Properties

Label 441.2.i.d.227.7
Level $441$
Weight $2$
Character 441.227
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 227.7
Character \(\chi\) \(=\) 441.227
Dual form 441.2.i.d.68.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.83202i q^{2} +(-1.55144 + 0.770089i) q^{3} -1.35631 q^{4} +(-0.322784 + 0.559079i) q^{5} +(1.41082 + 2.84227i) q^{6} -1.17925i q^{8} +(1.81393 - 2.38949i) q^{9} +(1.02425 + 0.591348i) q^{10} +(-4.60375 + 2.65797i) q^{11} +(2.10424 - 1.04448i) q^{12} +(-4.44045 + 2.56370i) q^{13} +(0.0702397 - 1.11595i) q^{15} -4.87304 q^{16} +(0.814931 - 1.41150i) q^{17} +(-4.37761 - 3.32316i) q^{18} +(-2.09039 + 1.20689i) q^{19} +(0.437796 - 0.758285i) q^{20} +(4.86947 + 8.43418i) q^{22} +(1.27442 + 0.735784i) q^{23} +(0.908129 + 1.82954i) q^{24} +(2.29162 + 3.96920i) q^{25} +(4.69675 + 8.13502i) q^{26} +(-0.974073 + 5.10404i) q^{27} +(-6.43846 - 3.71724i) q^{29} +(-2.04445 - 0.128681i) q^{30} +5.66726i q^{31} +6.56903i q^{32} +(5.09556 - 7.66898i) q^{33} +(-2.58590 - 1.49297i) q^{34} +(-2.46025 + 3.24090i) q^{36} +(3.99736 + 6.92362i) q^{37} +(2.21105 + 3.82965i) q^{38} +(4.91482 - 7.39696i) q^{39} +(0.659294 + 0.380644i) q^{40} +(-5.99052 - 10.3759i) q^{41} +(-1.51281 + 2.62026i) q^{43} +(6.24412 - 3.60504i) q^{44} +(0.750407 + 1.78542i) q^{45} +(1.34797 - 2.33476i) q^{46} -3.08353 q^{47} +(7.56023 - 3.75268i) q^{48} +(7.27168 - 4.19830i) q^{50} +(-0.177334 + 2.81743i) q^{51} +(6.02264 - 3.47717i) q^{52} +(2.04554 + 1.18100i) q^{53} +(9.35072 + 1.78453i) q^{54} -3.43181i q^{55} +(2.31371 - 3.48220i) q^{57} +(-6.81008 + 11.7954i) q^{58} +2.95836 q^{59} +(-0.0952669 + 1.51357i) q^{60} -10.6004i q^{61} +10.3825 q^{62} +2.28853 q^{64} -3.31008i q^{65} +(-14.0498 - 9.33518i) q^{66} -10.1549 q^{67} +(-1.10530 + 1.91444i) q^{68} +(-2.54380 - 0.160111i) q^{69} -4.76597i q^{71} +(-2.81781 - 2.13908i) q^{72} +(-10.2239 - 5.90277i) q^{73} +(12.6842 - 7.32325i) q^{74} +(-6.61195 - 4.39323i) q^{75} +(2.83523 - 1.63692i) q^{76} +(-13.5514 - 9.00406i) q^{78} +6.96209 q^{79} +(1.57294 - 2.72441i) q^{80} +(-2.41935 - 8.66872i) q^{81} +(-19.0089 + 10.9748i) q^{82} +(-3.51618 + 6.09021i) q^{83} +(0.526093 + 0.911221i) q^{85} +(4.80038 + 2.77150i) q^{86} +(12.8515 + 0.808893i) q^{87} +(3.13442 + 5.42898i) q^{88} +(2.16337 + 3.74706i) q^{89} +(3.27093 - 1.37476i) q^{90} +(-1.72850 - 0.997953i) q^{92} +(-4.36429 - 8.79240i) q^{93} +5.64910i q^{94} -1.55826i q^{95} +(-5.05873 - 10.1914i) q^{96} +(14.3946 + 8.31075i) q^{97} +(-1.99965 + 15.8220i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 8 q^{9} + 24 q^{11} - 40 q^{15} + 48 q^{16} - 16 q^{18} + 48 q^{23} - 24 q^{25} - 24 q^{30} - 8 q^{36} - 56 q^{39} - 96 q^{44} + 48 q^{50} - 24 q^{51} - 48 q^{53} + 80 q^{57} + 168 q^{60}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.83202i 1.29544i −0.761880 0.647718i \(-0.775723\pi\)
