Properties

Label 441.2.s.d.374.8
Level $441$
Weight $2$
Character 441.374
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(362,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.362"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 374.8
Character \(\chi\) \(=\) 441.374
Dual form 441.2.s.d.362.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58658 - 0.916012i) q^{2} +(0.108803 + 1.72863i) q^{3} +(0.678156 + 1.17460i) q^{4} +0.645568 q^{5} +(1.41082 - 2.84227i) q^{6} +1.17925i q^{8} +(-2.97632 + 0.376160i) q^{9} +(-1.02425 - 0.591348i) q^{10} +5.31595i q^{11} +(-1.95666 + 1.30008i) q^{12} +(-4.44045 - 2.56370i) q^{13} +(0.0702397 + 1.11595i) q^{15} +(2.43652 - 4.22018i) q^{16} +(0.814931 - 1.41150i) q^{17} +(5.06674 + 2.12954i) q^{18} +(2.09039 - 1.20689i) q^{19} +(0.437796 + 0.758285i) q^{20} +(4.86947 - 8.43418i) q^{22} +1.47157i q^{23} +(-2.03849 + 0.128306i) q^{24} -4.58324 q^{25} +(4.69675 + 8.13502i) q^{26} +(-0.974073 - 5.10404i) q^{27} +(-6.43846 + 3.71724i) q^{29} +(0.910782 - 1.83488i) q^{30} +(-4.90799 + 2.83363i) q^{31} +(-5.68894 + 3.28451i) q^{32} +(-9.18931 + 0.578390i) q^{33} +(-2.58590 + 1.49297i) q^{34} +(-2.46025 - 3.24090i) q^{36} +(3.99736 + 6.92362i) q^{37} -4.42210 q^{38} +(3.94855 - 7.95484i) q^{39} +0.761288i q^{40} +(-5.99052 + 10.3759i) q^{41} +(-1.51281 - 2.62026i) q^{43} +(-6.24412 + 3.60504i) q^{44} +(-1.92142 + 0.242837i) q^{45} +(1.34797 - 2.33476i) q^{46} +(1.54176 - 2.67041i) q^{47} +(7.56023 + 3.75268i) q^{48} +(7.27168 + 4.19830i) q^{50} +(2.52863 + 1.25514i) q^{51} -6.95434i q^{52} +(-2.04554 - 1.18100i) q^{53} +(-3.12991 + 8.99022i) q^{54} +3.43181i q^{55} +(2.31371 + 3.48220i) q^{57} +13.6202 q^{58} +(-1.47918 - 2.56202i) q^{59} +(-1.26316 + 0.839291i) q^{60} +(-9.18018 - 5.30018i) q^{61} +10.3825 q^{62} +2.28853 q^{64} +(-2.86662 - 1.65504i) q^{65} +(15.1094 + 7.49986i) q^{66} +(5.07747 + 8.79444i) q^{67} +2.21060 q^{68} +(-2.54380 + 0.160111i) q^{69} +4.76597i q^{71} +(-0.443587 - 3.50984i) q^{72} +(10.2239 + 5.90277i) q^{73} -14.6465i q^{74} +(-0.498670 - 7.92273i) q^{75} +(2.83523 + 1.63692i) q^{76} +(-13.5514 + 9.00406i) q^{78} +(-3.48104 + 6.02934i) q^{79} +(1.57294 - 2.72441i) q^{80} +(8.71701 - 2.23915i) q^{81} +(19.0089 - 10.9748i) q^{82} +(-3.51618 - 6.09021i) q^{83} +(0.526093 - 0.911221i) q^{85} +5.54300i q^{86} +(-7.12626 - 10.7253i) q^{87} -6.26884 q^{88} +(2.16337 + 3.74706i) q^{89} +(3.27093 + 1.37476i) q^{90} +(-1.72850 + 0.997953i) q^{92} +(-5.43230 - 8.17579i) q^{93} +(-4.89226 + 2.82455i) q^{94} +(1.34949 - 0.779129i) q^{95} +(-6.29668 - 9.47671i) q^{96} +(14.3946 - 8.31075i) q^{97} +(-1.99965 - 15.8220i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 8 q^{9} - 40 q^{15} - 24 q^{16} + 32 q^{18} + 48 q^{25} + 48 q^{30} - 120 q^{32} - 8 q^{36} - 32 q^{39} + 96 q^{44} + 48 q^{50} + 48 q^{53} + 80 q^{57} - 72 q^{60} - 48 q^{64} - 120 q^{65}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58658 0.916012i −1.12188 0.647718i −0.180001 0.983667i \(-0.557610\pi\)
−0.941880 + 0.335948i \(0.890943\pi\)
\(3\) 0.108803 + 1.72863i 0.0628173 + 0.998025i
\(4\) 0.678156 + 1.17460i 0.339078 + 0.587300i
\(5\) 0.645568 0.288707 0.144353 0.989526i \(-0.453890\pi\)
0.144353 + 0.989526i \(0.453890\pi\)
\(6\) 1.41082 2.84227i 0.575966 1.16035i
\(7\) 0 0
\(8\) 1.17925i 0.416928i
\(9\) −2.97632 + 0.376160i −0.992108 + 0.125387i
\(10\) −1.02425 0.591348i −0.323895 0.187001i
\(11\) 5.31595i 1.60282i 0.598116 + 0.801410i \(0.295916\pi\)
−0.598116 + 0.801410i \(0.704084\pi\)
\(12\) −1.95666 + 1.30008i −0.564840 + 0.375301i
\(13\) −4.44045 2.56370i −1.23156 0.711041i −0.264205 0.964467i \(-0.585110\pi\)
−0.967355 + 0.253425i \(0.918443\pi\)
\(14\) 0 0
\(15\) 0.0702397 + 1.11595i 0.0181358 + 0.288137i
\(16\) 2.43652 4.22018i 0.609130 1.05504i
\(17\) 0.814931 1.41150i 0.197650 0.342339i −0.750116 0.661306i \(-0.770002\pi\)
0.947766 + 0.318967i \(0.103336\pi\)
\(18\) 5.06674 + 2.12954i 1.19424 + 0.501938i
\(19\) 2.09039 1.20689i 0.479569 0.276879i −0.240668 0.970608i \(-0.577366\pi\)
0.720237 + 0.693728i \(0.244033\pi\)
\(20\) 0.437796 + 0.758285i 0.0978942 + 0.169558i
\(21\) 0 0
\(22\) 4.86947 8.43418i 1.03818 1.79817i
\(23\) 1.47157i 0.306843i 0.988161 + 0.153422i \(0.0490292\pi\)
−0.988161 + 0.153422i \(0.950971\pi\)
\(24\) −2.03849 + 0.128306i −0.416105 + 0.0261903i
\(25\) −4.58324 −0.916648
\(26\) 4.69675 + 8.13502i 0.921109 + 1.59541i
\(27\) −0.974073 5.10404i −0.187461 0.982272i
\(28\) 0 0
\(29\) −6.43846 + 3.71724i −1.19559 + 0.690275i −0.959569 0.281473i \(-0.909177\pi\)
−0.236022 + 0.971748i \(0.575844\pi\)
\(30\) 0.910782 1.83488i 0.166285 0.335002i
\(31\) −4.90799 + 2.83363i −0.881501 + 0.508935i −0.871153 0.491012i \(-0.836627\pi\)
−0.0103477 + 0.999946i \(0.503294\pi\)
\(32\) −5.68894 + 3.28451i −1.00567 + 0.580625i
\(33\) −9.18931 + 0.578390i −1.59965 + 0.100685i
\(34\) −2.58590 + 1.49297i −0.443479 + 0.256043i
\(35\) 0 0
\(36\) −2.46025 3.24090i −0.410042 0.540150i
\(37\) 3.99736 + 6.92362i 0.657161 + 1.13824i 0.981347 + 0.192244i \(0.0615763\pi\)
−0.324186 + 0.945993i \(0.605090\pi\)
\(38\) −4.42210 −0.717359
\(39\) 3.94855 7.95484i 0.632274 1.27379i
\(40\) 0.761288i 0.120370i
\(41\) −5.99052 + 10.3759i −0.935562 + 1.62044i −0.161934 + 0.986802i \(0.551773\pi\)
−0.773628 + 0.633640i \(0.781560\pi\)
\(42\) 0 0
\(43\) −1.51281 2.62026i −0.230701 0.399586i 0.727314 0.686305i \(-0.240769\pi\)
−0.958015 + 0.286719i \(0.907435\pi\)
\(44\) −6.24412 + 3.60504i −0.941336 + 0.543481i
\(45\) −1.92142 + 0.242837i −0.286428 + 0.0362000i
\(46\) 1.34797 2.33476i 0.198748 0.344241i
\(47\) 1.54176 2.67041i 0.224889 0.389520i −0.731397 0.681952i \(-0.761131\pi\)
0.956286 + 0.292432i \(0.0944646\pi\)
\(48\) 7.56023 + 3.75268i 1.09122 + 0.541652i
\(49\) 0 0
\(50\) 7.27168 + 4.19830i 1.02837 + 0.593730i
\(51\) 2.52863 + 1.25514i 0.354079 + 0.175755i
\(52\) 6.95434i 0.964394i
\(53\) −2.04554 1.18100i −0.280977 0.162222i 0.352889 0.935665i \(-0.385199\pi\)
−0.633866 + 0.773443i \(0.718533\pi\)
\(54\) −3.12991 + 8.99022i −0.425927 + 1.22341i
\(55\) 3.43181i 0.462745i
\(56\) 0 0
\(57\) 2.31371 + 3.48220i 0.306458 + 0.461229i
\(58\) 13.6202 1.78841
\(59\) −1.47918 2.56202i −0.192573 0.333546i 0.753529 0.657414i \(-0.228350\pi\)
−0.946102 + 0.323868i \(0.895017\pi\)
\(60\) −1.26316 + 0.839291i −0.163073 + 0.108352i
\(61\) −9.18018 5.30018i −1.17540 0.678618i −0.220455 0.975397i \(-0.570754\pi\)
−0.954946 + 0.296779i \(0.904088\pi\)
\(62\) 10.3825 1.31859
\(63\) 0 0
\(64\) 2.28853 0.286066
\(65\) −2.86662 1.65504i −0.355560 0.205283i
\(66\) 15.1094 + 7.49986i 1.85984 + 0.923169i
\(67\) 5.07747 + 8.79444i 0.620312 + 1.07441i 0.989428 + 0.145028i \(0.0463273\pi\)
−0.369116 + 0.929383i \(0.620339\pi\)
\(68\) 2.21060 0.268075
\(69\) −2.54380 + 0.160111i −0.306237 + 0.0192751i
\(70\) 0 0
\(71\) 4.76597i 0.565617i 0.959176 + 0.282808i \(0.0912661\pi\)
−0.959176 + 0.282808i \(0.908734\pi\)
