.995916i \(-0.471221\pi\)
−0.817343 + 0.576151i \(0.804554\pi\)
\(114\) 0 0
\(115\) 0.949998i 0.0885877i
\(116\) 8.73256 + 5.04174i 0.810797 + 0.468114i
\(117\) 0 0
\(118\) 5.41979i 0.498932i
\(119\) 0 0
\(120\) 0 0
\(121\) −17.2593 −1.56903
\(122\) 9.71006 + 16.8183i 0.879107 + 1.52266i
\(123\) 0 0
\(124\) 6.65676 + 3.84328i 0.597795 + 0.345137i
\(125\) −6.18664 −0.553350
\(126\) 0 0
\(127\) −2.49989 −0.221829 −0.110915 0.993830i \(-0.535378\pi\)
−0.110915 + 0.993830i \(0.535378\pi\)
\(128\) −7.74695 4.47270i −0.684740 0.395335i
\(129\) 0 0
\(130\) 3.03208 + 5.25171i 0.265931 + 0.460605i
\(131\) 2.53450 0.221440 0.110720 0.993852i \(-0.464684\pi\)
0.110720 + 0.993852i \(0.464684\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 18.6041i 1.60715i
\(135\) 0 0
\(136\) −1.66452 0.961008i −0.142731 0.0824058i
\(137\) 1.21291i 0.103626i −0.998657 0.0518131i \(-0.983500\pi\)
0.998657 0.0518131i \(-0.0165000\pi\)
\(138\) 0 0
\(139\) −6.11754 3.53196i −0.518883 0.299577i 0.217594 0.976039i \(-0.430179\pi\)
−0.736478 + 0.676462i \(0.763512\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.36569 7.56159i 0.366360 0.634555i
\(143\) 13.6285 23.6052i 1.13967 1.97397i
\(144\) 0 0
\(145\) 4.15646 2.39974i 0.345175 0.199287i
\(146\) −10.8140 18.7304i −0.894974 1.55014i
\(147\) 0 0
\(148\) −5.42166 + 9.39060i −0.445658 + 0.771902i
\(149\) 6.93132i 0.567836i 0.958849 + 0.283918i \(0.0916343\pi\)
−0.958849 + 0.283918i \(0.908366\pi\)
\(150\) 0 0
\(151\) 6.31878 0.514215 0.257108 0.966383i \(-0.417231\pi\)
0.257108 + 0.966383i \(0.417231\pi\)
\(152\) 1.42323 + 2.46510i 0.115439 + 0.199946i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.16844 1.82930i 0.254495 0.146933i
\(156\) 0 0
\(157\) −1.72363 + 0.995139i −0.137561 + 0.0794208i −0.567201 0.823579i \(-0.691974\pi\)
0.429640 + 0.903000i \(0.358640\pi\)
\(158\) −11.0459 + 6.37735i −0.878765 + 0.507355i
\(159\) 0 0
\(160\) 3.67260 2.12038i 0.290345 0.167631i
\(161\) 0 0
\(162\) 0 0
\(163\) 2.99365 + 5.18515i 0.234480 + 0.406132i 0.959122 0.282994i \(-0.0913278\pi\)
−0.724641 + 0.689126i \(0.757994\pi\)
\(164\) −16.2500 −1.26891
\(165\) 0 0
\(166\) 12.8835i 0.999951i
\(167\) 0.697990 1.20895i 0.0540121 0.0935516i −0.837755 0.546046i \(-0.816132\pi\)
0.891767 + 0.452494i \(0.149466\pi\)
\(168\) 0 0
\(169\) 6.64508 + 11.5096i 0.511160 + 0.885355i
\(170\) 1.66938 0.963816i 0.128035 0.0739213i
\(171\) 0 0
\(172\) 2.05184 3.55389i 0.156451 0.270982i
\(173\) −3.80506 + 6.59055i −0.289293 + 0.501071i −0.973641 0.228085i \(-0.926754\pi\)
0.684348 + 0.729156i \(0.260087\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −22.4343 12.9524i −1.69105 0.976326i
\(177\) 0 0
\(178\) 7.92669i 0.594130i
\(179\) −8.00888 4.62393i −0.598612 0.345609i 0.169883 0.985464i \(-0.445661\pi\)
−0.768495 + 0.639855i \(0.778994\pi\)
\(180\) 0 0
\(181\) 11.9634i 0.889234i −0.895721 0.444617i \(-0.853340\pi\)
0.895721 0.444617i \(-0.146660\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.73535 −0.127932
\(185\) 2.58057 + 4.46967i 0.189727 + 0.328617i
\(186\) 0 0
\(187\) −7.50347 4.33213i −0.548708 0.316797i
\(188\) 4.18223 0.305020
\(189\) 0 0
\(190\) −2.85477 −0.207107
\(191\) −17.5586 10.1375i −1.27050 0.733521i −0.295415 0.955369i \(-0.595458\pi\)
−0.975081 + 0.221847i \(0.928791\pi\)
\(192\) 0 0
\(193\) 8.44583 + 14.6286i 0.607944 + 1.05299i 0.991579 + 0.129505i \(0.0413389\pi\)
−0.383634 + 0.923485i \(0.625328\pi\)
\(194\) −30.4510 −2.18625
\(195\) 0 0
\(196\) 0 0
\(197\) 18.7102i 1.33305i 0.745484 + 0.666524i \(0.232219\pi\)
−0.745484 + 0.666524i \(0.767781\pi\)
\(198\) 0 0
\(199\) 15.6271 + 9.02231i 1.10778 + 0.639574i 0.938252 0.345952i \(-0.112444\pi\)
0.169523 + 0.985526i \(0.445777\pi\)
\(200\) 5.40480i 0.382177i
\(201\) 0 0
\(202\) 7.38004 + 4.26087i 0.519258 + 0.299794i
\(203\) 0 0
\(204\) 0 0
\(205\) −3.86729 + 6.69834i −0.270103 + 0.467833i
\(206\) −9.43889 + 16.3486i −0.657639 + 1.13906i
\(207\) 0 0
\(208\) 21.6385 12.4930i 1.50036 0.866234i
\(209\) 6.41576 + 11.1124i 0.443788 + 0.768663i
\(210\) 0 0
\(211\) −4.03491 + 6.98868i −0.277775 + 0.481120i −0.970831 0.239763i \(-0.922930\pi\)
0.693057 + 0.720883i \(0.256264\pi\)
\(212\) 3.20360i 0.220024i
\(213\) 0 0
\(214\) 0.565272 0.0386412
\(215\) −0.976621 1.69156i −0.0666050 0.115363i
\(216\) 0 0
\(217\) 0 0
\(218\) 9.97713 5.76030i 0.675736 0.390137i
\(219\) 0 0
\(220\) 4.03101 2.32730i 0.271770 0.156907i
\(221\) 7.23732 4.17847i 0.486835 0.281074i
\(222\) 0 0
\(223\) −20.2450 + 11.6884i −1.35570 + 0.782716i −0.989041 0.147638i \(-0.952833\pi\)
−0.366662 + 0.930354i \(0.619500\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −8.17479 14.1591i −0.543779 0.941852i