0.761880 0.647718i \(-0.224277\pi\)
\(3\) −1.55144 + 0.770089i −0.895724 + 0.444611i
\(4\) −1.35631 −0.678156
\(5\) −0.322784 + 0.559079i −0.144353 + 0.250028i −0.929132 0.369749i \(-0.879444\pi\)
0.784778 + 0.619777i \(0.212777\pi\)
\(6\) 1.41082 + 2.84227i 0.575966 + 1.16035i
\(7\) 0 0
\(8\) 1.17925i 0.416928i
\(9\) 1.81393 2.38949i 0.604642 0.796497i
\(10\) 1.02425 + 0.591348i 0.323895 + 0.187001i
\(11\) −4.60375 + 2.65797i −1.38808 + 0.801410i −0.993099 0.117279i \(-0.962583\pi\)
−0.394983 + 0.918688i \(0.629250\pi\)
\(12\) 2.10424 1.04448i 0.607440 0.301516i
\(13\) −4.44045 + 2.56370i −1.23156 + 0.711041i −0.967355 0.253425i \(-0.918443\pi\)
−0.264205 + 0.964467i \(0.585110\pi\)
\(14\) 0 0
\(15\) 0.0702397 1.11595i 0.0181358 0.288137i
\(16\) −4.87304 −1.21826
\(17\) 0.814931 1.41150i 0.197650 0.342339i −0.750116 0.661306i \(-0.770002\pi\)
0.947766 + 0.318967i \(0.103336\pi\)
\(18\) −4.37761 3.32316i −1.03181 0.783275i
\(19\) −2.09039 + 1.20689i −0.479569 + 0.276879i −0.720237 0.693728i \(-0.755967\pi\)
0.240668 + 0.970608i \(0.422634\pi\)
\(20\) 0.437796 0.758285i 0.0978942 0.169558i
\(21\) 0 0
\(22\) 4.86947 + 8.43418i 1.03818 + 1.79817i
\(23\) 1.27442 + 0.735784i 0.265734 + 0.153422i 0.626947 0.779062i \(-0.284304\pi\)
−0.361213 + 0.932483i \(0.617637\pi\)
\(24\) 0.908129 + 1.82954i 0.185371 + 0.373453i
\(25\) 2.29162 + 3.96920i 0.458324 + 0.793841i
\(26\) 4.69675 + 8.13502i 0.921109 + 1.59541i
\(27\) −0.974073 + 5.10404i −0.187461 + 0.982272i
\(28\) 0 0
\(29\) −6.43846 3.71724i −1.19559 0.690275i −0.236022 0.971748i \(-0.575844\pi\)
−0.959569 + 0.281473i \(0.909177\pi\)
\(30\) −2.04445 0.128681i −0.373263 0.0234938i
\(31\) 5.66726i 1.01787i 0.860805 + 0.508935i \(0.169961\pi\)
−0.860805 + 0.508935i \(0.830039\pi\)
\(32\) 6.56903i 1.16125i
\(33\) 5.09556 7.66898i 0.887022 1.33500i
\(34\) −2.58590 1.49297i −0.443479 0.256043i
\(35\) 0 0
\(36\) −2.46025 + 3.24090i −0.410042 + 0.540150i
\(37\) 3.99736 + 6.92362i 0.657161 + 1.13824i 0.981347 + 0.192244i \(0.0615763\pi\)
−0.324186 + 0.945993i \(0.605090\pi\)
\(38\) 2.21105 + 3.82965i 0.358680 + 0.621251i
\(39\) 4.91482 7.39696i 0.787000 1.18446i
\(40\) 0.659294 + 0.380644i 0.104244 + 0.0601851i
\(41\) −5.99052 10.3759i −0.935562 1.62044i −0.773628 0.633640i \(-0.781560\pi\)
−0.161934 0.986802i \(-0.551773\pi\)
\(42\) 0 0
\(43\) −1.51281 + 2.62026i −0.230701 + 0.399586i −0.958015 0.286719i \(-0.907435\pi\)
0.727314 + 0.686305i \(0.240769\pi\)
\(44\) 6.24412 3.60504i 0.941336 0.543481i
\(45\) 0.750407 + 1.78542i 0.111864 + 0.266154i
\(46\) 1.34797 2.33476i 0.198748 0.344241i