\(72\) −0.443587 3.50984i −0.0522772 0.413638i
\(73\) 10.2239 + 5.90277i 1.19662 + 0.690867i 0.959799 0.280687i \(-0.0905624\pi\)
0.236817 + 0.971554i \(0.423896\pi\)
\(74\) 14.6465i 1.70262i
\(75\) −0.498670 7.92273i −0.0575814 0.914838i
\(76\) 2.83523 + 1.63692i 0.325223 + 0.187767i
\(77\) 0 0
\(78\) −13.5514 + 9.00406i −1.53440 + 1.01951i
\(79\) −3.48104 + 6.02934i −0.391648 + 0.678354i −0.992667 0.120881i \(-0.961428\pi\)
0.601019 + 0.799235i \(0.294762\pi\)
\(80\) 1.57294 2.72441i 0.175860 0.304599i
\(81\) 8.71701 2.23915i 0.968556 0.248794i
\(82\) 19.0089 10.9748i 2.09918 1.21196i
\(83\) −3.51618 6.09021i −0.385951 0.668487i 0.605949 0.795503i \(-0.292793\pi\)
−0.991901 + 0.127016i \(0.959460\pi\)
\(84\) 0 0
\(85\) 0.526093 0.911221i 0.0570628 0.0988357i
\(86\) 5.54300i 0.597717i
\(87\) −7.12626 10.7253i −0.764015 1.14987i
\(88\) −6.26884 −0.668261
\(89\) 2.16337 + 3.74706i 0.229317 + 0.397188i 0.957606 0.288082i \(-0.0930176\pi\)
−0.728289 + 0.685270i \(0.759684\pi\)
\(90\) 3.27093 + 1.37476i 0.344786 + 0.144913i
\(91\) 0 0
\(92\) −1.72850 + 0.997953i −0.180209 + 0.104044i
\(93\) −5.43230 8.17579i −0.563303 0.847790i
\(94\) −4.89226 + 2.82455i −0.504598 + 0.291330i
\(95\) 1.34949 0.779129i 0.138455 0.0799370i
\(96\) −6.29668 9.47671i −0.642652 0.967213i
\(97\) 14.3946 8.31075i 1.46156 0.843829i 0.462472 0.886634i \(-0.346963\pi\)
0.999083 + 0.0428048i \(0.0136294\pi\)
\(98\) 0 0
\(99\) −1.99965 15.8220i −0.200972 1.59017i
\(100\) −3.10815 5.38348i −0.310815 0.538348i
\(101\) 4.65154 0.462846 0.231423 0.972853i \(-0.425662\pi\)
0.231423 + 0.972853i \(0.425662\pi\)
\(102\) −2.86215 4.30763i −0.283395 0.426519i
\(103\) 10.3043i 1.01532i −0.861559 0.507658i \(-0.830511\pi\)
0.861559 0.507658i \(-0.169489\pi\)
\(104\) 3.02324 5.23641i 0.296453 0.513472i
\(105\) 0 0
\(106\) 2.16361 + 3.74749i 0.210149 + 0.363988i
\(107\) −0.267212 + 0.154275i −0.0258324 + 0.0149143i −0.512861 0.858472i \(-0.671414\pi\)
0.487028 + 0.873386i \(0.338081\pi\)
\(108\) 5.33463 4.60548i 0.513325 0.443163i
\(109\) 3.14423 5.44596i 0.301162 0.521628i −0.675237 0.737601i \(-0.735959\pi\)
0.976399 + 0.215972i \(0.0692921\pi\)
\(110\) 3.14358 5.44484i 0.299728 0.519145i
\(111\) −11.5335 + 7.66326i −1.09471 + 0.727365i
\(112\) 0 0
\(113\) 7.72869 + 4.46216i 0.727054 + 0.419765i 0.817343 0.576151i \(-0.195446\pi\)
−0.0902895 + 0.995916i \(0.528779\pi\)
\(114\) −0.481137 7.64418i −0.0450626 0.715943i
\(115\) 0.949998i 0.0885877i
\(116\) −8.73256 5.04174i −0.810797 0.468114i
\(117\) 14.1806 + 5.96007i 1.31100 + 0.551009i
\(118\) 5.41979i 0.498932i
\(119\) 0 0
\(120\) −1.31598 + 0.0828302i −0.120132 + 0.00756133i
\(121\) −17.2593 −1.56903
\(122\) 9.71006 + 16.8183i 0.879107 + 1.52266i
\(123\) −18.5879 9.22647i −1.67601 0.831923i
\(124\) −6.65676 3.84328i −0.597795 0.345137i
\(125\) −6.18664 −0.553350
\(126\) 0 0
\(127\) −2.49989 −0.221829 −0.110915 0.993830i \(-0.535378\pi\)
−0.110915 + 0.993830i \(0.535378\pi\)
\(128\) 7.74695 + 4.47270i 0.684740 + 0.395335i
\(129\) 4.36486 2.90018i 0.384305 0.255346i
\(130\) 3.03208 + 5.25171i 0.265931 + 0.460605i
\(131\) 2.53450 0.221440 0.110720 0.993852i \(-0.464684\pi\)
0.110720 + 0.993852i \(0.464684\pi\)
\(132\) −6.91116 10.4015i −0.601540 0.905337i
\(133\) 0 0
\(134\) 18.6041i 1.60715i
\(135\) −0.628831 3.29500i −0.0541211 0.283589i
\(136\) 1.66452 + 0.961008i 0.142731 + 0.0824058i
\(137\) 1.21291i 0.103626i 0.998657 + 0.0518131i \(0.0165000\pi\)
−0.998657 + 0.0518131i \(0.983500\pi\)
\(138\) 4.18260 + 2.07612i 0.356046 + 0.176731i
\(139\) 6.11754 + 3.53196i 0.518883 + 0.299577i 0.736478 0.676462i \(-0.236488\pi\)
−0.217594 + 0.976039i \(0.569821\pi\)
\(140\) 0 0
\(141\) 4.78390 + 2.37459i 0.402877 + 0.199977i
\(142\) 4.36569 7.56159i 0.366360 0.634555i
\(143\) 13.6285 23.6052i 1.13967 1.97397i
\(144\) −5.66441 + 13.4771i −0.472035 + 1.12309i
\(145\) −4.15646 + 2.39974i −0.345175 + 0.199287i
\(146\) −10.8140 18.7304i −0.894974 1.55014i
\(147\) 0 0
\(148\) −5.42166 + 9.39060i −0.445658 + 0.771902i
\(149\) 6.93132i 0.567836i −0.958849 0.283918i \(-0.908366\pi\)
0.958849 0.283918i \(-0.0916343\pi\)
\(150\) −6.46614 + 13.0268i −0.527958 + 1.06364i
\(151\) 6.31878 0.514215 0.257108 0.966383i \(-0.417231\pi\)
0.257108 + 0.966383i \(0.417231\pi\)
\(152\) 1.42323 + 2.46510i 0.115439 + 0.199946i
\(153\) −1.89455 + 4.50763i −0.153165 + 0.364420i
\(154\) 0 0
\(155\) −3.16844 + 1.82930i −0.254495 + 0.146933i
\(156\) 12.0215 0.756652i 0.962489 0.0605807i
\(157\) 1.72363 0.995139i 0.137561 0.0794208i −0.429640 0.903000i \(-0.641360\pi\)
0.567201 + 0.823579i \(0.308026\pi\)
\(158\) 11.0459 6.37735i 0.878765 0.507355i
\(159\) 1.81894 3.66448i 0.144252 0.290613i
\(160\) −3.67260 + 2.12038i −0.290345 + 0.167631i
\(161\) 0 0
\(162\) −15.8813 4.43230i −1.24775 0.348234i
\(163\) 2.99365 + 5.18515i 0.234480 + 0.406132i 0.959122 0.282994i \(-0.0913278\pi\)
−0.724641 + 0.689126i \(0.757994\pi\)
\(164\) −16.2500 −1.26891
\(165\) −5.93233 + 0.373390i −0.461831 + 0.0290684i
\(166\) 12.8835i 0.999951i
\(167\) 0.697990 1.20895i 0.0540121 0.0935516i −0.837755 0.546046i \(-0.816132\pi\)
0.891767 + 0.452494i \(0.149466\pi\)
\(168\) 0 0
\(169\) 6.64508 + 11.5096i 0.511160 + 0.885355i
\(170\) −1.66938 + 0.963816i −0.128035 + 0.0739213i
\(171\) −5.76770 + 4.37841i −0.441067 + 0.334826i
\(172\) 2.05184 3.55389i 0.156451 0.270982i
\(173\) −3.80506 + 6.59055i −0.289293 + 0.501071i −0.973641 0.228085i \(-0.926754\pi\)
0.684348 + 0.729156i \(0.260087\pi\)
\(174\) 1.48191 + 23.5442i 0.112343 + 1.78488i
\(175\) 0 0
\(176\) 22.4343 + 12.9524i 1.69105 + 0.976326i
\(177\) 4.26784 2.83571i 0.320790 0.213145i
\(178\) 7.92669i 0.594130i
\(179\) 8.00888 + 4.62393i 0.598612 + 0.345609i 0.768495 0.639855i \(-0.221006\pi\)
−0.169883 + 0.985464i \(0.554339\pi\)
\(180\) −1.58826 2.09222i −0.118382 0.155945i
\(181\) 11.9634i 0.889234i 0.895721 + 0.444617i \(0.146660\pi\)
−0.895721 + 0.444617i \(0.853340\pi\)
\(182\) 0 0
\(183\) 8.16322 16.4458i 0.603443 1.21571i
\(184\) −1.73535 −0.127932
\(185\) 2.58057 + 4.46967i 0.189727 + 0.328617i
\(186\) 1.12965 + 17.9476i 0.0828300 + 1.31598i
\(187\) 7.50347 + 4.33213i 0.548708 + 0.316797i
\(188\) 4.18223 0.305020
\(189\) 0 0
\(190\) −2.85477 −0.207107
\(191\) 17.5586 + 10.1375i 1.27050 + 0.733521i 0.975081 0.221847i \(-0.0712087\pi\)
0.295415 + 0.955369i \(0.404542\pi\)
\(192\) 0.248999 + 3.95602i 0.0179699 + 0.285501i
\(193\) 8.44583 + 14.6286i 0.607944 + 1.05299i 0.991579 + 0.129505i \(0.0413389\pi\)
−0.383634 + 0.923485i \(0.625328\pi\)
\(194\) −30.4510 −2.18625
\(195\) 2.54906 5.13539i 0.182542 0.367753i
\(196\) 0 0
\(197\) 18.7102i 1.33305i −0.745484 0.666524i \(-0.767781\pi\)
0.745484 0.666524i \(-0.232219\pi\)
\(198\) −11.3205 + 26.9345i −0.804515 + 1.91415i
\(199\) −15.6271 9.02231i −1.10778 0.639574i −0.169523 0.985526i \(-0.554223\pi\)
−0.938252 + 0.345952i \(0.887556\pi\)
\(200\) 5.40480i 0.382177i
\(201\) −14.6499 + 9.73393i −1.03332 + 0.686578i