\(227\) −14.4431 −0.958620 −0.479310 0.877646i \(-0.659113\pi\)
−0.479310 + 0.877646i \(0.659113\pi\)
\(228\) 0 0
\(229\) 13.1137i 0.866578i −0.901255 0.433289i \(-0.857353\pi\)
0.901255 0.433289i \(-0.142647\pi\)
\(230\) 0.870209 1.50725i 0.0573799 0.0993849i
\(231\) 0 0
\(232\) −4.38357 7.59256i −0.287795 0.498476i
\(233\) −7.31966 + 4.22601i −0.479527 + 0.276855i −0.720219 0.693746i \(-0.755959\pi\)
0.240692 + 0.970601i \(0.422626\pi\)
\(234\) 0 0
\(235\) 0.995314 1.72393i 0.0649271 0.112457i
\(236\) 2.00623 3.47489i 0.130594 0.226196i
\(237\) 0 0
\(238\) 0 0
\(239\) 24.2111 + 13.9783i 1.56608 + 0.904179i 0.996619 + 0.0821642i \(0.0261832\pi\)
0.569466 + 0.822015i \(0.307150\pi\)
\(240\) 0 0
\(241\) 22.4079i 1.44342i −0.692196 0.721710i \(-0.743357\pi\)
0.692196 0.721710i \(-0.256643\pi\)
\(242\) −27.3833 15.8097i −1.76026 1.01629i
\(243\) 0 0
\(244\) 14.3774i 0.920418i
\(245\) 0 0
\(246\) 0 0
\(247\) −12.3764 −0.787491
\(248\) −3.34156 5.78775i −0.212189 0.367523i
\(249\) 0 0
\(250\) −9.81559 5.66703i −0.620792 0.358415i
\(251\) 6.39587 0.403704 0.201852 0.979416i \(-0.435304\pi\)
0.201852 + 0.979416i \(0.435304\pi\)
\(252\) 0 0
\(253\) −7.82278 −0.491814
\(254\) −3.96627 2.28993i −0.248866 0.143683i
\(255\) 0 0
\(256\) −10.4826 18.1565i −0.655165 1.13478i
\(257\) −3.31409 −0.206727 −0.103364 0.994644i \(-0.532961\pi\)
−0.103364 + 0.994644i \(0.532961\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 4.48950i 0.278427i
\(261\) 0 0
\(262\) 4.02118 + 2.32163i 0.248429 + 0.143431i
\(263\) 22.6901i 1.39913i −0.714567 0.699567i \(-0.753376\pi\)
0.714567 0.699567i \(-0.246624\pi\)
\(264\) 0 0
\(265\) 1.32054 + 0.762413i 0.0811200 + 0.0468347i
\(266\) 0 0
\(267\) 0 0
\(268\) −6.88664 + 11.9280i −0.420668 + 0.728619i
\(269\) −1.38050 + 2.39110i −0.0841707 + 0.145788i −0.905038 0.425332i \(-0.860157\pi\)
0.820867 + 0.571120i \(0.193491\pi\)
\(270\) 0 0
\(271\) 5.27342 3.04461i 0.320337 0.184947i −0.331206 0.943559i \(-0.607455\pi\)
0.651543 + 0.758612i \(0.274122\pi\)
\(272\) −3.97119 6.87830i −0.240789 0.417058i
\(273\) 0 0
\(274\) 1.11104 1.92438i 0.0671205 0.116256i
\(275\) 24.3643i 1.46922i
\(276\) 0 0
\(277\) −9.43367 −0.566814 −0.283407 0.959000i \(-0.591465\pi\)
−0.283407 + 0.959000i \(0.591465\pi\)
\(278\) −6.47064 11.2075i −0.388083 0.672180i
\(279\) 0 0
\(280\) 0 0
\(281\) −4.57153 + 2.63938i −0.272715 + 0.157452i −0.630121 0.776497i \(-0.716995\pi\)
0.357406 + 0.933949i \(0.383661\pi\)
\(282\) 0 0
\(283\) −17.0346 + 9.83496i −1.01260 + 0.584628i −0.911953 0.410294i \(-0.865426\pi\)
−0.100651 + 0.994922i \(0.532093\pi\)
\(284\) 5.59811 3.23207i 0.332187 0.191788i
\(285\) 0 0
\(286\) 43.2453 24.9677i 2.55715 1.47637i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.17178 + 12.4219i 0.421869 + 0.730699i
\(290\) 8.79274 0.516328
\(291\) 0 0
\(292\) 16.0120i 0.937031i
\(293\) −9.11647 + 15.7902i −0.532590 + 0.922473i 0.466686 + 0.884423i \(0.345448\pi\)
−0.999276 + 0.0380495i \(0.987886\pi\)
\(294\) 0 0
\(295\) −0.954912 1.65396i −0.0555971 0.0962970i
\(296\) 8.16470 4.71389i 0.474563 0.273989i
\(297\) 0 0
\(298\) −6.34917 + 10.9971i −0.367797 + 0.637044i
\(299\) 3.77265 6.53443i 0.218178 0.377896i
\(300\) 0 0
\(301\) 0 0
\(302\) 10.0253 + 5.78808i 0.576888 + 0.333067i
\(303\) 0 0
\(304\) 11.7624i 0.674622i
\(305\) 5.92643 + 3.42163i 0.339347 + 0.195922i
\(306\) 0 0
\(307\) 26.0447i 1.48645i 0.669042 + 0.743224i \(0.266704\pi\)
−0.669042 + 0.743224i \(0.733296\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.70265 0.380685
\(311\) 14.1433 + 24.4969i 0.801992 + 1.38909i 0.918303 + 0.395878i \(0.129560\pi\)
−0.116311 + 0.993213i \(0.537107\pi\)
\(312\) 0 0
\(313\) −4.82891 2.78797i −0.272946 0.157586i 0.357280 0.933998i \(-0.383704\pi\)
−0.630226 + 0.776412i \(0.717038\pi\)
\(314\) −3.64624 −0.205769
\(315\) 0 0
\(316\) −9.44276 −0.531197
\(317\) 29.0708 + 16.7841i 1.63278 + 0.942686i 0.983230 + 0.182367i \(0.0583760\pi\)
0.649550 + 0.760319i \(0.274957\pi\)
\(318\) 0 0
\(319\) −19.7607 34.2265i −1.10639 1.91632i
\(320\) 1.47740 0.0825893
\(321\) 0 0
\(322\) 0 0
\(323\) 3.93412i 0.218901i
\(324\) 0 0
\(325\) −20.3517 11.7500i −1.12891 0.651775i
\(326\) 10.9689i 0.607509i
\(327\) 0 0
\(328\) 12.2358 + 7.06433i 0.675608 + 0.390063i
\(329\) 0 0
\(330\) 0 0
\(331\) 15.1867 26.3042i 0.834739 1.44581i −0.0595042 0.998228i \(-0.518952\pi\)
0.894243 0.447582i \(-0.147715\pi\)
\(332\) 4.76904 8.26023i 0.261735 0.453339i
\(333\) 0 0
\(334\) 2.21483 1.27873i 0.121190 0.0699692i
\(335\) 3.27785 + 5.67741i 0.179088 + 0.310190i
\(336\) 0 0
\(337\) 1.86121 3.22371i 0.101387 0.175607i −0.810870 0.585227i \(-0.801005\pi\)
0.912256 + 0.409620i \(0.134339\pi\)
\(338\) 24.3479i 1.32435i
\(339\) 0 0