\(47\) −3.08353 −0.449779 −0.224889 0.974384i \(-0.572202\pi\)
−0.224889 + 0.974384i \(0.572202\pi\)
\(48\) 7.56023 3.75268i 1.09122 0.541652i
\(49\) 0 0
\(50\) 7.27168 4.19830i 1.02837 0.593730i
\(51\) −0.177334 + 2.81743i −0.0248317 + 0.394519i
\(52\) 6.02264 3.47717i 0.835190 0.482197i
\(53\) 2.04554 + 1.18100i 0.280977 + 0.162222i 0.633866 0.773443i \(-0.281467\pi\)
−0.352889 + 0.935665i \(0.614801\pi\)
\(54\) 9.35072 + 1.78453i 1.27247 + 0.242843i
\(55\) 3.43181i 0.462745i
\(56\) 0 0
\(57\) 2.31371 3.48220i 0.306458 0.461229i
\(58\) −6.81008 + 11.7954i −0.894207 + 1.54881i
\(59\) 2.95836 0.385146 0.192573 0.981283i \(-0.438317\pi\)
0.192573 + 0.981283i \(0.438317\pi\)
\(60\) −0.0952669 + 1.51357i −0.0122989 + 0.195402i
\(61\) 10.6004i 1.35724i −0.734491 0.678618i \(-0.762579\pi\)
0.734491 0.678618i \(-0.237421\pi\)
\(62\) 10.3825 1.31859
\(63\) 0 0
\(64\) 2.28853 0.286066
\(65\) 3.31008i 0.410565i
\(66\) −14.0498 9.33518i −1.72941 1.14908i
\(67\) −10.1549 −1.24062 −0.620312 0.784355i \(-0.712994\pi\)
−0.620312 + 0.784355i \(0.712994\pi\)
\(68\) −1.10530 + 1.91444i −0.134037 + 0.232159i
\(69\) −2.54380 0.160111i −0.306237 0.0192751i
\(70\) 0 0
\(71\) 4.76597i 0.565617i −0.959176 0.282808i \(-0.908734\pi\)
0.959176 0.282808i \(-0.0912661\pi\)
\(72\) −2.81781 2.13908i −0.332082 0.252092i
\(73\) −10.2239 5.90277i −1.19662 0.690867i −0.236817 0.971554i \(-0.576104\pi\)
−0.959799 + 0.280687i \(0.909438\pi\)
\(74\) 12.6842 7.32325i 1.47451 0.851311i
\(75\) −6.61195 4.39323i −0.763482 0.507286i
\(76\) 2.83523 1.63692i 0.325223 0.187767i
\(77\) 0 0
\(78\) −13.5514 9.00406i −1.53440 1.01951i
\(79\) 6.96209 0.783296 0.391648 0.920115i \(-0.371905\pi\)
0.391648 + 0.920115i \(0.371905\pi\)
\(80\) 1.57294 2.72441i 0.175860 0.304599i
\(81\) −2.41935 8.66872i −0.268816 0.963191i
\(82\) −19.0089 + 10.9748i −2.09918 + 1.21196i
\(83\) −3.51618 + 6.09021i −0.385951 + 0.668487i −0.991901 0.127016i \(-0.959460\pi\)
0.605949 + 0.795503i \(0.292793\pi\)
\(84\) 0 0
\(85\) 0.526093 + 0.911221i 0.0570628 + 0.0988357i
\(86\) 4.80038 + 2.77150i 0.517638 + 0.298859i
\(87\) 12.8515 + 0.808893i 1.37782 + 0.0867225i
\(88\) 3.13442 + 5.42898i 0.334130 + 0.578731i
\(89\) 2.16337 + 3.74706i 0.229317 + 0.397188i 0.957606 0.288082i \(-0.0930176\pi\)
−0.728289 + 0.685270i \(0.759684\pi\)
\(90\) 3.27093 1.37476i 0.344786 0.144913i
\(91\) 0 0
\(92\) −1.72850 0.997953i −0.180209 0.104044i
\(93\) −4.36429 8.79240i −0.452556 0.911730i
\(94\) 5.64910i 0.582660i
\(95\) 1.55826i 0.159874i
\(96\) −5.05873 10.1914i −0.516305 1.04016i
\(97\) 14.3946 + 8.31075i 1.46156 + 0.843829i 0.999083 0.0428048i \(-0.0136294\pi\)
0.462472 + 0.886634i \(0.346963\pi\)
\(98\) 0 0
\(99\) −1.99965 + 15.8220i −0.200972 + 1.59017i