\(202\) −7.38004 4.26087i −0.519258 0.299794i
\(203\) 0 0
\(204\) 0.240520 + 3.82131i 0.0168397 + 0.267545i
\(205\) −3.86729 + 6.69834i −0.270103 + 0.467833i
\(206\) −9.43889 + 16.3486i −0.657639 + 1.13906i
\(207\) −0.553544 4.37986i −0.0384740 0.304421i
\(208\) −21.6385 + 12.4930i −1.50036 + 0.866234i
\(209\) 6.41576 + 11.1124i 0.443788 + 0.768663i
\(210\) 0 0
\(211\) −4.03491 + 6.98868i −0.277775 + 0.481120i −0.970831 0.239763i \(-0.922930\pi\)
0.693057 + 0.720883i \(0.256264\pi\)
\(212\) 3.20360i 0.220024i
\(213\) −8.23860 + 0.518551i −0.564500 + 0.0355305i
\(214\) 0.565272 0.0386412
\(215\) −0.976621 1.69156i −0.0666050 0.115363i
\(216\) 6.01894 1.14868i 0.409537 0.0781576i
\(217\) 0 0
\(218\) −9.97713 + 5.76030i −0.675736 + 0.390137i
\(219\) −9.09132 + 18.3156i −0.614334 + 1.23765i
\(220\) −4.03101 + 2.32730i −0.271770 + 0.156907i
\(221\) −7.23732 + 4.17847i −0.486835 + 0.281074i
\(222\) 25.3184 1.59358i 1.69926 0.106954i
\(223\) 20.2450 11.6884i 1.35570 0.782716i 0.366662 0.930354i \(-0.380500\pi\)
0.989041 + 0.147638i \(0.0471671\pi\)
\(224\) 0 0
\(225\) 13.6412 1.72403i 0.909414 0.114935i
\(226\) −8.17479 14.1591i −0.543779 0.941852i
\(227\) −14.4431 −0.958620 −0.479310 0.877646i \(-0.659113\pi\)
−0.479310 + 0.877646i \(0.659113\pi\)
\(228\) −2.52115 + 5.07916i −0.166967 + 0.336375i
\(229\) 13.1137i 0.866578i 0.901255 + 0.433289i \(0.142647\pi\)
−0.901255 + 0.433289i \(0.857353\pi\)
\(230\) 0.870209 1.50725i 0.0573799 0.0993849i
\(231\) 0 0
\(232\) −4.38357 7.59256i −0.287795 0.498476i
\(233\) 7.31966 4.22601i 0.479527 0.276855i −0.240692 0.970601i \(-0.577374\pi\)
0.720219 + 0.693746i \(0.244041\pi\)
\(234\) −17.0391 22.4457i −1.11388 1.46732i
\(235\) 0.995314 1.72393i 0.0649271 0.112457i
\(236\) 2.00623 3.47489i 0.130594 0.226196i
\(237\) −10.8013 5.36143i −0.701617 0.348262i
\(238\) 0 0
\(239\) −24.2111 13.9783i −1.56608 0.904179i −0.996619 0.0821642i \(-0.973817\pi\)
−0.569466 0.822015i \(-0.692850\pi\)
\(240\) 4.88064 + 2.42261i 0.315044 + 0.156379i
\(241\) 22.4079i 1.44342i 0.692196 + 0.721710i \(0.256643\pi\)
−0.692196 + 0.721710i \(0.743357\pi\)
\(242\) 27.3833 + 15.8097i 1.76026 + 1.01629i
\(243\) 4.81909 + 14.8249i 0.309145 + 0.951015i
\(244\) 14.3774i 0.920418i
\(245\) 0 0
\(246\) 21.0396 + 31.6652i 1.34143 + 2.01890i
\(247\) −12.3764 −0.787491
\(248\) −3.34156 5.78775i −0.212189 0.367523i
\(249\) 10.1451 6.74081i 0.642923 0.427182i
\(250\) 9.81559 + 5.66703i 0.620792 + 0.358415i
\(251\) 6.39587 0.403704 0.201852 0.979416i \(-0.435304\pi\)
0.201852 + 0.979416i \(0.435304\pi\)
\(252\) 0 0
\(253\) −7.82278 −0.491814
\(254\) 3.96627 + 2.28993i 0.248866 + 0.143683i
\(255\) 1.63240 + 0.810278i 0.102225 + 0.0507415i
\(256\) −10.4826 18.1565i −0.655165 1.13478i
\(257\) −3.31409 −0.206727 −0.103364 0.994644i \(-0.532961\pi\)
−0.103364 + 0.994644i \(0.532961\pi\)
\(258\) −9.58180 + 0.603094i −0.596537 + 0.0375470i
\(259\) 0 0
\(260\) 4.48950i 0.278427i
\(261\) 17.7647 13.4856i 1.09960 0.834738i
\(262\) −4.02118 2.32163i −0.248429 0.143431i
\(263\) 22.6901i 1.39913i 0.714567 + 0.699567i \(0.246624\pi\)
−0.714567 + 0.699567i \(0.753376\pi\)
\(264\) −0.682068 10.8365i −0.0419784 0.666941i
\(265\) −1.32054 0.762413i −0.0811200 0.0468347i
\(266\) 0 0
\(267\) −6.24191 + 4.14736i −0.381999 + 0.253814i
\(268\) −6.88664 + 11.9280i −0.420668 + 0.728619i
\(269\) −1.38050 + 2.39110i −0.0841707 + 0.145788i −0.905038 0.425332i \(-0.860157\pi\)
0.820867 + 0.571120i \(0.193491\pi\)
\(270\) −2.02057 + 5.80380i −0.122968 + 0.353208i
\(271\) −5.27342 + 3.04461i −0.320337 + 0.184947i −0.651543 0.758612i \(-0.725878\pi\)
0.331206 + 0.943559i \(0.392545\pi\)
\(272\) −3.97119 6.87830i −0.240789 0.417058i
\(273\) 0 0
\(274\) 1.11104 1.92438i 0.0671205 0.116256i
\(275\) 24.3643i 1.46922i
\(276\) −1.91316 2.87936i −0.115159 0.173317i
\(277\) −9.43367 −0.566814 −0.283407 0.959000i \(-0.591465\pi\)
−0.283407 + 0.959000i \(0.591465\pi\)
\(278\) −6.47064 11.2075i −0.388083 0.672180i
\(279\) 13.5419 10.2800i 0.810730 0.615446i
\(280\) 0 0
\(281\) 4.57153 2.63938i 0.272715 0.157452i −0.357406 0.933949i \(-0.616339\pi\)
0.630121 + 0.776497i \(0.283005\pi\)
\(282\) −5.41489 8.14959i −0.322452 0.485301i
\(283\) 17.0346 9.83496i 1.01260 0.584628i 0.100651 0.994922i \(-0.467907\pi\)
0.911953 + 0.410294i \(0.134574\pi\)
\(284\) −5.59811 + 3.23207i −0.332187 + 0.191788i
\(285\) 1.49366 + 2.24800i 0.0884765 + 0.133160i
\(286\) −43.2453 + 24.9677i −2.55715 + 1.47637i
\(287\) 0 0
\(288\) 15.6966 11.9157i 0.924933 0.702141i
\(289\) 7.17178 + 12.4219i 0.421869 + 0.730699i
\(290\) 8.79274 0.516328
\(291\) 15.9324 + 23.9788i 0.933974 + 1.40566i
\(292\) 16.0120i 0.937031i
\(293\) −9.11647 + 15.7902i −0.532590 + 0.922473i 0.466686 + 0.884423i \(0.345448\pi\)
−0.999276 + 0.0380495i \(0.987886\pi\)
\(294\) 0 0
\(295\) −0.954912 1.65396i −0.0555971 0.0962970i
\(296\) −8.16470 + 4.71389i −0.474563 + 0.273989i
\(297\) 27.1328 5.17812i 1.57440 0.300465i
\(298\) −6.34917 + 10.9971i −0.367797 + 0.637044i
\(299\) 3.77265 6.53443i 0.218178 0.377896i
\(300\) 8.96787 5.95858i 0.517760 0.344019i
\(301\) 0 0
\(302\) −10.0253 5.78808i −0.576888 0.333067i
\(303\) 0.506101 + 8.04079i 0.0290747 + 0.461932i
\(304\) 11.7624i 0.674622i
\(305\) −5.92643 3.42163i −0.339347 0.195922i
\(306\) 7.13489 5.41628i 0.407875 0.309628i
\(307\) 26.0447i 1.48645i −0.669042 0.743224i \(-0.733296\pi\)
0.669042 0.743224i \(-0.266704\pi\)
\(308\) 0 0
\(309\) 17.8124 1.12114i 1.01331 0.0637795i
\(310\) 6.70265 0.380685
\(311\) 14.1433 + 24.4969i 0.801992 + 1.38909i 0.918303 + 0.395878i \(0.129560\pi\)
−0.116311 + 0.993213i \(0.537107\pi\)
\(312\) 9.38075 + 4.65633i 0.531081 + 0.263613i
\(313\) 4.82891 + 2.78797i 0.272946 + 0.157586i 0.630226 0.776412i \(-0.282962\pi\)
−0.357280 + 0.933998i \(0.616296\pi\)
\(314\) −3.64624 −0.205769
\(315\) 0 0
\(316\) −9.44276 −0.531197
\(317\) −29.0708 16.7841i −1.63278 0.942686i −0.983230 0.182367i \(-0.941624\pi\)
−0.649550 0.760319i \(-0.725043\pi\)
\(318\) −6.24261 + 4.14782i −0.350068 + 0.232598i
\(319\) −19.7607 34.2265i −1.10639 1.91632i
\(320\) 1.47740 0.0825893
\(321\) −0.295758 0.445126i −0.0165076 0.0248445i
\(322\) 0 0
\(323\) 3.93412i 0.218901i
\(324\) 8.54159 + 8.72051i 0.474533 + 0.484473i
\(325\) 20.3517 + 11.7500i 1.12891 + 0.651775i
\(326\) 10.9689i 0.607509i
\(327\) 9.75615 + 4.84267i 0.539516 + 0.267800i
\(328\) −12.2358 7.06433i −0.675608 0.390063i
\(329\) 0 0
\(330\) 9.75414 + 4.84167i 0.536948 + 0.266525i
\(331\) 15.1867 26.3042i 0.834739 1.44581i −0.0595042 0.998228i \(-0.518952\pi\)
0.894243 0.447582i \(-0.147715\pi\)
\(332\) 4.76904 8.26023i 0.261735 0.453339i
\(333\) −14.5018 19.1033i −0.794695 1.04685i
\(334\) −2.21483 + 1.27873i −0.121190 + 0.0699692i
\(335\) 3.27785 + 5.67741i 0.179088 + 0.310190i
\(336\) 0 0
\(337\) 1.86121 3.22371i 0.101387 0.175607i −0.810870 0.585227i \(-0.801005\pi\)
0.912256 + 0.409620i \(0.134339\pi\)
\(338\) 24.3479i 1.32435i