\(340\) 1.42709 0.0773950
\(341\) −15.0634 26.0906i −0.815730 1.41289i
\(342\) 0 0
\(343\) 0 0
\(344\) −3.08995 + 1.78398i −0.166599 + 0.0961858i
\(345\) 0 0
\(346\) −12.0741 + 6.97096i −0.649105 + 0.374761i
\(347\) 6.18028 3.56818i 0.331775 0.191550i −0.324854 0.945764i \(-0.605315\pi\)
0.656629 + 0.754214i \(0.271982\pi\)
\(348\) 0 0
\(349\) 13.2087 7.62607i 0.707047 0.408214i −0.102920 0.994690i \(-0.532818\pi\)
0.809967 + 0.586476i \(0.199485\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −17.4603 30.2421i −0.930637 1.61191i
\(353\) −34.4718 −1.83475 −0.917373 0.398028i \(-0.869695\pi\)
−0.917373 + 0.398028i \(0.869695\pi\)
\(354\) 0 0
\(355\) 3.07676i 0.163297i
\(356\) −2.93420 + 5.08219i −0.155512 + 0.269355i
\(357\) 0 0
\(358\) −8.47115 14.6725i −0.447714 0.775464i
\(359\) −5.73791 + 3.31278i −0.302835 + 0.174842i −0.643716 0.765265i \(-0.722608\pi\)
0.340881 + 0.940107i \(0.389275\pi\)
\(360\) 0 0
\(361\) −6.58684 + 11.4087i −0.346676 + 0.600460i
\(362\) 10.9586 18.9809i 0.575973 0.997614i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.60022 3.81064i −0.345472 0.199458i
\(366\) 0 0
\(367\) 3.09716i 0.161670i −0.996727 0.0808352i \(-0.974241\pi\)
0.996727 0.0808352i \(-0.0257587\pi\)
\(368\) −6.21028 3.58551i −0.323733 0.186907i
\(369\) 0 0
\(370\) 9.45532i 0.491559i
\(371\) 0 0
\(372\) 0 0
\(373\) 9.69999 0.502246 0.251123 0.967955i \(-0.419200\pi\)
0.251123 + 0.967955i \(0.419200\pi\)
\(374\) −7.93657 13.7465i −0.410390 0.710816i
\(375\) 0 0
\(376\) −3.14909 1.81813i −0.162402 0.0937628i
\(377\) 38.1195 1.96326
\(378\) 0 0
\(379\) 7.76103 0.398657 0.199329 0.979933i \(-0.436124\pi\)
0.199329 + 0.979933i \(0.436124\pi\)
\(380\) −1.83033 1.05674i −0.0938941 0.0542098i
\(381\) 0 0
\(382\) −18.5721 32.1678i −0.950231 1.64585i
\(383\) 24.6127 1.25765 0.628825 0.777547i \(-0.283536\pi\)
0.628825 + 0.777547i \(0.283536\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 30.9459i 1.57511i
\(387\) 0 0
\(388\) −19.5236 11.2720i −0.991162 0.572248i
\(389\) 6.42681i 0.325852i −0.986638 0.162926i \(-0.947907\pi\)
0.986638 0.162926i \(-0.0520932\pi\)
\(390\) 0 0
\(391\) −2.07712 1.19923i −0.105044 0.0606474i
\(392\) 0 0
\(393\) 0 0
\(394\) −17.1388 + 29.6852i −0.863439 + 1.49552i
\(395\) −2.24725 + 3.89235i −0.113071 + 0.195846i
\(396\) 0 0
\(397\) 11.4835 6.62998i 0.576338 0.332749i −0.183339 0.983050i \(-0.558690\pi\)
0.759677 + 0.650301i \(0.225357\pi\)
\(398\) 16.5291 + 28.6292i 0.828528 + 1.43505i
\(399\) 0 0
\(400\) −11.1672 + 19.3421i −0.558358 + 0.967105i
\(401\) 15.8052i 0.789273i −0.918837 0.394636i \(-0.870871\pi\)
0.918837 0.394636i \(-0.129129\pi\)
\(402\) 0 0
\(403\) 29.0582 1.44749
\(404\) 3.15447 + 5.46370i 0.156941 + 0.271829i
\(405\) 0 0
\(406\) 0 0
\(407\) 36.8056 21.2497i 1.82439 1.05331i
\(408\) 0 0
\(409\) −4.69257 + 2.70926i −0.232033 + 0.133964i −0.611509 0.791237i \(-0.709437\pi\)
0.379477 + 0.925201i \(0.376104\pi\)
\(410\) −12.2715 + 7.08497i −0.606048 + 0.349902i
\(411\) 0 0
\(412\) −12.1035 + 6.98795i −0.596296 + 0.344271i
\(413\) 0 0
\(414\) 0 0
\(415\) −2.26994 3.93165i −0.111427 0.192997i
\(416\) 33.6820 1.65139
\(417\) 0 0
\(418\) 23.5077i 1.14980i
\(419\) −12.2469 + 21.2123i −0.598302 + 1.03629i 0.394770 + 0.918780i \(0.370824\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(420\) 0 0
\(421\) 5.99347 + 10.3810i 0.292104 + 0.505939i 0.974307 0.225224i \(-0.0723113\pi\)
−0.682203 + 0.731163i \(0.738978\pi\)
\(422\) −12.8034 + 7.39206i −0.623261 + 0.359840i
\(423\) 0 0
\(424\) 1.39269 2.41221i 0.0676350 0.117147i
\(425\) −3.73502 + 6.46925i −0.181175 + 0.313805i
\(426\) 0 0
\(427\) 0 0
\(428\) 0.362424 + 0.209245i 0.0175184 + 0.0101143i
\(429\) 0 0
\(430\) 3.57839i 0.172565i
\(431\) 26.6926 + 15.4110i 1.28574 + 0.742320i 0.977891 0.209117i \(-0.0670590\pi\)
0.307845 + 0.951437i \(0.400392\pi\)
\(432\) 0 0
\(433\) 6.06173i 0.291308i −0.989336 0.145654i \(-0.953471\pi\)
0.989336 0.145654i \(-0.0465287\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 8.52910 0.408470
\(437\) 1.77602 + 3.07616i 0.0849585 + 0.147152i
\(438\) 0 0
\(439\) −23.5081 13.5724i −1.12198 0.647776i −0.180075 0.983653i \(-0.557634\pi\)
−0.941906 + 0.335877i \(0.890967\pi\)
\(440\) −4.04697 −0.192932
\(441\) 0 0
\(442\) 15.3101 0.728228
\(443\) −4.63465 2.67582i −0.220199 0.127132i 0.385843 0.922564i \(-0.373910\pi\)
−0.606042 + 0.795432i \(0.707244\pi\)
\(444\) 0 0
\(445\) 1.39660 + 2.41899i 0.0662053 + 0.114671i
\(446\) −42.8270 −2.02792
\(447\) 0 0
\(448\) 0 0
\(449\) 34.2418i 1.61597i −0.589204 0.807985i \(-0.700558\pi\)
0.589204 0.807985i \(-0.299442\pi\)
\(450\) 0 0
\(451\) 55.1577 + 31.8453i 2.59727 + 1.49954i
\(452\) 12.1042i 0.569332i
\(453\) 0 0