\(100\) −3.10815 5.38348i −0.310815 0.538348i
\(101\) −2.32577 4.02835i −0.231423 0.400836i 0.726804 0.686845i \(-0.241005\pi\)
−0.958227 + 0.286009i \(0.907671\pi\)
\(102\) 5.16159 + 0.324879i 0.511074 + 0.0321678i
\(103\) −8.92382 5.15217i −0.879290 0.507658i −0.00886554 0.999961i \(-0.502822\pi\)
−0.870424 + 0.492303i \(0.836155\pi\)
\(104\) 3.02324 + 5.23641i 0.296453 + 0.513472i
\(105\) 0 0
\(106\) 2.16361 3.74749i 0.210149 0.363988i
\(107\) 0.267212 0.154275i 0.0258324 0.0149143i −0.487028 0.873386i \(-0.661919\pi\)
0.512861 + 0.858472i \(0.328586\pi\)
\(108\) 1.32115 6.92267i 0.127127 0.666134i
\(109\) 3.14423 5.44596i 0.301162 0.521628i −0.675237 0.737601i \(-0.735959\pi\)
0.976399 + 0.215972i \(0.0692921\pi\)
\(110\) −6.28716 −0.599457
\(111\) −11.5335 7.66326i −1.09471 0.727365i
\(112\) 0 0
\(113\) 7.72869 4.46216i 0.727054 0.419765i −0.0902895 0.995916i \(-0.528779\pi\)
0.817343 + 0.576151i \(0.195446\pi\)
\(114\) −6.37948 4.23876i −0.597493 0.396997i
\(115\) −0.822722 + 0.474999i −0.0767192 + 0.0442939i
\(116\) 8.73256 + 5.04174i 0.810797 + 0.468114i
\(117\) −1.92872 + 15.2608i −0.178310 + 1.41086i
\(118\) 5.41979i 0.498932i
\(119\) 0 0
\(120\) −1.31598 0.0828302i −0.120132 0.00756133i
\(121\) 8.62966 14.9470i 0.784515 1.35882i
\(122\) −19.4201 −1.75821
\(123\) 17.2843 + 11.4843i 1.55847 + 1.03551i
\(124\) 7.68657i 0.690274i
\(125\) −6.18664 −0.553350
\(126\) 0 0
\(127\) −2.49989 −0.221829 −0.110915 0.993830i \(-0.535378\pi\)
−0.110915 + 0.993830i \(0.535378\pi\)
\(128\) 8.94541i 0.790670i
\(129\) 0.329196 5.23017i 0.0289840 0.460491i
\(130\) −6.06415 −0.531861
\(131\) −1.26725 + 2.19494i −0.110720 + 0.191773i −0.916061 0.401039i \(-0.868649\pi\)
0.805341 + 0.592812i \(0.201982\pi\)
\(132\) −6.91116 + 10.4015i −0.601540 + 0.905337i
\(133\) 0 0
\(134\) 18.6041i 1.60715i
\(135\) −2.53914 2.19209i −0.218535 0.188665i
\(136\) −1.66452 0.961008i −0.142731 0.0824058i
\(137\) −1.05041 + 0.606456i −0.0897429 + 0.0518131i −0.544200 0.838956i \(-0.683167\pi\)
0.454457 + 0.890769i \(0.349833\pi\)
\(138\) −0.293327 + 4.66030i −0.0249696 + 0.396711i
\(139\) 6.11754 3.53196i 0.518883 0.299577i −0.217594 0.976039i \(-0.569821\pi\)
0.736478 + 0.676462i \(0.236488\pi\)
\(140\) 0 0
\(141\) 4.78390 2.37459i 0.402877 0.199977i
\(142\) −8.73137 −0.732721
\(143\) 13.6285 23.6052i 1.13967 1.97397i
\(144\) −8.83934 + 11.6441i −0.736611 + 0.970341i
\(145\) 4.15646 2.39974i 0.345175 0.199287i
\(146\) −10.8140 + 18.7304i −0.894974 + 1.55014i
\(147\) 0 0
\(148\) −5.42166 9.39060i −0.445658 0.771902i
\(149\) −6.00270 3.46566i −0.491760 0.283918i 0.233544 0.972346i \(-0.424968\pi\)
−0.725304 + 0.688428i \(0.758301\pi\)
\(150\) −8.04849 + 12.1133i −0.657157 + 0.989043i