\(339\) −6.87252 + 13.8455i −0.373264 + 0.751986i
\(340\) 1.42709 0.0773950
\(341\) −15.0634 26.0906i −0.815730 1.41289i
\(342\) 13.1616 1.66342i 0.711698 0.0899472i
\(343\) 0 0
\(344\) 3.08995 1.78398i 0.166599 0.0961858i
\(345\) −1.64219 + 0.103362i −0.0884128 + 0.00556485i
\(346\) 12.0741 6.97096i 0.649105 0.374761i
\(347\) −6.18028 + 3.56818i −0.331775 + 0.191550i −0.656629 0.754214i \(-0.728018\pi\)
0.324854 + 0.945764i \(0.394685\pi\)
\(348\) 7.76518 15.6439i 0.416257 0.838602i
\(349\) −13.2087 + 7.62607i −0.707047 + 0.408214i −0.809967 0.586476i \(-0.800515\pi\)
0.102920 + 0.994690i \(0.467182\pi\)
\(350\) 0 0
\(351\) −8.75987 + 25.1615i −0.467567 + 1.34302i
\(352\) −17.4603 30.2421i −0.930637 1.61191i
\(353\) −34.4718 −1.83475 −0.917373 0.398028i \(-0.869695\pi\)
−0.917373 + 0.398028i \(0.869695\pi\)
\(354\) −9.36881 + 0.589688i −0.497946 + 0.0313416i
\(355\) 3.07676i 0.163297i
\(356\) −2.93420 + 5.08219i −0.155512 + 0.269355i
\(357\) 0 0
\(358\) −8.47115 14.6725i −0.447714 0.775464i
\(359\) 5.73791 3.31278i 0.302835 0.174842i −0.340881 0.940107i \(-0.610725\pi\)
0.643716 + 0.765265i \(0.277392\pi\)
\(360\) −0.286366 2.26584i −0.0150928 0.119420i
\(361\) −6.58684 + 11.4087i −0.346676 + 0.600460i
\(362\) 10.9586 18.9809i 0.575973 0.997614i
\(363\) −1.87786 29.8350i −0.0985622 1.56593i
\(364\) 0 0
\(365\) 6.60022 + 3.81064i 0.345472 + 0.199458i
\(366\) −28.0162 + 18.6150i −1.46443 + 0.973020i
\(367\) 3.09716i 0.161670i 0.996727 + 0.0808352i \(0.0257587\pi\)
−0.996727 + 0.0808352i \(0.974241\pi\)
\(368\) 6.21028 + 3.58551i 0.323733 + 0.186907i
\(369\) 13.9267 33.1354i 0.724997 1.72496i
\(370\) 9.45532i 0.491559i
\(371\) 0 0
\(372\) 5.91934 11.9252i 0.306904 0.618295i
\(373\) 9.69999 0.502246 0.251123 0.967955i \(-0.419200\pi\)
0.251123 + 0.967955i \(0.419200\pi\)
\(374\) −7.93657 13.7465i −0.410390 0.710816i
\(375\) −0.673124 10.6944i −0.0347600 0.552257i
\(376\) 3.14909 + 1.81813i 0.162402 + 0.0937628i
\(377\) 38.1195 1.96326
\(378\) 0 0
\(379\) 7.76103 0.398657 0.199329 0.979933i \(-0.436124\pi\)
0.199329 + 0.979933i \(0.436124\pi\)
\(380\) 1.83033 + 1.05674i 0.0938941 + 0.0542098i
\(381\) −0.271995 4.32138i −0.0139347 0.221391i
\(382\) −18.5721 32.1678i −0.950231 1.64585i
\(383\) 24.6127 1.25765 0.628825 0.777547i \(-0.283536\pi\)
0.628825 + 0.777547i \(0.283536\pi\)
\(384\) −6.88876 + 13.8783i −0.351541 + 0.708222i
\(385\) 0 0
\(386\) 30.9459i 1.57511i
\(387\) 5.48824 + 7.22969i 0.278983 + 0.367506i
\(388\) 19.5236 + 11.2720i 0.991162 + 0.572248i
\(389\) 6.42681i 0.325852i 0.986638 + 0.162926i \(0.0520932\pi\)
−0.986638 + 0.162926i \(0.947907\pi\)
\(390\) −8.74836 + 5.81274i −0.442991 + 0.294339i
\(391\) 2.07712 + 1.19923i 0.105044 + 0.0606474i
\(392\) 0 0
\(393\) 0.275761 + 4.38121i 0.0139103 + 0.221003i
\(394\) −17.1388 + 29.6852i −0.863439 + 1.49552i
\(395\) −2.24725 + 3.89235i −0.113071 + 0.195846i
\(396\) 17.2284 13.0786i 0.865762 0.657222i
\(397\) −11.4835 + 6.62998i −0.576338 + 0.332749i −0.759677 0.650301i \(-0.774643\pi\)
0.183339 + 0.983050i \(0.441310\pi\)
\(398\) 16.5291 + 28.6292i 0.828528 + 1.43505i
\(399\) 0 0
\(400\) −11.1672 + 19.3421i −0.558358 + 0.967105i
\(401\) 15.8052i 0.789273i 0.918837 + 0.394636i \(0.129129\pi\)
−0.918837 + 0.394636i \(0.870871\pi\)
\(402\) 32.1596 2.02418i 1.60398 0.100957i
\(403\) 29.0582 1.44749
\(404\) 3.15447 + 5.46370i 0.156941 + 0.271829i
\(405\) 5.62742 1.44552i 0.279629 0.0718286i
\(406\) 0 0
\(407\) −36.8056 + 21.2497i −1.82439 + 1.05331i
\(408\) −1.48012 + 2.98189i −0.0732771 + 0.147626i
\(409\) 4.69257 2.70926i 0.232033 0.133964i −0.379477 0.925201i \(-0.623896\pi\)
0.611509 + 0.791237i \(0.290563\pi\)
\(410\) 12.2715 7.08497i 0.606048 0.349902i
\(411\) −2.09668 + 0.131968i −0.103421 + 0.00650952i
\(412\) 12.1035 6.98795i 0.596296 0.344271i
\(413\) 0 0
\(414\) −3.13376 + 7.45605i −0.154016 + 0.366445i
\(415\) −2.26994 3.93165i −0.111427 0.192997i
\(416\) 33.6820 1.65139
\(417\) −5.43985 + 10.9593i −0.266391 + 0.536677i
\(418\) 23.5077i 1.14980i
\(419\) −12.2469 + 21.2123i −0.598302 + 1.03629i 0.394770 + 0.918780i \(0.370824\pi\)
−0.993072 + 0.117509i \(0.962509\pi\)
\(420\) 0 0
\(421\) 5.99347 + 10.3810i 0.292104 + 0.505939i 0.974307 0.225224i \(-0.0723113\pi\)
−0.682203 + 0.731163i \(0.738978\pi\)
\(422\) 12.8034 7.39206i 0.623261 0.359840i
\(423\) −3.58429 + 8.52796i −0.174274 + 0.414644i
\(424\) 1.39269 2.41221i 0.0676350 0.117147i
\(425\) −3.73502 + 6.46925i −0.181175 + 0.313805i
\(426\) 13.5462 + 6.72394i 0.656315 + 0.325776i
\(427\) 0 0
\(428\) −0.362424 0.209245i −0.0175184 0.0101143i
\(429\) 42.2875 + 20.9903i 2.04166 + 1.01342i
\(430\) 3.57839i 0.172565i
\(431\) −26.6926 15.4110i −1.28574 0.742320i −0.307845 0.951437i \(-0.599608\pi\)
−0.977891 + 0.209117i \(0.932941\pi\)
\(432\) −23.9133 8.32533i −1.15053 0.400552i
\(433\) 6.06173i 0.291308i 0.989336 + 0.145654i \(0.0465287\pi\)
−0.989336 + 0.145654i \(0.953471\pi\)
\(434\) 0 0
\(435\) −4.60049 6.92389i −0.220577 0.331975i
\(436\) 8.52910 0.408470
\(437\) 1.77602 + 3.07616i 0.0849585 + 0.147152i
\(438\) 31.2014 20.7314i 1.49086 0.990582i
\(439\) 23.5081 + 13.5724i 1.12198 + 0.647776i 0.941906 0.335877i \(-0.109033\pi\)
0.180075 + 0.983653i \(0.442366\pi\)
\(440\) −4.04697 −0.192932
\(441\) 0 0
\(442\) 15.3101 0.728228
\(443\) 4.63465 + 2.67582i 0.220199 + 0.127132i 0.606042 0.795432i \(-0.292756\pi\)
−0.385843 + 0.922564i \(0.626090\pi\)
\(444\) −16.8228 8.35033i −0.798373 0.396289i
\(445\) 1.39660 + 2.41899i 0.0662053 + 0.114671i
\(446\) −42.8270 −2.02792
\(447\) 11.9817 0.754147i 0.566714 0.0356699i
\(448\) 0 0
\(449\) 34.2418i 1.61597i 0.589204 + 0.807985i \(0.299442\pi\)
−0.589204 + 0.807985i \(0.700558\pi\)
\(450\) −23.2221 9.76020i −1.09470 0.460100i
\(451\) −55.1577 31.8453i −2.59727 1.49954i
\(452\) 12.1042i 0.569332i
\(453\) 0.687501 + 10.9228i 0.0323016 + 0.513200i
\(454\) 22.9151 + 13.2300i 1.07546 + 0.620916i
\(455\) 0 0
\(456\) −4.10640 + 2.72844i −0.192300 + 0.127771i
\(457\) 7.93019 13.7355i 0.370958 0.642519i −0.618755 0.785584i \(-0.712363\pi\)
0.989713 + 0.143065i \(0.0456959\pi\)
\(458\) 12.0123 20.8059i 0.561299 0.972198i
\(459\) −7.99815 2.78453i −0.373322 0.129971i
\(460\) −1.11587 + 0.644247i −0.0520276 + 0.0300382i
\(461\) −6.50676 11.2700i −0.303050 0.524898i 0.673775 0.738936i \(-0.264672\pi\)
−0.976825 + 0.214038i \(0.931338\pi\)
\(462\) 0 0
\(463\) −6.01941 + 10.4259i −0.279746 + 0.484534i −0.971321 0.237770i \(-0.923583\pi\)
0.691576 + 0.722304i \(0.256917\pi\)
\(464\) 36.2286i 1.68187i
\(465\) −3.50692 5.27803i −0.162629 0.244763i
\(466\) −15.4843 −0.717297
\(467\) 10.1728 + 17.6199i 0.470743 + 0.815351i 0.999440 0.0334596i \(-0.0106525\pi\)
−0.528697 + 0.848811i \(0.677319\pi\)
\(468\) 2.61594 + 20.6984i 0.120922 + 0.956783i
\(469\) 0 0
\(470\) −3.15829 + 1.82344i −0.145681 + 0.0841090i
\(471\) 1.90776 + 2.87125i 0.0879051 + 0.132300i
\(472\) 3.02126 1.74433i 0.139065 0.0802891i