\(454\) −22.9151 13.2300i −1.07546 0.620916i
\(455\) 0 0
\(456\) 0 0
\(457\) 7.93019 13.7355i 0.370958 0.642519i −0.618755 0.785584i \(-0.712363\pi\)
0.989713 + 0.143065i \(0.0456959\pi\)
\(458\) 12.0123 20.8059i 0.561299 0.972198i
\(459\) 0 0
\(460\) 1.11587 0.644247i 0.0520276 0.0300382i
\(461\) −6.50676 11.2700i −0.303050 0.524898i 0.673775 0.738936i \(-0.264672\pi\)
−0.976825 + 0.214038i \(0.931338\pi\)
\(462\) 0 0
\(463\) −6.01941 + 10.4259i −0.279746 + 0.484534i −0.971321 0.237770i \(-0.923583\pi\)
0.691576 + 0.722304i \(0.256917\pi\)
\(464\) 36.2286i 1.68187i
\(465\) 0 0
\(466\) −15.4843 −0.717297
\(467\) 10.1728 + 17.6199i 0.470743 + 0.815351i 0.999440 0.0334596i \(-0.0106525\pi\)
−0.528697 + 0.848811i \(0.677319\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 3.15829 1.82344i 0.145681 0.0841090i
\(471\) 0 0
\(472\) −3.02126 + 1.74433i −0.139065 + 0.0802891i
\(473\) −13.9292 + 8.04201i −0.640464 + 0.369772i
\(474\) 0 0
\(475\) 9.58078 5.53146i 0.439596 0.253801i
\(476\) 0 0
\(477\) 0 0
\(478\) 25.6085 + 44.3553i 1.17131 + 2.02876i
\(479\) 24.2983 1.11022 0.555109 0.831778i \(-0.312676\pi\)
0.555109 + 0.831778i \(0.312676\pi\)
\(480\) 0 0
\(481\) 40.9920i 1.86908i
\(482\) 20.5259 35.5519i 0.934929 1.61934i
\(483\) 0 0
\(484\) −11.7045 20.2728i −0.532023 0.921491i
\(485\) −9.29273 + 5.36516i −0.421961 + 0.243619i
\(486\) 0 0
\(487\) 13.6546 23.6504i 0.618747 1.07170i −0.370968 0.928646i \(-0.620974\pi\)
0.989715 0.143055i \(-0.0456927\pi\)
\(488\) 6.25025 10.8257i 0.282935 0.490058i
\(489\) 0 0
\(490\) 0 0
\(491\) 13.2899 + 7.67290i 0.599763 + 0.346273i 0.768948 0.639311i \(-0.220780\pi\)
−0.169185 + 0.985584i \(0.554114\pi\)
\(492\) 0 0
\(493\) 12.1172i 0.545731i
\(494\) −19.6361 11.3369i −0.883471 0.510072i
\(495\) 0 0
\(496\) 27.6168i 1.24003i
\(497\) 0 0
\(498\) 0 0
\(499\) −10.3101 −0.461542 −0.230771 0.973008i \(-0.574125\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(500\) −4.19551 7.26683i −0.187629 0.324982i
\(501\) 0 0
\(502\) 10.1476 + 5.85869i 0.452907 + 0.261486i
\(503\) −24.6770 −1.10029 −0.550146 0.835068i \(-0.685428\pi\)
−0.550146 + 0.835068i \(0.685428\pi\)
\(504\) 0 0
\(505\) 3.00289 0.133627
\(506\) −12.4115 7.16576i −0.551757 0.318557i
\(507\) 0 0
\(508\) −1.69531 2.93637i −0.0752174 0.130280i
\(509\) 5.17203 0.229246 0.114623 0.993409i \(-0.463434\pi\)
0.114623 + 0.993409i \(0.463434\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 20.5181i 0.906778i
\(513\) 0 0
\(514\) −5.25807 3.03575i −0.231924 0.133901i
\(515\) 6.65215i 0.293129i
\(516\) 0 0
\(517\) −14.1958 8.19594i −0.624330 0.360457i
\(518\) 0 0
\(519\) 0 0
\(520\) 1.95171 3.38046i 0.0855882 0.148243i
\(521\) −19.1664 + 33.1972i −0.839696 + 1.45440i 0.0504538 + 0.998726i \(0.483933\pi\)
−0.890149 + 0.455669i \(0.849400\pi\)
\(522\) 0 0
\(523\) 23.6468 13.6525i 1.03400 0.596982i 0.115874 0.993264i \(-0.463033\pi\)
0.918129 + 0.396282i \(0.129700\pi\)
\(524\) 1.71878 + 2.97702i 0.0750855 + 0.130052i
\(525\) 0 0
\(526\) 20.7844 35.9997i 0.906245 1.56966i
\(527\) 9.23684i 0.402363i
\(528\) 0 0
\(529\) 20.8345 0.905847
\(530\) 1.39676 + 2.41926i 0.0606714 + 0.105086i
\(531\) 0 0
\(532\) 0 0
\(533\) −53.2012 + 30.7158i −2.30440 + 1.33045i
\(534\) 0 0
\(535\) 0.172504 0.0995952i 0.00745799 0.00430588i
\(536\) 10.3709 5.98762i 0.447953 0.258626i
\(537\) 0 0
\(538\) −4.38055 + 2.52911i −0.188859 + 0.109038i
\(539\) 0 0
\(540\) 0 0
\(541\) −9.78052 16.9404i −0.420498 0.728323i 0.575491 0.817808i \(-0.304811\pi\)
−0.995988 + 0.0894853i \(0.971478\pi\)
\(542\) 11.1556 0.479174
\(543\) 0 0
\(544\) 10.7066i 0.459042i
\(545\) 2.02981 3.51574i 0.0869476 0.150598i
\(546\) 0 0
\(547\) 12.6246 + 21.8665i 0.539790 + 0.934944i 0.998915 + 0.0465723i \(0.0148298\pi\)
−0.459125 + 0.888372i \(0.651837\pi\)
\(548\) 1.42469 0.822544i 0.0608597 0.0351373i
\(549\) 0 0
\(550\) −22.3180 + 38.6559i −0.951642 + 1.64829i
\(551\) −8.97260 + 15.5410i −0.382246 + 0.662069i
\(552\) 0 0
\(553\) 0 0
\(554\) −14.9673 8.64136i −0.635898 0.367136i
\(555\) 0 0
\(556\) 9.58089i 0.406320i
\(557\) 28.8204 + 16.6395i 1.22116 + 0.705036i 0.965165 0.261642i \(-0.0842640\pi\)
0.255994 + 0.966678i \(0.417597\pi\)
\(558\) 0 0
\(559\) 15.5135i 0.656152i
\(560\) 0 0
\(561\) 0 0
\(562\) −9.67080 −0.407938
\(563\) −15.2587 26.4289i −0.643079 1.11385i −0.984742 0.174023i \(-0.944323\pi\)
0.341663 0.939823i \(-0.389010\pi\)
\(564\) 0 0
\(565\) −4.98940 2.88063i −0.209905 0.121189i
\(566\) −36.0358 −1.51470
\(567\) 0 0
\(568\) −5.62028 −0.235822
\(569\) 13.4044 + 7.73906i 0.561943 + 0.324438i 0.753925 0.656960i \(-0.228158\pi\)
−0.191982 + 0.981398i \(0.561491\pi\)
\(570\) 0 0
\(571\) 12.2042 + 21.1384i 0.510731 + 0.884613i 0.999923 + 0.0124362i \(0.00395868\pi\)