\(151\) −3.15939 5.47223i −0.257108 0.445323i 0.708358 0.705853i \(-0.249436\pi\)
−0.965466 + 0.260530i \(0.916103\pi\)
\(152\) 1.42323 + 2.46510i 0.115439 + 0.199946i
\(153\) −1.89455 4.50763i −0.153165 0.364420i
\(154\) 0 0
\(155\) −3.16844 1.82930i −0.254495 0.146933i
\(156\) −6.66602 + 10.0326i −0.533709 + 0.803250i
\(157\) 1.99028i 0.158842i −0.996841 0.0794208i \(-0.974693\pi\)
0.996841 0.0794208i \(-0.0253071\pi\)
\(158\) 12.7547i 1.01471i
\(159\) −4.08301 0.256991i −0.323804 0.0203807i
\(160\) −3.67260 2.12038i −0.290345 0.167631i
\(161\) 0 0
\(162\) −15.8813 + 4.43230i −1.24775 + 0.348234i
\(163\) 2.99365 + 5.18515i 0.234480 + 0.406132i 0.959122 0.282994i \(-0.0913278\pi\)
−0.724641 + 0.689126i \(0.757994\pi\)
\(164\) 8.12502 + 14.0729i 0.634457 + 1.09891i
\(165\) 2.64280 + 5.32424i 0.205742 + 0.414492i
\(166\) 11.1574 + 6.44173i 0.865983 + 0.499976i
\(167\) 0.697990 + 1.20895i 0.0540121 + 0.0935516i 0.891767 0.452494i \(-0.149466\pi\)
−0.837755 + 0.546046i \(0.816132\pi\)
\(168\) 0 0
\(169\) 6.64508 11.5096i 0.511160 0.885355i
\(170\) 1.66938 0.963816i 0.128035 0.0739213i
\(171\) −0.907966 + 7.18419i −0.0694339 + 0.549388i
\(172\) 2.05184 3.55389i 0.156451 0.270982i
\(173\) 7.61012 0.578586 0.289293 0.957241i \(-0.406580\pi\)
0.289293 + 0.957241i \(0.406580\pi\)
\(174\) 1.48191 23.5442i 0.112343 1.78488i
\(175\) 0 0
\(176\) 22.4343 12.9524i 1.69105 0.976326i
\(177\) −4.58972 + 2.27820i −0.344984 + 0.171240i
\(178\) 6.86471 3.96334i 0.514532 0.297065i
\(179\) −8.00888 4.62393i −0.598612 0.345609i 0.169883 0.985464i \(-0.445661\pi\)
−0.768495 + 0.639855i \(0.778994\pi\)
\(180\) −1.01779 2.42158i −0.0758613 0.180494i
\(181\) 11.9634i 0.889234i −0.895721 0.444617i \(-0.853340\pi\)
0.895721 0.444617i \(-0.146660\pi\)
\(182\) 0 0
\(183\) 8.16322 + 16.4458i 0.603443 + 1.21571i
\(184\) 0.867674 1.50286i 0.0639658 0.110792i
\(185\) −5.16113 −0.379454
\(186\) −16.1079 + 7.99549i −1.18109 + 0.586258i
\(187\) 8.66426i 0.633593i
\(188\) 4.18223 0.305020
\(189\) 0 0
\(190\) −2.85477 −0.207107
\(191\) 20.2749i 1.46704i 0.679666 + 0.733521i \(0.262125\pi\)
−0.679666 + 0.733521i \(0.737875\pi\)
\(192\) −3.55052 + 1.76237i −0.256236 + 0.127188i
\(193\) −16.8917 −1.21589 −0.607944 0.793980i \(-0.708006\pi\)
−0.607944 + 0.793980i \(0.708006\pi\)
\(194\) 15.2255 26.3713i 1.09313 1.89335i
\(195\) 2.54906 + 5.13539i 0.182542 + 0.367753i
\(196\) 0 0
\(197\) 18.7102i 1.33305i 0.745484 + 0.666524i \(0.232219\pi\)
−0.745484 + 0.666524i \(0.767781\pi\)
\(198\) 28.9863 + 3.66340i 2.05996 + 0.260346i
\(199\) 15.6271 + 9.02231i 1.10778 + 0.639574i 0.938252 0.345952i \(-0.112444\pi\)
0.169523 + 0.985526i \(0.445777\pi\)
\(200\) 4.68069 2.70240i 0.330975 0.191088i
\(201\) 15.7548 7.82021i 1.11126 0.551595i