\(473\) 13.9292 8.04201i 0.640464 0.369772i
\(474\) 12.2259 + 18.4004i 0.561555 + 0.845159i
\(475\) −9.58078 + 5.53146i −0.439596 + 0.253801i
\(476\) 0 0
\(477\) 6.53244 + 2.74557i 0.299100 + 0.125711i
\(478\) 25.6085 + 44.3553i 1.17131 + 2.02876i
\(479\) 24.2983 1.11022 0.555109 0.831778i \(-0.312676\pi\)
0.555109 + 0.831778i \(0.312676\pi\)
\(480\) −4.06494 6.11787i −0.185538 0.279241i
\(481\) 40.9920i 1.86908i
\(482\) 20.5259 35.5519i 0.934929 1.61934i
\(483\) 0 0
\(484\) −11.7045 20.2728i −0.532023 0.921491i
\(485\) 9.29273 5.36516i 0.421961 0.243619i
\(486\) 5.93388 27.9352i 0.269166 1.26716i
\(487\) 13.6546 23.6504i 0.618747 1.07170i −0.370968 0.928646i \(-0.620974\pi\)
0.989715 0.143055i \(-0.0456927\pi\)
\(488\) 6.25025 10.8257i 0.282935 0.490058i
\(489\) −8.63748 + 5.73907i −0.390601 + 0.259530i
\(490\) 0 0
\(491\) −13.2899 7.67290i −0.599763 0.346273i 0.169185 0.985584i \(-0.445886\pi\)
−0.768948 + 0.639311i \(0.779220\pi\)
\(492\) −1.76805 28.0903i −0.0797098 1.26641i
\(493\) 12.1172i 0.545731i
\(494\) 19.6361 + 11.3369i 0.883471 + 0.510072i
\(495\) −1.29091 10.2142i −0.0580220 0.459093i
\(496\) 27.6168i 1.24003i
\(497\) 0 0
\(498\) −22.2708 + 1.40176i −0.997976 + 0.0628143i
\(499\) −10.3101 −0.461542 −0.230771 0.973008i \(-0.574125\pi\)
−0.230771 + 0.973008i \(0.574125\pi\)
\(500\) −4.19551 7.26683i −0.187629 0.324982i
\(501\) 2.16578 + 1.07503i 0.0967598 + 0.0480287i
\(502\) −10.1476 5.85869i −0.452907 0.261486i
\(503\) −24.6770 −1.10029 −0.550146 0.835068i \(-0.685428\pi\)
−0.550146 + 0.835068i \(0.685428\pi\)
\(504\) 0 0
\(505\) 3.00289 0.133627
\(506\) 12.4115 + 7.16576i 0.551757 + 0.318557i
\(507\) −19.1729 + 12.7392i −0.851496 + 0.565766i
\(508\) −1.69531 2.93637i −0.0752174 0.130280i
\(509\) 5.17203 0.229246 0.114623 0.993409i \(-0.463434\pi\)
0.114623 + 0.993409i \(0.463434\pi\)
\(510\) −1.84771 2.78087i −0.0818181 0.123139i
\(511\) 0 0
\(512\) 20.5181i 0.906778i
\(513\) −8.19620 9.49384i −0.361871 0.419163i
\(514\) 5.25807 + 3.03575i 0.231924 + 0.133901i
\(515\) 6.65215i 0.293129i
\(516\) 6.36661 + 3.16020i 0.280274 + 0.139120i
\(517\) 14.1958 + 8.19594i 0.624330 + 0.360457i
\(518\) 0 0
\(519\) −11.8066 5.86047i −0.518254 0.257246i
\(520\) 1.95171 3.38046i 0.0855882 0.148243i
\(521\) −19.1664 + 33.1972i −0.839696 + 1.45440i 0.0504538 + 0.998726i \(0.483933\pi\)
−0.890149 + 0.455669i \(0.849400\pi\)
\(522\) −40.5380 + 5.12336i −1.77430 + 0.224243i
\(523\) −23.6468 + 13.6525i −1.03400 + 0.596982i −0.918129 0.396282i \(-0.870300\pi\)
−0.115874 + 0.993264i \(0.536967\pi\)
\(524\) 1.71878 + 2.97702i 0.0750855 + 0.130052i
\(525\) 0 0
\(526\) 20.7844 35.9997i 0.906245 1.56966i
\(527\) 9.23684i 0.402363i
\(528\) −19.9490 + 40.1898i −0.868170 + 1.74904i
\(529\) 20.8345 0.905847
\(530\) 1.39676 + 2.41926i 0.0606714 + 0.105086i
\(531\) 5.36625 + 7.06898i 0.232875 + 0.306768i
\(532\) 0 0
\(533\) 53.2012 30.7158i 2.30440 1.33045i
\(534\) 13.7023 0.862446i 0.592957 0.0373217i
\(535\) −0.172504 + 0.0995952i −0.00745799 + 0.00430588i
\(536\) −10.3709 + 5.98762i −0.447953 + 0.258626i
\(537\) −7.12168 + 14.3475i −0.307323 + 0.619140i
\(538\) 4.38055 2.52911i 0.188859 0.109038i
\(539\) 0 0
\(540\) 3.44387 2.97315i 0.148201 0.127944i
\(541\) −9.78052 16.9404i −0.420498 0.728323i 0.575491 0.817808i \(-0.304811\pi\)
−0.995988 + 0.0894853i \(0.971478\pi\)
\(542\) 11.1556 0.479174
\(543\) −20.6803 + 1.30165i −0.887478 + 0.0558593i
\(544\) 10.7066i 0.459042i
\(545\) 2.02981 3.51574i 0.0869476 0.150598i
\(546\) 0 0
\(547\) 12.6246 + 21.8665i 0.539790 + 0.934944i 0.998915 + 0.0465723i \(0.0148298\pi\)
−0.459125 + 0.888372i \(0.651837\pi\)
\(548\) −1.42469 + 0.822544i −0.0608597 + 0.0351373i
\(549\) 29.3169 + 12.3218i 1.25121 + 0.525883i
\(550\) −22.3180 + 38.6559i −0.951642 + 1.64829i
\(551\) −8.97260 + 15.5410i −0.382246 + 0.662069i
\(552\) −0.188811 2.99978i −0.00803632 0.127679i
\(553\) 0 0
\(554\) 14.9673 + 8.64136i 0.635898 + 0.367136i
\(555\) −7.44564 + 4.94716i −0.316050 + 0.209995i
\(556\) 9.58089i 0.406320i
\(557\) −28.8204 16.6395i −1.22116 0.705036i −0.255994 0.966678i \(-0.582403\pi\)
−0.965165 + 0.261642i \(0.915736\pi\)
\(558\) −30.9018 + 3.90550i −1.30818 + 0.165333i
\(559\) 15.5135i 0.656152i
\(560\) 0 0
\(561\) −6.67225 + 13.4421i −0.281703 + 0.567525i
\(562\) −9.67080 −0.407938
\(563\) −15.2587 26.4289i −0.643079 1.11385i −0.984742 0.174023i \(-0.944323\pi\)
0.341663 0.939823i \(-0.389010\pi\)
\(564\) 0.455038 + 7.22952i 0.0191606 + 0.304418i
\(565\) 4.98940 + 2.88063i 0.209905 + 0.121189i
\(566\) −36.0358 −1.51470
\(567\) 0 0
\(568\) −5.62028 −0.235822
\(569\) −13.4044 7.73906i −0.561943 0.324438i 0.191982 0.981398i \(-0.438509\pi\)
−0.753925 + 0.656960i \(0.771842\pi\)
\(570\) −0.310607 4.93484i −0.0130099 0.206698i
\(571\) 12.2042 + 21.1384i 0.510731 + 0.884613i 0.999923 + 0.0124362i \(0.00395868\pi\)
−0.489191 + 0.872177i \(0.662708\pi\)
\(572\) 36.9689 1.54575
\(573\) −15.6135 + 31.4553i −0.652264 + 1.31407i
\(574\) 0 0
\(575\) 6.74455i 0.281267i
\(576\) −6.81141 + 0.860853i −0.283809 + 0.0358689i
\(577\) −12.6901 7.32664i −0.528296 0.305012i 0.212026 0.977264i \(-0.431994\pi\)
−0.740322 + 0.672252i \(0.765327\pi\)
\(578\) 26.2777i 1.09301i
\(579\) −24.3685 + 16.1914i −1.01272 + 0.672890i
\(580\) −5.63746 3.25479i −0.234083 0.135148i
\(581\) 0 0
\(582\) −3.31316 52.6385i −0.137335 2.18194i
\(583\) 6.27811 10.8740i 0.260013 0.450355i
\(584\) −6.96085 + 12.0565i −0.288042 + 0.498904i
\(585\) 9.15454 + 3.84763i 0.378493 + 0.159080i
\(586\) 28.9280 16.7016i 1.19500 0.689936i
\(587\) −11.6129 20.1141i −0.479314 0.830197i 0.520404 0.853920i \(-0.325781\pi\)
−0.999719 + 0.0237232i \(0.992448\pi\)
\(588\) 0 0
\(589\) −6.83975 + 11.8468i −0.281827 + 0.488139i
\(590\) 3.49884i 0.144045i
\(591\) 32.3430 2.03572i 1.33041 0.0837385i
\(592\) 38.9586 1.60119
\(593\) 5.55605 + 9.62337i 0.228160 + 0.395184i 0.957263 0.289220i \(-0.0933958\pi\)
−0.729103 + 0.684404i \(0.760062\pi\)
\(594\) −47.7916 16.6385i −1.96091 0.682684i
\(595\) 0 0
\(596\) 8.14153 4.70051i 0.333490 0.192541i
\(597\) 13.8960 27.9951i 0.568724 1.14576i
\(598\) −11.9712 + 6.91159i −0.489540 + 0.282636i
\(599\) 13.5581 7.82776i 0.553968 0.319833i −0.196753 0.980453i \(-0.563040\pi\)
0.750721 + 0.660620i \(0.229706\pi\)
\(600\) 9.34289 0.588057i 0.381422 0.0240073i
\(601\) 30.5665 17.6476i 1.24684 0.719861i 0.276358 0.961055i \(-0.410872\pi\)
0.970477 + 0.241194i \(0.0775390\pi\)
\(602\) 0 0
\(603\) −18.4203 24.2652i −0.750133 0.988154i
\(604\) 4.28512 + 7.42205i 0.174359 + 0.301999i
\(605\) −11.1421 −0.452990
\(606\) 6.56250 13.2210i 0.266583 0.537065i
\(607\) 38.8051i 1.57505i −0.616284 0.787524i \(-0.711363\pi\)
0.616284 0.787524i \(-0.288637\pi\)
\(608\) −7.92809 + 13.7318i −0.321526 + 0.556900i
\(609\) 0 0
\(610\) 6.26850 + 10.8574i 0.253804 + 0.439602i
\(611\) −13.6923 + 7.90523i −0.553929 + 0.319811i
\(612\) −6.57946 + 0.831539i −0.265959 + 0.0336130i