−0.489191 + 0.872177i \(0.662708\pi\)
\(572\) 36.9689 1.54575
\(573\) 0 0
\(574\) 0 0
\(575\) 6.74455i 0.281267i
\(576\) 0 0
\(577\) 12.6901 + 7.32664i 0.528296 + 0.305012i 0.740322 0.672252i \(-0.234673\pi\)
−0.212026 + 0.977264i \(0.568006\pi\)
\(578\) 26.2777i 1.09301i
\(579\) 0 0
\(580\) 5.63746 + 3.25479i 0.234083 + 0.135148i
\(581\) 0 0
\(582\) 0 0
\(583\) 6.27811 10.8740i 0.260013 0.450355i
\(584\) −6.96085 + 12.0565i −0.288042 + 0.498904i
\(585\) 0 0
\(586\) −28.9280 + 16.7016i −1.19500 + 0.689936i
\(587\) −11.6129 20.1141i −0.479314 0.830197i 0.520404 0.853920i \(-0.325781\pi\)
−0.999719 + 0.0237232i \(0.992448\pi\)
\(588\) 0 0
\(589\) −6.83975 + 11.8468i −0.281827 + 0.488139i
\(590\) 3.49884i 0.144045i
\(591\) 0 0
\(592\) 38.9586 1.60119
\(593\) 5.55605 + 9.62337i 0.228160 + 0.395184i 0.957263 0.289220i \(-0.0933958\pi\)
−0.729103 + 0.684404i \(0.760062\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8.14153 + 4.70051i −0.333490 + 0.192541i
\(597\) 0 0
\(598\) 11.9712 6.91159i 0.489540 0.282636i
\(599\) −13.5581 + 7.82776i −0.553968 + 0.319833i −0.750721 0.660620i \(-0.770294\pi\)
0.196753 + 0.980453i \(0.436960\pi\)
\(600\) 0 0
\(601\) −30.5665 + 17.6476i −1.24684 + 0.719861i −0.970477 0.241194i \(-0.922461\pi\)
−0.276358 + 0.961055i \(0.589128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.28512 + 7.42205i 0.174359 + 0.301999i
\(605\) −11.1421 −0.452990
\(606\) 0 0
\(607\) 38.8051i 1.57505i 0.616284 + 0.787524i \(0.288637\pi\)
−0.616284 + 0.787524i \(0.711363\pi\)
\(608\) −7.92809 + 13.7318i −0.321526 + 0.556900i
\(609\) 0 0
\(610\) 6.26850 + 10.8574i 0.253804 + 0.439602i
\(611\) 13.6923 7.90523i 0.553929 0.319811i
\(612\) 0 0
\(613\) −15.8786 + 27.5025i −0.641330 + 1.11082i 0.343806 + 0.939041i \(0.388284\pi\)
−0.985136 + 0.171776i \(0.945049\pi\)
\(614\) −23.8572 + 41.3220i −0.962800 + 1.66762i
\(615\) 0 0
\(616\) 0 0
\(617\) −1.25518 0.724680i −0.0505317 0.0291745i 0.474521 0.880244i \(-0.342621\pi\)
−0.525053 + 0.851070i \(0.675955\pi\)
\(618\) 0 0
\(619\) 29.1666i 1.17230i 0.810201 + 0.586152i \(0.199358\pi\)
−0.810201 + 0.586152i \(0.800642\pi\)
\(620\) 4.29740 + 2.48110i 0.172588 + 0.0996435i
\(621\) 0 0
\(622\) 51.8217i 2.07786i
\(623\) 0 0
\(624\) 0 0
\(625\) 18.9223 0.756892
\(626\) −5.10764 8.84668i −0.204142 0.353585i
\(627\) 0 0
\(628\) −2.33778 1.34972i −0.0932877 0.0538597i
\(629\) 13.0303 0.519551
\(630\) 0 0
\(631\) 11.7428 0.467473 0.233736 0.972300i \(-0.424905\pi\)
0.233736 + 0.972300i \(0.424905\pi\)
\(632\) 7.11011 + 4.10503i 0.282825 + 0.163289i
\(633\) 0 0
\(634\) 30.7488 + 53.2585i 1.22119 + 2.11516i
\(635\) −1.61385 −0.0640436
\(636\) 0 0
\(637\) 0 0
\(638\) 72.4041i 2.86651i
\(639\) 0 0
\(640\) −5.00119 2.88744i −0.197689 0.114136i
\(641\) 11.5778i 0.457296i 0.973509 + 0.228648i \(0.0734305\pi\)
−0.973509 + 0.228648i \(0.926569\pi\)
\(642\) 0 0
\(643\) 13.1240 + 7.57712i 0.517558 + 0.298812i 0.735935 0.677052i \(-0.236743\pi\)
−0.218377 + 0.975865i \(0.570076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.60370 + 6.24180i −0.141786 + 0.245580i
\(647\) 6.22057 10.7743i 0.244556 0.423583i −0.717451 0.696609i \(-0.754691\pi\)
0.962007 + 0.273026i \(0.0880246\pi\)
\(648\) 0 0
\(649\) −13.6195 + 7.86325i −0.534614 + 0.308659i
\(650\) −21.5264 37.2847i −0.844333 1.46243i
\(651\) 0 0
\(652\) −4.06032 + 7.03268i −0.159014 + 0.275421i
\(653\) 4.58431i 0.179398i −0.995969 0.0896990i \(-0.971410\pi\)
0.995969 0.0896990i \(-0.0285905\pi\)
\(654\) 0 0
\(655\) 1.63619 0.0639313
\(656\) 29.1921 + 50.5621i 1.13976 + 1.97412i
\(657\) 0 0
\(658\) 0 0
\(659\) −15.6110 + 9.01301i −0.608118 + 0.351097i −0.772228 0.635345i \(-0.780858\pi\)
0.164111 + 0.986442i \(0.447525\pi\)
\(660\) 0 0
\(661\) 0.554932 0.320390i 0.0215844 0.0124617i −0.489169 0.872189i \(-0.662700\pi\)
0.510753 + 0.859727i \(0.329367\pi\)
\(662\) 48.1899 27.8225i 1.87296 1.08135i
\(663\) 0 0
\(664\) −7.18189 + 4.14647i −0.278711 + 0.160914i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.47018 9.47462i −0.211806 0.366859i
\(668\) 1.89338 0.0732572
\(669\) 0 0
\(670\) 12.0102i 0.463995i
\(671\) 28.1755 48.8014i 1.08770 1.88396i
\(672\) 0 0
\(673\) −11.0695 19.1729i −0.426697 0.739061i 0.569880 0.821728i \(-0.306990\pi\)
−0.996577 + 0.0826667i \(0.973656\pi\)
\(674\) 5.90591 3.40978i 0.227487 0.131340i
\(675\) 0 0
\(676\) −9.01280 + 15.6106i −0.346646 + 0.600409i
\(677\) 10.0160 17.3482i 0.384947 0.666747i −0.606815 0.794843i \(-0.707553\pi\)
0.991762 + 0.128096i \(0.0408865\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.07456 0.620397i −0.0412074 0.0237911i
\(681\) 0 0
\(682\) 55.1931i 2.11345i