\(202\) −7.38004 + 4.26087i −0.519258 + 0.299794i
\(203\) 0 0
\(204\) 0.240520 3.82131i 0.0168397 0.267545i
\(205\) 7.73458 0.540207
\(206\) −9.43889 + 16.3486i −0.657639 + 1.13906i
\(207\) 4.06984 1.71055i 0.282874 0.118891i
\(208\) 21.6385 12.4930i 1.50036 0.866234i
\(209\) 6.41576 11.1124i 0.443788 0.768663i
\(210\) 0 0
\(211\) −4.03491 6.98868i −0.277775 0.481120i 0.693057 0.720883i \(-0.256264\pi\)
−0.970831 + 0.239763i \(0.922930\pi\)
\(212\) −2.77440 1.60180i −0.190546 0.110012i
\(213\) 3.67022 + 7.39411i 0.251479 + 0.506636i
\(214\) −0.282636 0.489540i −0.0193206 0.0334642i
\(215\) −0.976621 1.69156i −0.0666050 0.115363i
\(216\) 6.01894 + 1.14868i 0.409537 + 0.0781576i
\(217\) 0 0
\(218\) −9.97713 5.76030i −0.675736 0.390137i
\(219\) 20.4074 + 1.28448i 1.37900 + 0.0867968i
\(220\) 4.65460i 0.313813i
\(221\) 8.35694i 0.562148i
\(222\) −14.0393 + 21.1296i −0.942255 + 1.41812i
\(223\) 20.2450 + 11.6884i 1.35570 + 0.782716i 0.989041 0.147638i \(-0.0471671\pi\)
0.366662 + 0.930354i \(0.380500\pi\)
\(224\) 0 0
\(225\) 13.6412 + 1.72403i 0.909414 + 0.114935i
\(226\) −8.17479 14.1591i −0.543779 0.941852i
\(227\) 7.22154 + 12.5081i 0.479310 + 0.830190i 0.999718 0.0237280i \(-0.00755356\pi\)
−0.520408 + 0.853918i \(0.674220\pi\)
\(228\) −3.13811 + 4.72296i −0.207826 + 0.312785i
\(229\) 11.3568 + 6.55685i 0.750479 + 0.433289i 0.825867 0.563865i \(-0.190686\pi\)
−0.0753881 + 0.997154i \(0.524020\pi\)
\(230\) 0.870209 + 1.50725i 0.0573799 + 0.0993849i
\(231\) 0 0
\(232\) −4.38357 + 7.59256i −0.287795 + 0.498476i
\(233\) −7.31966 + 4.22601i −0.479527 + 0.276855i −0.720219 0.693746i \(-0.755959\pi\)
0.240692 + 0.970601i \(0.422626\pi\)
\(234\) 27.9581 + 3.53346i 1.82768 + 0.230989i
\(235\) 0.995314 1.72393i 0.0649271 0.112457i
\(236\) −4.01246 −0.261189
\(237\) −10.8013 + 5.36143i −0.701617 + 0.348262i
\(238\) 0 0
\(239\) −24.2111 + 13.9783i −1.56608 + 0.904179i −0.569466 + 0.822015i \(0.692850\pi\)
−0.996619 + 0.0821642i \(0.973817\pi\)
\(240\) −0.342281 + 5.43807i −0.0220941 + 0.351026i
\(241\) −19.4058 + 11.2039i −1.25004 + 0.721710i −0.971117 0.238605i \(-0.923310\pi\)
−0.278921 + 0.960314i \(0.589977\pi\)
\(242\) −27.3833 15.8097i −1.76026 1.01629i
\(243\) 10.4292 + 11.5859i 0.669031 + 0.743235i
\(244\) 14.3774i 0.920418i
\(245\) 0 0
\(246\) 21.0396 31.6652i 1.34143 2.01890i
\(247\) 6.18819 10.7183i 0.393745 0.681987i
\(248\) 6.68312 0.424379
\(249\) 0.765142 12.1564i 0.0484889 0.770378i
\(250\) 11.3341i 0.716829i
\(251\) 6.39587 0.403704 0.201852 0.979416i \(-0.435304\pi\)
0.201852 + 0.979416i \(0.435304\pi\)
\(252\) 0 0
\(253\) −7.82278 −0.491814
\(254\) 4.57985i 0.287366i
\(255\) −1.51792 1.00856i −0.0950560 0.0631587i
\(256\) 20.9653 1.31033