\(613\) −15.8786 + 27.5025i −0.641330 + 1.11082i 0.343806 + 0.939041i \(0.388284\pi\)
−0.985136 + 0.171776i \(0.945049\pi\)
\(614\) −23.8572 + 41.3220i −0.962800 + 1.66762i
\(615\) −11.9997 5.95632i −0.483876 0.240182i
\(616\) 0 0
\(617\) 1.25518 + 0.724680i 0.0505317 + 0.0291745i 0.525053 0.851070i \(-0.324045\pi\)
−0.474521 + 0.880244i \(0.657379\pi\)
\(618\) −29.2877 14.5376i −1.17813 0.584787i
\(619\) 29.1666i 1.17230i −0.810201 0.586152i \(-0.800642\pi\)
0.810201 0.586152i \(-0.199358\pi\)
\(620\) −4.29740 2.48110i −0.172588 0.0996435i
\(621\) 7.51093 1.43341i 0.301403 0.0575210i
\(622\) 51.8217i 2.07786i
\(623\) 0 0
\(624\) −23.9501 36.0457i −0.958771 1.44298i
\(625\) 18.9223 0.756892
\(626\) −5.10764 8.84668i −0.204142 0.353585i
\(627\) −18.5112 + 12.2995i −0.739267 + 0.491196i
\(628\) 2.33778 + 1.34972i 0.0932877 + 0.0538597i
\(629\) 13.0303 0.519551
\(630\) 0 0
\(631\) 11.7428 0.467473 0.233736 0.972300i \(-0.424905\pi\)
0.233736 + 0.972300i \(0.424905\pi\)
\(632\) −7.11011 4.10503i −0.282825 0.163289i
\(633\) −12.5198 6.21449i −0.497619 0.247004i
\(634\) 30.7488 + 53.2585i 1.22119 + 2.11516i
\(635\) −1.61385 −0.0640436
\(636\) 5.53783 0.348560i 0.219589 0.0138213i
\(637\) 0 0
\(638\) 72.4041i 2.86651i
\(639\) −1.79277 14.1851i −0.0709207 0.561153i
\(640\) 5.00119 + 2.88744i 0.197689 + 0.114136i
\(641\) 11.5778i 0.457296i −0.973509 0.228648i \(-0.926569\pi\)
0.973509 0.228648i \(-0.0734305\pi\)
\(642\) 0.0615032 + 0.977146i 0.00242734 + 0.0385649i
\(643\) −13.1240 7.57712i −0.517558 0.298812i 0.218377 0.975865i \(-0.429924\pi\)
−0.735935 + 0.677052i \(0.763257\pi\)
\(644\) 0 0
\(645\) 2.81782 1.87226i 0.110951 0.0737203i
\(646\) −3.60370 + 6.24180i −0.141786 + 0.245580i
\(647\) 6.22057 10.7743i 0.244556 0.423583i −0.717451 0.696609i \(-0.754691\pi\)
0.962007 + 0.273026i \(0.0880246\pi\)
\(648\) 2.64052 + 10.2795i 0.103729 + 0.403819i
\(649\) 13.6195 7.86325i 0.534614 0.308659i
\(650\) −21.5264 37.2847i −0.844333 1.46243i
\(651\) 0 0
\(652\) −4.06032 + 7.03268i −0.159014 + 0.275421i
\(653\) 4.58431i 0.179398i 0.995969 + 0.0896990i \(0.0285905\pi\)
−0.995969 + 0.0896990i \(0.971410\pi\)
\(654\) −11.0430 16.6200i −0.431814 0.649894i
\(655\) 1.63619 0.0639313
\(656\) 29.1921 + 50.5621i 1.13976 + 1.97412i
\(657\) −32.6500 13.7227i −1.27380 0.535375i
\(658\) 0 0
\(659\) 15.6110 9.01301i 0.608118 0.351097i −0.164111 0.986442i \(-0.552475\pi\)
0.772228 + 0.635345i \(0.219142\pi\)
\(660\) −4.46163 6.71490i −0.173669 0.261377i
\(661\) −0.554932 + 0.320390i −0.0215844 + 0.0124617i −0.510753 0.859727i \(-0.670633\pi\)
0.489169 + 0.872189i \(0.337300\pi\)
\(662\) −48.1899 + 27.8225i −1.87296 + 1.08135i
\(663\) −8.01047 12.0560i −0.311101 0.468217i
\(664\) 7.18189 4.14647i 0.278711 0.160914i
\(665\) 0 0
\(666\) 5.50943 + 43.5927i 0.213486 + 1.68918i
\(667\) −5.47018 9.47462i −0.211806 0.366859i
\(668\) 1.89338 0.0732572
\(669\) 22.4077 + 33.7243i 0.866332 + 1.30386i
\(670\) 12.0102i 0.463995i
\(671\) 28.1755 48.8014i 1.08770 1.88396i
\(672\) 0 0
\(673\) −11.0695 19.1729i −0.426697 0.739061i 0.569880 0.821728i \(-0.306990\pi\)
−0.996577 + 0.0826667i \(0.973656\pi\)
\(674\) −5.90591 + 3.40978i −0.227487 + 0.131340i
\(675\) 4.46441 + 23.3930i 0.171835 + 0.900398i
\(676\) −9.01280 + 15.6106i −0.346646 + 0.600409i
\(677\) 10.0160 17.3482i 0.384947 0.666747i −0.606815 0.794843i \(-0.707553\pi\)
0.991762 + 0.128096i \(0.0408865\pi\)
\(678\) 23.5865 15.6717i 0.905833 0.601869i
\(679\) 0 0
\(680\) 1.07456 + 0.620397i 0.0412074 + 0.0237911i
\(681\) −1.57145 24.9667i −0.0602180 0.956727i
\(682\) 55.1931i 2.11345i
\(683\) 18.1316 + 10.4683i 0.693786 + 0.400558i 0.805029 0.593235i \(-0.202150\pi\)
−0.111243 + 0.993793i \(0.535483\pi\)
\(684\) −9.05429 3.80550i −0.346200 0.145507i
\(685\) 0.783018i 0.0299176i
\(686\) 0 0
\(687\) −22.6688 + 1.42681i −0.864867 + 0.0544361i
\(688\) −14.7440 −0.562108
\(689\) 6.05543 + 10.4883i 0.230693 + 0.399573i
\(690\) 2.70015 + 1.34028i 0.102793 + 0.0510235i
\(691\) 1.33430 + 0.770358i 0.0507591 + 0.0293058i 0.525165 0.851001i \(-0.324004\pi\)
−0.474406 + 0.880306i \(0.657337\pi\)
\(692\) −10.3217 −0.392372
\(693\) 0 0
\(694\) 13.0740 0.496282
\(695\) 3.94929 + 2.28012i 0.149805 + 0.0864900i
\(696\) 12.6478 8.40366i 0.479413 0.318540i
\(697\) 9.76372 + 16.9113i 0.369827 + 0.640560i
\(698\) 27.9423 1.05763
\(699\) 8.10161 + 12.1932i 0.306431 + 0.461189i
\(700\) 0 0
\(701\) 31.6641i 1.19593i −0.801520 0.597967i \(-0.795975\pi\)
0.801520 0.597967i \(-0.204025\pi\)
\(702\) 36.9464 31.8965i 1.39445 1.20386i
\(703\) 16.7121 + 9.64873i 0.630309 + 0.363909i
\(704\) 12.1657i 0.458513i
\(705\) 3.08834 + 1.53296i 0.116314 + 0.0577346i
\(706\) 54.6922 + 31.5766i 2.05837 + 1.18840i
\(707\) 0 0
\(708\) 6.22509 + 3.08995i 0.233953 + 0.116127i
\(709\) −11.1762 + 19.3578i −0.419732 + 0.726996i −0.995912 0.0903259i \(-0.971209\pi\)
0.576181 + 0.817322i \(0.304542\pi\)
\(710\) 2.81835 4.88152i 0.105771 0.183200i
\(711\) 8.09272 19.2547i 0.303501 0.722108i
\(712\) −4.41873 + 2.55116i −0.165599 + 0.0956086i
\(713\) −4.16988 7.22244i −0.156163 0.270482i
\(714\) 0 0
\(715\) 8.79812 15.2388i 0.329031 0.569898i
\(716\) 12.5430i 0.468754i
\(717\) 21.5290 43.3729i 0.804016 1.61979i
\(718\) −12.1382 −0.452994
\(719\) −19.4544 33.6959i −0.725525 1.25665i −0.958757 0.284226i \(-0.908264\pi\)
0.233232 0.972421i \(-0.425070\pi\)
\(720\) −3.65677 + 8.70041i −0.136280 + 0.324245i
\(721\) 0 0
\(722\) 20.9011 12.0672i 0.777858 0.449096i
\(723\) −38.7350 + 2.43804i −1.44057 + 0.0906717i
\(724\) −14.0522 + 8.11306i −0.522247 + 0.301520i
\(725\) 29.5090 17.0370i 1.09594 0.632739i
\(726\) −24.3498 + 49.0557i −0.903707 + 1.82063i
\(727\) −11.4647 + 6.61915i −0.425202 + 0.245491i −0.697301 0.716779i \(-0.745616\pi\)
0.272098 + 0.962269i \(0.412282\pi\)
\(728\) 0 0
\(729\) −25.1024 + 9.94341i −0.929717 + 0.368274i
\(730\) −6.98119 12.0918i −0.258385 0.447536i
\(731\) −4.93133 −0.182392
\(732\) 24.8532 1.56430i 0.918600 0.0578182i
\(733\) 32.4727i 1.19941i 0.800222 + 0.599704i \(0.204715\pi\)
−0.800222 + 0.599704i \(0.795285\pi\)
\(734\) 2.83703 4.91389i 0.104717 0.181375i
\(735\) 0 0
\(736\) −4.83338 8.37167i −0.178161 0.308584i
\(737\) −46.7508 + 26.9916i −1.72209 + 0.994248i
\(738\) −52.4483 + 39.8149i −1.93065 + 1.46561i
\(739\) 6.91965 11.9852i 0.254543 0.440882i −0.710228 0.703972i \(-0.751408\pi\)
0.964771 + 0.263090i \(0.0847415\pi\)
\(740\) −3.50005 + 6.06227i −0.128665 + 0.222854i
\(741\) −1.34659 21.3942i −0.0494681 0.785936i
\(742\) 0 0
\(743\) 31.8593 + 18.3940i 1.16880 + 0.674810i 0.953398 0.301715i \(-0.0975591\pi\)
0.215406 + 0.976525i \(0.430892\pi\)
\(744\) 9.64131 6.40605i 0.353468 0.234857i
\(745\) 4.47464i 0.163938i
\(746\) −15.3898 8.88530i −0.563461 0.325314i
\(747\) 12.7562 + 16.8038i 0.466725 + 0.614819i
\(748\) 11.7514i 0.429675i
\(749\) 0 0
\(750\) −8.72824 + 17.5841i −0.318710 + 0.642081i
\(751\) −3.65905 −0.133520 −0.0667602 0.997769i \(-0.521266\pi\)