\(683\) −18.1316 10.4683i −0.693786 0.400558i 0.111243 0.993793i \(-0.464517\pi\)
−0.805029 + 0.593235i \(0.797850\pi\)
\(684\) 0 0
\(685\) 0.783018i 0.0299176i
\(686\) 0 0
\(687\) 0 0
\(688\) −14.7440 −0.562108
\(689\) 6.05543 + 10.4883i 0.230693 + 0.399573i
\(690\) 0 0
\(691\) −1.33430 0.770358i −0.0507591 0.0293058i 0.474406 0.880306i \(-0.342663\pi\)
−0.525165 + 0.851001i \(0.675996\pi\)
\(692\) −10.3217 −0.392372
\(693\) 0 0
\(694\) 13.0740 0.496282
\(695\) −3.94929 2.28012i −0.149805 0.0864900i
\(696\) 0 0
\(697\) 9.76372 + 16.9113i 0.369827 + 0.640560i
\(698\) 27.9423 1.05763
\(699\) 0 0
\(700\) 0 0
\(701\) 31.6641i 1.19593i 0.801520 + 0.597967i \(0.204025\pi\)
−0.801520 + 0.597967i \(0.795975\pi\)
\(702\) 0 0
\(703\) −16.7121 9.64873i −0.630309 0.363909i
\(704\) 12.1657i 0.458513i
\(705\) 0 0
\(706\) −54.6922 31.5766i −2.05837 1.18840i
\(707\) 0 0
\(708\) 0 0
\(709\) −11.1762 + 19.3578i −0.419732 + 0.726996i −0.995912 0.0903259i \(-0.971209\pi\)
0.576181 + 0.817322i \(0.304542\pi\)
\(710\) 2.81835 4.88152i 0.105771 0.183200i
\(711\) 0 0
\(712\) 4.41873 2.55116i 0.165599 0.0956086i
\(713\) −4.16988 7.22244i −0.156163 0.270482i
\(714\) 0 0
\(715\) 8.79812 15.2388i 0.329031 0.569898i
\(716\) 12.5430i 0.468754i
\(717\) 0 0
\(718\) −12.1382 −0.452994
\(719\) −19.4544 33.6959i −0.725525 1.25665i −0.958757 0.284226i \(-0.908264\pi\)
0.233232 0.972421i \(-0.425070\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −20.9011 + 12.0672i −0.777858 + 0.449096i
\(723\) 0 0
\(724\) 14.0522 8.11306i 0.522247 0.301520i
\(725\) −29.5090 + 17.0370i −1.09594 + 0.632739i
\(726\) 0 0
\(727\) 11.4647 6.61915i 0.425202 0.245491i −0.272098 0.962269i \(-0.587718\pi\)
0.697301 + 0.716779i \(0.254384\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.98119 12.0918i −0.258385 0.447536i
\(731\) −4.93133 −0.182392
\(732\) 0 0
\(733\) 32.4727i 1.19941i −0.800222 0.599704i \(-0.795285\pi\)
0.800222 0.599704i \(-0.204715\pi\)
\(734\) 2.83703 4.91389i 0.104717 0.181375i
\(735\) 0 0
\(736\) −4.83338 8.37167i −0.178161 0.308584i
\(737\) 46.7508 26.9916i 1.72209 0.994248i
\(738\) 0 0
\(739\) 6.91965 11.9852i 0.254543 0.440882i −0.710228 0.703972i \(-0.751408\pi\)
0.964771 + 0.263090i \(0.0847415\pi\)
\(740\) −3.50005 + 6.06227i −0.128665 + 0.222854i
\(741\) 0 0
\(742\) 0 0
\(743\) −31.8593 18.3940i −1.16880 0.674810i −0.215406 0.976525i \(-0.569108\pi\)
−0.953398 + 0.301715i \(0.902441\pi\)
\(744\) 0 0
\(745\) 4.47464i 0.163938i
\(746\) 15.3898 + 8.88530i 0.563461 + 0.325314i
\(747\) 0 0
\(748\) 11.7514i 0.429675i
\(749\) 0 0
\(750\) 0 0
\(751\) −3.65905 −0.133520 −0.0667602 0.997769i \(-0.521266\pi\)
−0.0667602 + 0.997769i \(0.521266\pi\)
\(752\) −7.51308 13.0130i −0.273974 0.474537i
\(753\) 0 0
\(754\) 60.4797 + 34.9180i 2.20254 + 1.27164i
\(755\) 4.07921 0.148458
\(756\) 0 0
\(757\) 13.8901 0.504842 0.252421 0.967617i \(-0.418773\pi\)
0.252421 + 0.967617i \(0.418773\pi\)
\(758\) 12.3135 + 7.10920i 0.447246 + 0.258218i
\(759\) 0 0
\(760\) 0.918790 + 1.59139i 0.0333280 + 0.0577258i
\(761\) 13.6417 0.494510 0.247255 0.968950i \(-0.420471\pi\)
0.247255 + 0.968950i \(0.420471\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 27.4991i 0.994884i
\(765\) 0 0
\(766\) 39.0500 + 22.5455i 1.41093 + 0.814602i
\(767\) 15.1687i 0.547709i
\(768\) 0 0
\(769\) 22.9328 + 13.2402i 0.826976 + 0.477455i 0.852816 0.522211i \(-0.174893\pi\)
−0.0258399 + 0.999666i \(0.508226\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −11.4552 + 19.8410i −0.412281 + 0.714092i
\(773\) −13.1109 + 22.7087i −0.471566 + 0.816776i −0.999471 0.0325274i \(-0.989644\pi\)
0.527905 + 0.849303i \(0.322978\pi\)
\(774\) 0 0
\(775\) −22.4945 + 12.9872i −0.808026 + 0.466514i
\(776\) 9.80047 + 16.9749i 0.351816 + 0.609364i
\(777\) 0 0
\(778\) 5.88703 10.1966i 0.211060 0.365567i
\(779\) 28.9196i 1.03615i
\(780\) 0 0
\(781\) −25.3357 −0.906581
\(782\) −2.19701 3.80533i −0.0785649 0.136078i
\(783\) 0 0
\(784\) 0 0
\(785\) −1.11272 + 0.642430i −0.0397148 + 0.0229293i
\(786\) 0 0
\(787\) 25.1554 14.5235i 0.896694 0.517706i 0.0205676 0.999788i \(-0.493453\pi\)
0.876126 + 0.482082i \(0.160119\pi\)
\(788\) −21.9770 + 12.6884i −0.782899 + 0.452007i
\(789\) 0 0
\(790\) −7.13088 + 4.11702i −0.253705 + 0.146477i
\(791\) 0 0
\(792\) 0 0
\(793\) 27.1761 + 47.0704i 0.965052 + 1.67152i
\(794\) 24.2926 0.862111
\(795\) 0 0
\(796\) 24.4741i 0.867462i
\(797\) −15.8184 + 27.3983i −0.560317 + 0.970498i 0.437151 + 0.899388i \(0.355987\pi\)
−0.997469 + 0.0711097i \(0.977346\pi\)
\(798\) 0 0
\(799\) −2.51286 4.35240i −0.0888986 0.153977i
\(800\) −26.0738 + 15.0537i −0.921848 + 0.532229i
\(801\) 0 0
\(802\) 14.4777 25.0762i 0.511227 0.885470i
\(803\) −31.3788 + 54.3497i −1.10733 + 1.91796i
\(804\) 0 0