\(257\) 1.65705 2.87009i 0.103364 0.179031i −0.809705 0.586837i \(-0.800373\pi\)
0.913069 + 0.407806i \(0.133706\pi\)
\(258\) −9.58180 0.603094i −0.596537 0.0375470i
\(259\) 0 0
\(260\) 4.48950i 0.278427i
\(261\) −20.5612 + 8.64184i −1.27271 + 0.534916i
\(262\) 4.02118 + 2.32163i 0.248429 + 0.143431i
\(263\) −19.6502 + 11.3451i −1.21169 + 0.699567i −0.963126 0.269050i \(-0.913290\pi\)
−0.248559 + 0.968617i \(0.579957\pi\)
\(264\) −9.04366 6.00894i −0.556599 0.369825i
\(265\) −1.32054 + 0.762413i −0.0811200 + 0.0468347i
\(266\) 0 0
\(267\) −6.24191 4.14736i −0.381999 0.253814i
\(268\) 13.7733 0.841336
\(269\) −1.38050 + 2.39110i −0.0841707 + 0.145788i −0.905038 0.425332i \(-0.860157\pi\)
0.820867 + 0.571120i \(0.193491\pi\)
\(270\) −4.01595 + 4.65177i −0.244403 + 0.283098i
\(271\) 5.27342 3.04461i 0.320337 0.184947i −0.331206 0.943559i \(-0.607455\pi\)
0.651543 + 0.758612i \(0.274122\pi\)
\(272\) −3.97119 + 6.87830i −0.240789 + 0.417058i
\(273\) 0 0
\(274\) 1.11104 + 1.92438i 0.0671205 + 0.116256i
\(275\) −21.1001 12.1821i −1.27238 0.734611i
\(276\) 3.45018 + 0.217160i 0.207677 + 0.0130715i
\(277\) 4.71684 + 8.16980i 0.283407 + 0.490876i 0.972222 0.234062i \(-0.0752019\pi\)
−0.688814 + 0.724938i \(0.741869\pi\)
\(278\) −6.47064 11.2075i −0.388083 0.672180i
\(279\) 13.5419 + 10.2800i 0.810730 + 0.615446i
\(280\) 0 0
\(281\) 4.57153 + 2.63938i 0.272715 + 0.157452i 0.630121 0.776497i \(-0.283005\pi\)
−0.357406 + 0.933949i \(0.616339\pi\)
\(282\) −4.35031 8.76423i −0.259057 0.521902i
\(283\) 19.6699i 1.16926i −0.811302 0.584628i \(-0.801241\pi\)
0.811302 0.584628i \(-0.198759\pi\)
\(284\) 6.46414i 0.383576i
\(285\) 1.20000 + 2.41754i 0.0710818 + 0.143203i
\(286\) −43.2453 24.9677i −2.55715 1.47637i
\(287\) 0 0
\(288\) 15.6966 + 11.9157i 0.924933 + 0.702141i
\(289\) 7.17178 + 12.4219i 0.421869 + 0.730699i
\(290\) −4.39637 7.61474i −0.258164 0.447153i
\(291\) −28.7324 1.80847i −1.68433 0.106014i
\(292\) 13.8668 + 8.00600i 0.811493 + 0.468516i
\(293\) −9.11647 15.7902i −0.532590 0.922473i −0.999276 0.0380495i \(-0.987886\pi\)
0.466686 0.884423i \(-0.345448\pi\)
\(294\) 0 0
\(295\) −0.954912 + 1.65396i −0.0555971 + 0.0962970i
\(296\) 8.16470 4.71389i 0.474563 0.273989i
\(297\) −9.08201 26.0868i −0.526992 1.51371i
\(298\) −6.34917 + 10.9971i −0.367797 + 0.637044i
\(299\) −7.54531 −0.436356
\(300\) 8.96787 + 5.95858i 0.517760 + 0.344019i
\(301\) 0 0
\(302\) −10.0253 + 5.78808i −0.576888 + 0.333067i
\(303\) 6.71048 + 4.45869i 0.385507 + 0.256145i
\(304\) 10.1866 5.88122i 0.584240 0.337311i
\(305\) 5.92643 + 3.42163i 0.339347 + 0.195922i
\(306\) −8.25808 + 3.47086i −0.472083 + 0.198416i
\(307\) 26.0447i 1.48645i 0.669042 + 0.743224i \(0.266704\pi\)
−0.669042 + 0.743224i \(0.733296\pi\)