−0.0667602 + 0.997769i \(0.521266\pi\)
\(752\) −7.51308 13.0130i −0.273974 0.474537i
\(753\) 0.695888 + 11.0561i 0.0253596 + 0.402906i
\(754\) −60.4797 34.9180i −2.20254 1.27164i
\(755\) 4.07921 0.148458
\(756\) 0 0
\(757\) 13.8901 0.504842 0.252421 0.967617i \(-0.418773\pi\)
0.252421 + 0.967617i \(0.418773\pi\)
\(758\) −12.3135 7.10920i −0.447246 0.258218i
\(759\) −0.851141 13.5227i −0.0308944 0.490843i
\(760\) 0.918790 + 1.59139i 0.0333280 + 0.0577258i
\(761\) 13.6417 0.494510 0.247255 0.968950i \(-0.420471\pi\)
0.247255 + 0.968950i \(0.420471\pi\)
\(762\) −3.52689 + 7.10536i −0.127766 + 0.257400i
\(763\) 0 0
\(764\) 27.4991i 0.994884i
\(765\) −1.22306 + 2.90998i −0.0442198 + 0.105211i
\(766\) −39.0500 22.5455i −1.41093 0.814602i
\(767\) 15.1687i 0.547709i
\(768\) 30.2453 20.0961i 1.09138 0.725154i
\(769\) −22.9328 13.2402i −0.826976 0.477455i 0.0258399 0.999666i \(-0.491774\pi\)
−0.852816 + 0.522211i \(0.825107\pi\)
\(770\) 0 0
\(771\) −0.360583 5.72884i −0.0129861 0.206319i
\(772\) −11.4552 + 19.8410i −0.412281 + 0.714092i
\(773\) −13.1109 + 22.7087i −0.471566 + 0.816776i −0.999471 0.0325274i \(-0.989644\pi\)
0.527905 + 0.849303i \(0.322978\pi\)
\(774\) −2.08505 16.4978i −0.0749457 0.593000i
\(775\) 22.4945 12.9872i 0.808026 0.466514i
\(776\) 9.80047 + 16.9749i 0.351816 + 0.609364i
\(777\) 0 0
\(778\) 5.88703 10.1966i 0.211060 0.365567i
\(779\) 28.9196i 1.03615i
\(780\) 7.76069 0.488471i 0.277877 0.0174901i
\(781\) −25.3357 −0.906581
\(782\) −2.19701 3.80533i −0.0785649 0.136078i
\(783\) 25.2445 + 29.2412i 0.902164 + 1.04500i
\(784\) 0 0
\(785\) 1.11272 0.642430i 0.0397148 0.0229293i
\(786\) 3.57572 7.20374i 0.127542 0.256949i
\(787\) −25.1554 + 14.5235i −0.896694 + 0.517706i −0.876126 0.482082i \(-0.839881\pi\)
−0.0205676 + 0.999788i \(0.506547\pi\)
\(788\) 21.9770 12.6884i 0.782899 0.452007i
\(789\) −39.2229 + 2.46875i −1.39637 + 0.0878899i
\(790\) 7.13088 4.11702i 0.253705 0.146477i
\(791\) 0 0
\(792\) 18.6581 2.35809i 0.662987 0.0837909i
\(793\) 27.1761 + 47.0704i 0.965052 + 1.67152i
\(794\) 24.2926 0.862111
\(795\) 1.17425 2.36568i 0.0416464 0.0839019i
\(796\) 24.4741i 0.867462i
\(797\) −15.8184 + 27.3983i −0.560317 + 0.970498i 0.437151 + 0.899388i \(0.355987\pi\)
−0.997469 + 0.0711097i \(0.977346\pi\)
\(798\) 0 0
\(799\) −2.51286 4.35240i −0.0888986 0.153977i
\(800\) 26.0738 15.0537i 0.921848 0.532229i
\(801\) −7.84838 10.3387i −0.277309 0.365300i
\(802\) 14.4777 25.0762i 0.511227 0.885470i
\(803\) −31.3788 + 54.3497i −1.10733 + 1.91796i
\(804\) −21.3684 10.6066i −0.753605 0.374068i
\(805\) 0 0
\(806\) −46.1032 26.6177i −1.62392 0.937569i
\(807\) −4.28353 2.12622i −0.150787 0.0748465i
\(808\) 5.48534i 0.192974i
\(809\) −34.5466 19.9455i −1.21459 0.701245i −0.250836 0.968029i \(-0.580706\pi\)
−0.963756 + 0.266784i \(0.914039\pi\)
\(810\) −10.2525 2.86135i −0.360235 0.100538i
\(811\) 28.9516i 1.01663i 0.861172 + 0.508314i \(0.169731\pi\)
−0.861172 + 0.508314i \(0.830269\pi\)
\(812\) 0 0
\(813\) −5.83676 8.78452i −0.204704 0.308087i
\(814\) 77.8601 2.72899
\(815\) 1.93260 + 3.34737i 0.0676961 + 0.117253i
\(816\) 11.4580 7.61310i 0.401109 0.266512i
\(817\) −6.32473 3.65158i −0.221274 0.127753i
\(818\) −9.92684 −0.347084
\(819\) 0 0
\(820\) −10.4905 −0.366344
\(821\) −0.359377 0.207486i −0.0125423 0.00724132i 0.493716 0.869623i \(-0.335638\pi\)
−0.506258 + 0.862382i \(0.668972\pi\)
\(822\) 3.44743 + 1.71120i 0.120243 + 0.0596851i
\(823\) 6.54814 + 11.3417i 0.228254 + 0.395347i 0.957291 0.289127i \(-0.0933650\pi\)
−0.729037 + 0.684475i \(0.760032\pi\)
\(824\) 12.1514 0.423314
\(825\) 42.1168 2.65090i 1.46632 0.0922926i
\(826\) 0 0
\(827\) 35.2637i 1.22624i 0.789990 + 0.613120i \(0.210086\pi\)
−0.789990 + 0.613120i \(0.789914\pi\)
\(828\) 4.76920 3.62042i 0.165741 0.125818i
\(829\) 29.0164 + 16.7526i 1.00778 + 0.581842i 0.910541 0.413419i \(-0.135666\pi\)
0.0972388 + 0.995261i \(0.468999\pi\)
\(830\) 8.31716i 0.288693i
\(831\) −1.02641 16.3073i −0.0356058 0.565695i
\(832\) −10.1621 5.86710i −0.352308 0.203405i
\(833\) 0 0
\(834\) 18.6696 12.4048i 0.646474 0.429542i
\(835\) 0.450600 0.780462i 0.0155937 0.0270090i
\(836\) −8.70178 + 15.0719i −0.300957 + 0.521273i
\(837\) 19.2437 + 22.2904i 0.665159 + 0.770468i
\(838\) 38.8615 22.4367i 1.34245 0.775062i
\(839\) 22.4984 + 38.9684i 0.776731 + 1.34534i 0.933816 + 0.357753i \(0.116457\pi\)
−0.157085 + 0.987585i \(0.550210\pi\)
\(840\) 0 0
\(841\) 13.1358 22.7519i 0.452959 0.784548i
\(842\) 21.9604i 0.756805i
\(843\) 5.05990 + 7.61532i 0.174272 + 0.262285i
\(844\) −10.9452 −0.376749
\(845\) 4.28985 + 7.43024i 0.147575 + 0.255608i
\(846\) 13.4985 10.2470i 0.464087 0.352301i
\(847\) 0 0
\(848\) −9.96802 + 5.75504i −0.342303 + 0.197629i
\(849\) 18.8544 + 28.3765i 0.647082 + 0.973880i
\(850\) 11.8518 6.84265i 0.406514 0.234701i
\(851\) −10.1886 + 5.88238i −0.349260 + 0.201645i
\(852\) −6.19615 9.32541i −0.212277 0.319483i
\(853\) −15.8457 + 9.14854i −0.542548 + 0.313240i −0.746111 0.665822i \(-0.768081\pi\)
0.203563 + 0.979062i \(0.434748\pi\)
\(854\) 0 0
\(855\) −3.72345 + 2.82657i −0.127339 + 0.0966665i
\(856\) −0.181929 0.315111i −0.00621822 0.0107703i
\(857\) 10.5785 0.361355 0.180678 0.983542i \(-0.442171\pi\)
0.180678 + 0.983542i \(0.442171\pi\)
\(858\) −47.8651 72.0386i −1.63409 2.45936i
\(859\) 32.6748i 1.11485i 0.830227 + 0.557425i \(0.188210\pi\)
−0.830227 + 0.557425i \(0.811790\pi\)
\(860\) 1.32460 2.29428i 0.0451686 0.0782343i
\(861\) 0 0
\(862\) 28.2332 + 48.9014i 0.961628 + 1.66559i
\(863\) 8.09878 4.67583i 0.275686 0.159167i −0.355783 0.934569i \(-0.615786\pi\)
0.631469 + 0.775401i \(0.282452\pi\)
\(864\) 22.3057 + 25.8372i 0.758856 + 0.879000i
\(865\) −2.45643 + 4.25465i −0.0835210 + 0.144663i
\(866\) 5.55262 9.61742i 0.188686 0.326813i
\(867\) −20.6925 + 13.7489i −0.702755 + 0.466937i
\(868\) 0 0
\(869\) −32.0517 18.5050i −1.08728 0.627741i
\(870\) 0.956675 + 15.1994i 0.0324343 + 0.515308i
\(871\) 52.0684i 1.76427i
\(872\) 6.42216 + 3.70783i 0.217482 + 0.125563i
\(873\) −39.7170 + 30.1502i −1.34422 + 1.02043i
\(874\) 6.50742i 0.220117i
\(875\) 0 0
\(876\) −27.6788 + 1.74215i −0.935181 + 0.0588618i
\(877\) 1.23815 0.0418095 0.0209048 0.999781i \(-0.493345\pi\)
0.0209048 + 0.999781i \(0.493345\pi\)
\(878\) −24.8650 43.0674i −0.839153 1.45346i
\(879\) −28.2873 14.0410i −0.954107 0.473591i
\(880\) 14.4828 + 8.36167i 0.488217 + 0.281872i
\(881\) −37.3480 −1.25828 −0.629142 0.777290i \(-0.716594\pi\)
−0.629142 + 0.777290i \(0.716594\pi\)
\(882\) 0 0
\(883\) 3.90708 0.131484 0.0657419 0.997837i \(-0.479059\pi\)
0.0657419 + 0.997837i \(0.479059\pi\)
\(884\) −9.81607 5.66731i −0.330150 0.190612i
\(885\) 2.75518 1.83064i 0.0926144 0.0615364i
\(886\) −4.90216 8.49079i −0.164691 0.285254i
\(887\) 14.5116 0.487251 0.243625 0.969869i \(-0.421663\pi\)
0.243625 + 0.969869i \(0.421663\pi\)
\(888\) −9.03691 13.6009i −0.303259 0.456415i
\(889\) 0 0
\(890\) 5.11722i 0.171530i
\(891\) 11.9032 + 46.3392i 0.398772 + 1.55242i