\(805\) 0 0
\(806\) 46.1032 + 26.6177i 1.62392 + 0.937569i
\(807\) 0 0
\(808\) 5.48534i 0.192974i
\(809\) 34.5466 + 19.9455i 1.21459 + 0.701245i 0.963756 0.266784i \(-0.0859610\pi\)
0.250836 + 0.968029i \(0.419294\pi\)
\(810\) 0 0
\(811\) 28.9516i 1.01663i −0.861172 0.508314i \(-0.830269\pi\)
0.861172 0.508314i \(-0.169731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 77.8601 2.72899
\(815\) 1.93260 + 3.34737i 0.0676961 + 0.117253i
\(816\) 0 0
\(817\) 6.32473 + 3.65158i 0.221274 + 0.127753i
\(818\) −9.92684 −0.347084
\(819\) 0 0
\(820\) −10.4905 −0.366344
\(821\) 0.359377 + 0.207486i 0.0125423 + 0.00724132i 0.506258 0.862382i \(-0.331028\pi\)
−0.493716 + 0.869623i \(0.664362\pi\)
\(822\) 0 0
\(823\) 6.54814 + 11.3417i 0.228254 + 0.395347i 0.957291 0.289127i \(-0.0933650\pi\)
−0.729037 + 0.684475i \(0.760032\pi\)
\(824\) 12.1514 0.423314
\(825\) 0 0
\(826\) 0 0
\(827\) 35.2637i 1.22624i −0.789990 0.613120i \(-0.789914\pi\)
0.789990 0.613120i \(-0.210086\pi\)
\(828\) 0 0
\(829\) −29.0164 16.7526i −1.00778 0.581842i −0.0972388 0.995261i \(-0.531001\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(830\) 8.31716i 0.288693i
\(831\) 0 0
\(832\) 10.1621 + 5.86710i 0.352308 + 0.203405i
\(833\) 0 0
\(834\) 0 0
\(835\) 0.450600 0.780462i 0.0155937 0.0270090i
\(836\) −8.70178 + 15.0719i −0.300957 + 0.521273i
\(837\) 0 0
\(838\) −38.8615 + 22.4367i −1.34245 + 0.775062i
\(839\) 22.4984 + 38.9684i 0.776731 + 1.34534i 0.933816 + 0.357753i \(0.116457\pi\)
−0.157085 + 0.987585i \(0.550210\pi\)
\(840\) 0 0
\(841\) 13.1358 22.7519i 0.452959 0.784548i
\(842\) 21.9604i 0.756805i
\(843\) 0 0
\(844\) −10.9452 −0.376749
\(845\) 4.28985 + 7.43024i 0.147575 + 0.255608i
\(846\) 0 0
\(847\) 0 0
\(848\) 9.96802 5.75504i 0.342303 0.197629i
\(849\) 0 0
\(850\) −11.8518 + 6.84265i −0.406514 + 0.234701i
\(851\) 10.1886 5.88238i 0.349260 0.201645i
\(852\) 0 0
\(853\) 15.8457 9.14854i 0.542548 0.313240i −0.203563 0.979062i \(-0.565252\pi\)
0.746111 + 0.665822i \(0.231919\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −0.181929 0.315111i −0.00621822 0.0107703i
\(857\) 10.5785 0.361355 0.180678 0.983542i \(-0.442171\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(858\) 0 0
\(859\) 32.6748i 1.11485i −0.830227 0.557425i \(-0.811790\pi\)
0.830227 0.557425i \(-0.188210\pi\)
\(860\) 1.32460 2.29428i 0.0451686 0.0782343i
\(861\) 0 0
\(862\) 28.2332 + 48.9014i 0.961628 + 1.66559i
\(863\) −8.09878 + 4.67583i −0.275686 + 0.159167i −0.631469 0.775401i \(-0.717548\pi\)
0.355783 + 0.934569i \(0.384214\pi\)
\(864\) 0 0
\(865\) −2.45643 + 4.25465i −0.0835210 + 0.144663i
\(866\) 5.55262 9.61742i 0.188686 0.326813i
\(867\) 0 0
\(868\) 0 0
\(869\) 32.0517 + 18.5050i 1.08728 + 0.627741i
\(870\) 0 0
\(871\) 52.0684i 1.76427i
\(872\) −6.42216 3.70783i −0.217482 0.125563i
\(873\) 0 0
\(874\) 6.50742i 0.220117i
\(875\) 0 0
\(876\) 0 0
\(877\) 1.23815 0.0418095 0.0209048 0.999781i \(-0.493345\pi\)
0.0209048 + 0.999781i \(0.493345\pi\)
\(878\) −24.8650 43.0674i −0.839153 1.45346i
\(879\) 0 0
\(880\) −14.4828 8.36167i −0.488217 0.281872i
\(881\) −37.3480 −1.25828 −0.629142 0.777290i \(-0.716594\pi\)
−0.629142 + 0.777290i \(0.716594\pi\)
\(882\) 0 0
\(883\) 3.90708 0.131484 0.0657419 0.997837i \(-0.479059\pi\)
0.0657419 + 0.997837i \(0.479059\pi\)
\(884\) 9.81607 + 5.66731i 0.330150 + 0.190612i
\(885\) 0 0
\(886\) −4.90216 8.49079i −0.164691 0.285254i
\(887\) 14.5116 0.487251 0.243625 0.969869i \(-0.421663\pi\)
0.243625 + 0.969869i \(0.421663\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 5.11722i 0.171530i
\(891\) 0 0
\(892\) −27.4585 15.8532i −0.919379 0.530804i
\(893\) 7.44295i 0.249069i
\(894\) 0 0
\(895\) −5.17028 2.98506i −0.172823 0.0997797i
\(896\) 0 0
\(897\) 0 0
\(898\) 31.3659 54.3273i 1.04669 1.81293i
\(899\) 21.0666 36.4884i 0.702610 1.21696i
\(900\) 0 0
\(901\) 3.33395 1.92486i 0.111070 0.0641263i
\(902\) 58.3414 + 101.050i 1.94256 + 3.36460i
\(903\) 0 0
\(904\) −5.26201 + 9.11407i −0.175012 + 0.303129i
\(905\) 7.72320i 0.256728i
\(906\) 0 0
\(907\) −19.2139 −0.637987 −0.318993 0.947757i \(-0.603345\pi\)
−0.318993 + 0.947757i \(0.603345\pi\)
\(908\) −9.79466 16.9648i −0.325047 0.562998i
\(909\) 0 0
\(910\) 0 0
\(911\) −10.1252 + 5.84579i −0.335463 + 0.193680i −0.658264 0.752787i \(-0.728709\pi\)
0.322801 + 0.946467i \(0.395376\pi\)
\(912\) 0 0
\(913\) −32.3752 + 18.6919i −1.07146 + 0.618610i
\(914\) 25.1637 14.5283i 0.832342 0.480553i
\(915\) 0 0
\(916\) 15.4034 8.89314i 0.508942 0.293838i
\(917\) 0 0
\(918\) 0 0
\(919\) −19.9930 34.6289i −0.659508 1.14230i −0.980743 0.195301i \(-0.937432\pi\)
0.321236 0.946999i \(-0.395902\pi\)
\(920\) −1.12029 −0.0369347
\(921\) 0 0
\(922\) 23.8411i 0.785164i
\(923\) 12.2185 21.1631i 0.402177 0.696591i
\(924\) 0 0
\(925\) −18.3209 31.7326i −0.602386 1.04336i
\(926\) −19.1005 + 11.0277i −0.627683 + 0.362393i
\(927\) 0 0
\(928\) 24.4187 42.2944i 0.801582 1.38838i
\(929\) 6.38359 11.0567i 0.209439 0.362759i −0.742099 0.670290i \(-0.766170\pi\)
0.951538 + 0.307532i \(0.0995030\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −9.92775 5.73179i −0.325194 0.187751i
\(933\) 0 0
\(934\) 37.2738i 1.21964i
\(935\) −4.84400 2.79669i −0.158416 0.0914614i
\(936\) 0 0
\(937\) 11.9436i 0.390179i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0624997\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.69991 0.0880614
\(941\) −12.5159 21.6781i −0.408006 0.706686i 0.586661 0.809833i \(-0.300442\pi\)
−0.994666 + 0.103146i \(0.967109\pi\)
\(942\) 0 0
\(943\) 15.2688 + 8.81546i 0.497221 + 0.287071i
\(944\) −14.4162 −0.469208
\(945\) 0 0
\(946\) −29.4663 −0.958032
\(947\) −28.3671 16.3777i −0.921806 0.532205i −0.0375955 0.999293i \(-0.511970\pi\)
−0.884211 + 0.467088i \(0.845303\pi\)
\(948\) 0 0
\(949\) −30.2658 52.4219i −0.982470 1.70169i
\(950\) 20.2676 0.657566
\(951\) 0 0
\(952\) 0 0
\(953\) 6.77705i 0.219530i −0.993958 0.109765i \(-0.964990\pi\)
0.993958 0.109765i \(-0.0350099\pi\)
\(954\) 0 0
\(955\) −11.3353 6.54443i −0.366801 0.211773i
\(956\) 37.9178i 1.22635i
\(957\) 0 0
\(958\) 38.5512 + 22.2575i 1.24553 + 0.719109i
\(959\) 0 0
\(960\) 0 0
\(961\) 0.558897 0.968037i 0.0180289 0.0312270i
\(962\) −37.5492 + 65.0371i −1.21063 + 2.09688i
\(963\) 0 0
\(964\) 26.3203 15.1960i 0.847721 0.489432i
\(965\) 5.45236 + 9.44377i 0.175518 + 0.304006i
\(966\) 0 0
\(967\) 20.7901 36.0096i 0.668566 1.15799i −0.309739 0.950822i \(-0.600242\pi\)
0.978305 0.207169i \(-0.0664249\pi\)
\(968\) 20.3531i 0.654173i
\(969\) 0 0
\(970\) −19.6582 −0.631187
\(971\) −20.6257 35.7248i −0.661910 1.14646i −0.980113 0.198439i \(-0.936413\pi\)
0.318203 0.948023i \(-0.396921\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 43.3281 25.0155i 1.38832 0.801547i
\(975\) 0 0
\(976\) 44.7354 25.8280i 1.43195 0.826734i
\(977\) 3.96507 2.28924i 0.126854 0.0732391i −0.435230 0.900319i \(-0.643333\pi\)
0.562084 + 0.827080i \(0.310000\pi\)
\(978\) 0 0
\(979\) 19.9192 11.5004i 0.636621 0.367553i
\(980\) 0 0
\(981\) 0 0
\(982\) 14.0569 + 24.3473i 0.448575 + 0.776955i
\(983\) 24.4801 0.780794 0.390397 0.920647i \(-0.372338\pi\)
0.390397 + 0.920647i \(0.372338\pi\)
\(984\) 0 0
\(985\) 12.0787i 0.384860i
\(986\) 11.0995 19.2249i 0.353480 0.612245i
\(987\) 0 0
\(988\) −8.39312 14.5373i −0.267021 0.462494i
\(989\) −3.85589 + 2.22620i −0.122610 + 0.0707890i
\(990\) 0 0
\(991\) 21.0927 36.5337i 0.670032 1.16053i −0.307862 0.951431i \(-0.599614\pi\)
0.977894 0.209099i \(-0.0670531\pi\)
\(992\) 18.6142 32.2407i 0.591001 1.02364i
\(993\) 0 0
\(994\) 0 0
\(995\) 10.0884 + 5.82452i 0.319822 + 0.184650i
\(996\) 0 0
\(997\) 9.67834i 0.306516i 0.988186 + 0.153258i \(0.0489765\pi\)
−0.988186 + 0.153258i \(0.951023\pi\)
\(998\) −16.3578 9.44415i −0.517796 0.298949i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.s.d.962.18 48
3.2 odd 2 441.2.s.d.374.7 48
7.2 even 3 1323.2.i.d.1097.17 48
7.3 odd 6 1323.2.o.e.881.7 48
7.4 even 3 1323.2.o.e.881.8 48
7.5 odd 6 1323.2.i.d.1097.15 48
7.6 odd 2 inner 1323.2.s.d.962.17 48
9.2 odd 6 1323.2.i.d.521.15 48
9.7 even 3 441.2.i.d.227.7 48
21.2 odd 6 441.2.i.d.68.18 48
21.5 even 6 441.2.i.d.68.17 48
21.11 odd 6 441.2.o.e.293.17 yes 48
21.17 even 6 441.2.o.e.293.18 yes 48
21.20 even 2 441.2.s.d.374.8 48
63.2 odd 6 inner 1323.2.s.d.656.17 48
63.11 odd 6 1323.2.o.e.440.7 48
63.16 even 3 441.2.s.d.362.8 48
63.20 even 6 1323.2.i.d.521.17 48
63.25 even 3 441.2.o.e.146.18 yes 48
63.34 odd 6 441.2.i.d.227.8 48
63.38 even 6 1323.2.o.e.440.8 48
63.47 even 6 inner 1323.2.s.d.656.18 48
63.52 odd 6 441.2.o.e.146.17 48
63.61 odd 6 441.2.s.d.362.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.17 48 21.5 even 6
441.2.i.d.68.18 48 21.2 odd 6
441.2.i.d.227.7 48 9.7 even 3
441.2.i.d.227.8 48 63.34 odd 6
441.2.o.e.146.17 48 63.52 odd 6
441.2.o.e.146.18 yes 48 63.25 even 3
441.2.o.e.293.17 yes 48 21.11 odd 6
441.2.o.e.293.18 yes 48 21.17 even 6
441.2.s.d.362.7 48 63.61 odd 6
441.2.s.d.362.8 48 63.16 even 3
441.2.s.d.374.7 48 3.2 odd 2
441.2.s.d.374.8 48 21.20 even 2
1323.2.i.d.521.15 48 9.2 odd 6
1323.2.i.d.521.17 48 63.20 even 6
1323.2.i.d.1097.15 48 7.5 odd 6
1323.2.i.d.1097.17 48 7.2 even 3
1323.2.o.e.440.7 48 63.11 odd 6
1323.2.o.e.440.8 48 63.38 even 6
1323.2.o.e.881.7 48 7.3 odd 6
1323.2.o.e.881.8 48 7.4 even 3
1323.2.s.d.656.17 48 63.2 odd 6 inner
1323.2.s.d.656.18 48 63.47 even 6 inner
1323.2.s.d.962.17 48 7.6 odd 2 inner
1323.2.s.d.962.18 48 1.1 even 1 trivial