\(892\) 27.4585 + 15.8532i 0.919379 + 0.530804i
\(893\) 7.44295i 0.249069i
\(894\) −19.7007 9.77885i −0.658890 0.327054i
\(895\) 5.17028 + 2.98506i 0.172823 + 0.0997797i
\(896\) 0 0
\(897\) 11.7061 + 5.81056i 0.390855 + 0.194009i
\(898\) 31.3659 54.3273i 1.04669 1.81293i
\(899\) 21.0666 36.4884i 0.702610 1.21696i
\(900\) 11.2759 + 14.8538i 0.375864 + 0.495127i
\(901\) −3.33395 + 1.92486i −0.111070 + 0.0641263i
\(902\) 58.3414 + 101.050i 1.94256 + 3.36460i
\(903\) 0 0
\(904\) −5.26201 + 9.11407i −0.175012 + 0.303129i
\(905\) 7.72320i 0.256728i
\(906\) 8.91468 17.9597i 0.296170 0.596671i
\(907\) −19.2139 −0.637987 −0.318993 0.947757i \(-0.603345\pi\)
−0.318993 + 0.947757i \(0.603345\pi\)
\(908\) −9.79466 16.9648i −0.325047 0.562998i
\(909\) −13.8445 + 1.74972i −0.459193 + 0.0580346i
\(910\) 0 0
\(911\) 10.1252 5.84579i 0.335463 0.193680i −0.322801 0.946467i \(-0.604624\pi\)
0.658264 + 0.752787i \(0.271291\pi\)
\(912\) 20.3329 1.27979i 0.673290 0.0423780i
\(913\) 32.3752 18.6919i 1.07146 0.618610i
\(914\) −25.1637 + 14.5283i −0.832342 + 0.480553i
\(915\) 5.26992 10.6169i 0.174218 0.350984i
\(916\) −15.4034 + 8.89314i −0.508942 + 0.293838i
\(917\) 0 0
\(918\) 10.1390 + 11.7443i 0.334638 + 0.387619i
\(919\) −19.9930 34.6289i −0.659508 1.14230i −0.980743 0.195301i \(-0.937432\pi\)
0.321236 0.946999i \(-0.395902\pi\)
\(920\) −1.12029 −0.0369347
\(921\) 45.0216 2.83374i 1.48351 0.0933747i
\(922\) 23.8411i 0.785164i
\(923\) 12.2185 21.1631i 0.402177 0.696591i
\(924\) 0 0
\(925\) −18.3209 31.7326i −0.602386 1.04336i
\(926\) 19.1005 11.0277i 0.627683 0.362393i
\(927\) 3.87608 + 30.6690i 0.127307 + 1.00730i
\(928\) 24.4187 42.2944i 0.801582 1.38838i
\(929\) 6.38359 11.0567i 0.209439 0.362759i −0.742099 0.670290i \(-0.766170\pi\)
0.951538 + 0.307532i \(0.0995030\pi\)
\(930\) 0.729267 + 11.5864i 0.0239136 + 0.379933i
\(931\) 0 0
\(932\) 9.92775 + 5.73179i 0.325194 + 0.187751i
\(933\) −40.8072 + 27.1138i −1.33597 + 0.887667i
\(934\) 37.2738i 1.21964i
\(935\) 4.84400 + 2.79669i 0.158416 + 0.0914614i
\(936\) −7.02842 + 16.7225i −0.229731 + 0.546591i
\(937\) 11.9436i 0.390179i 0.980785 + 0.195090i \(0.0624997\pi\)
−0.980785 + 0.195090i \(0.937500\pi\)
\(938\) 0 0
\(939\) −4.29398 + 8.65074i −0.140129 + 0.282306i
\(940\) 2.69991 0.0880614
\(941\) −12.5159 21.6781i −0.408006 0.706686i 0.586661 0.809833i \(-0.300442\pi\)
−0.994666 + 0.103146i \(0.967109\pi\)
\(942\) −0.396721 6.30300i −0.0129259 0.205363i
\(943\) −15.2688 8.81546i −0.497221 0.287071i
\(944\) −14.4162 −0.469208
\(945\) 0 0
\(946\) −29.4663 −0.958032
\(947\) 28.3671 + 16.3777i 0.921806 + 0.532205i 0.884211 0.467088i \(-0.154697\pi\)
0.0375955 + 0.999293i \(0.488030\pi\)
\(948\) −1.02740 16.3230i −0.0333684 0.530148i
\(949\) −30.2658 52.4219i −0.982470 1.70169i
\(950\) 20.2676 0.657566
\(951\) 25.8504 52.0789i 0.838258 1.68877i
\(952\) 0 0
\(953\) 6.77705i 0.219530i 0.993958 + 0.109765i \(0.0350099\pi\)
−0.993958 + 0.109765i \(0.964990\pi\)
\(954\) −7.84926 10.3399i −0.254129 0.334766i
\(955\) 11.3353 + 6.54443i 0.366801 + 0.211773i
\(956\) 37.9178i 1.22635i
\(957\) 57.0150 37.8829i 1.84303 1.22458i
\(958\) −38.5512 22.2575i −1.24553 0.719109i
\(959\) 0 0
\(960\) 0.160746 + 2.55388i 0.00518804 + 0.0824262i
\(961\) 0.558897 0.968037i 0.0180289 0.0312270i
\(962\) −37.5492 + 65.0371i −1.21063 + 2.09688i
\(963\) 0.737279 0.559688i 0.0237585 0.0180357i
\(964\) −26.3203 + 15.1960i −0.847721 + 0.489432i
\(965\) 5.45236 + 9.44377i 0.175518 + 0.304006i
\(966\) 0 0
\(967\) 20.7901 36.0096i 0.668566 1.15799i −0.309739 0.950822i \(-0.600242\pi\)
0.978305 0.207169i \(-0.0664249\pi\)
\(968\) 20.3531i 0.654173i
\(969\) 6.80064 0.428044i 0.218468 0.0137507i
\(970\) −19.6582 −0.631187
\(971\) −20.6257 35.7248i −0.661910 1.14646i −0.980113 0.198439i \(-0.936413\pi\)
0.318203 0.948023i \(-0.396921\pi\)
\(972\) −14.1452 + 15.7141i −0.453707 + 0.504029i
\(973\) 0 0
\(974\) −43.3281 + 25.0155i −1.38832 + 0.801547i
\(975\) −18.0972 + 36.4589i −0.579573 + 1.16762i
\(976\) −44.7354 + 25.8280i −1.43195 + 0.826734i
\(977\) −3.96507 + 2.28924i −0.126854 + 0.0732391i −0.562084 0.827080i \(-0.690000\pi\)
0.435230 + 0.900319i \(0.356667\pi\)
\(978\) 18.9611 1.19344i 0.606309 0.0381621i
\(979\) −19.9192 + 11.5004i −0.636621 + 0.367553i
\(980\) 0 0
\(981\) −7.30968 + 17.3917i −0.233380 + 0.555273i
\(982\) 14.0569 + 24.3473i 0.448575 + 0.776955i
\(983\) 24.4801 0.780794 0.390397 0.920647i \(-0.372338\pi\)
0.390397 + 0.920647i \(0.372338\pi\)
\(984\) 10.8803 21.9198i 0.346852 0.698777i
\(985\) 12.0787i 0.384860i
\(986\) 11.0995 19.2249i 0.353480 0.612245i
\(987\) 0 0
\(988\) −8.39312 14.5373i −0.267021 0.462494i
\(989\) 3.85589 2.22620i 0.122610 0.0707890i
\(990\) −7.30818 + 17.3881i −0.232269 + 0.552630i
\(991\) 21.0927 36.5337i 0.670032 1.16053i −0.307862 0.951431i \(-0.599614\pi\)
0.977894 0.209099i \(-0.0670531\pi\)
\(992\) 18.6142 32.2407i 0.591001 1.02364i
\(993\) 47.1226 + 23.3903i 1.49539 + 0.742268i
\(994\) 0 0
\(995\) −10.0884 5.82452i −0.319822 0.184650i
\(996\) 14.7978 + 7.34518i 0.468885 + 0.232741i
\(997\) 9.67834i 0.306516i −0.988186 0.153258i \(-0.951023\pi\)
0.988186 0.153258i \(-0.0489765\pi\)
\(998\) 16.3578 + 9.44415i 0.517796 + 0.298949i
\(999\) 31.4447 27.1468i 0.994867 0.858886i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.s.d.374.8 48
3.2 odd 2 1323.2.s.d.962.17 48
7.2 even 3 441.2.i.d.68.17 48
7.3 odd 6 441.2.o.e.293.17 yes 48
7.4 even 3 441.2.o.e.293.18 yes 48
7.5 odd 6 441.2.i.d.68.18 48
7.6 odd 2 inner 441.2.s.d.374.7 48
9.2 odd 6 441.2.i.d.227.8 48
9.7 even 3 1323.2.i.d.521.17 48
21.2 odd 6 1323.2.i.d.1097.15 48
21.5 even 6 1323.2.i.d.1097.17 48
21.11 odd 6 1323.2.o.e.881.7 48
21.17 even 6 1323.2.o.e.881.8 48
21.20 even 2 1323.2.s.d.962.18 48
63.2 odd 6 inner 441.2.s.d.362.7 48
63.11 odd 6 441.2.o.e.146.17 48
63.16 even 3 1323.2.s.d.656.18 48
63.20 even 6 441.2.i.d.227.7 48
63.25 even 3 1323.2.o.e.440.8 48
63.34 odd 6 1323.2.i.d.521.15 48
63.38 even 6 441.2.o.e.146.18 yes 48
63.47 even 6 inner 441.2.s.d.362.8 48
63.52 odd 6 1323.2.o.e.440.7 48
63.61 odd 6 1323.2.s.d.656.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.17 48 7.2 even 3
441.2.i.d.68.18 48 7.5 odd 6
441.2.i.d.227.7 48 63.20 even 6
441.2.i.d.227.8 48 9.2 odd 6
441.2.o.e.146.17 48 63.11 odd 6
441.2.o.e.146.18 yes 48 63.38 even 6
441.2.o.e.293.17 yes 48 7.3 odd 6
441.2.o.e.293.18 yes 48 7.4 even 3
441.2.s.d.362.7 48 63.2 odd 6 inner
441.2.s.d.362.8 48 63.47 even 6 inner
441.2.s.d.374.7 48 7.6 odd 2 inner
441.2.s.d.374.8 48 1.1 even 1 trivial
1323.2.i.d.521.15 48 63.34 odd 6
1323.2.i.d.521.17 48 9.7 even 3
1323.2.i.d.1097.15 48 21.2 odd 6
1323.2.i.d.1097.17 48 21.5 even 6
1323.2.o.e.440.7 48 63.52 odd 6
1323.2.o.e.440.8 48 63.25 even 3
1323.2.o.e.881.7 48 21.11 odd 6
1323.2.o.e.881.8 48 21.17 even 6
1323.2.s.d.656.17 48 63.61 odd 6
1323.2.s.d.656.18 48 63.16 even 3
1323.2.s.d.962.17 48 3.2 odd 2
1323.2.s.d.962.18 48 21.20 even 2