\(308\) 0 0
\(309\) 17.8124 + 1.12114i 1.01331 + 0.0637795i
\(310\) −3.35132 + 5.80466i −0.190342 + 0.329683i
\(311\) −28.2866 −1.60398 −0.801992 0.597334i \(-0.796227\pi\)
−0.801992 + 0.597334i \(0.796227\pi\)
\(312\) −8.72288 5.79581i −0.493836 0.328123i
\(313\) 5.57595i 0.315171i 0.987505 + 0.157586i \(0.0503710\pi\)
−0.987505 + 0.157586i \(0.949629\pi\)
\(314\) −3.64624 −0.205769
\(315\) 0 0
\(316\) −9.44276 −0.531197
\(317\) 33.5681i 1.88537i −0.333680 0.942686i \(-0.608291\pi\)
0.333680 0.942686i \(-0.391709\pi\)
\(318\) −0.470814 + 7.48017i −0.0264019 + 0.419467i
\(319\) 39.5214 2.21277
\(320\) −0.738701 + 1.27947i −0.0412947 + 0.0715244i
\(321\) −0.295758 + 0.445126i −0.0165076 + 0.0248445i
\(322\) 0 0
\(323\) 3.93412i 0.218901i
\(324\) 3.28139 + 11.7575i 0.182299 + 0.653194i
\(325\) −20.3517 11.7500i −1.12891 0.651775i
\(326\) 9.49931 5.48443i 0.526118 0.303755i
\(327\) −0.684201 + 10.8704i −0.0378364 + 0.601135i
\(328\) −12.2358 + 7.06433i −0.675608 + 0.390063i
\(329\) 0 0
\(330\) 9.75414 4.84167i 0.536948 0.266525i
\(331\) −30.3735 −1.66948 −0.834739 0.550646i \(-0.814381\pi\)
−0.834739 + 0.550646i \(0.814381\pi\)
\(332\) 4.76904 8.26023i 0.261735 0.453339i
\(333\) 23.7949 + 3.00729i 1.30395 + 0.164798i
\(334\) 2.21483 1.27873i 0.121190 0.0699692i
\(335\) 3.27785 5.67741i 0.179088 0.310190i
\(336\) 0 0
\(337\) 1.86121 + 3.22371i 0.101387 + 0.175607i 0.912256 0.409620i \(-0.134339\pi\)
−0.810870 + 0.585227i \(0.801005\pi\)
\(338\) −21.0859 12.1739i −1.14692 0.662175i
\(339\) −8.55433 + 12.8745i −0.464607 + 0.699249i
\(340\) −0.713547 1.23590i −0.0386975 0.0670261i
\(341\) −15.0634 26.0906i −0.815730 1.41289i
\(342\) 13.1616 + 1.66342i 0.711698 + 0.0899472i
\(343\) 0 0
\(344\) 3.08995 + 1.78398i 0.166599 + 0.0961858i
\(345\) 0.910612 1.37050i 0.0490257 0.0737853i
\(346\) 13.9419i 0.749522i
\(347\) 7.13637i 0.383100i 0.981483 + 0.191550i \(0.0613515\pi\)
−0.981483 + 0.191550i \(0.938649\pi\)
\(348\) −17.4306 1.09711i −0.934379 0.0588114i
\(349\) −13.2087 7.62607i −0.707047 0.408214i 0.102920 0.994690i \(-0.467182\pi\)
−0.809967 + 0.586476i \(0.800515\pi\)
\(350\) 0 0
\(351\) −8.75987 25.1615i −0.467567 1.34302i
\(352\) −17.4603 30.2421i −0.930637 1.61191i
\(353\) 17.2359 + 29.8534i 0.917373 + 1.58894i 0.803389 + 0.595455i \(0.203028\pi\)
0.113985 + 0.993482i \(0.463638\pi\)
\(354\) 4.17372 + 8.40847i 0.221831 + 0.446905i
\(355\) 2.66455 + 1.53838i 0.141420 + 0.0816487i
\(356\) −2.93420 5.08219i −0.155512 0.269355i
\(357\) 0 0
\(358\) −8.47115 + 14.6725i −0.447714 + 0.775464i
\(359\) −5.73791 + 3.31278i −0.302835 + 0.174842i −0.643716 0.765265i \(-0.722608\pi\)
0.340881 + 0.940107i \(0.389275\pi\)
\(360\) 2.10546 0.884919i 0.110967 0.0466393i
\(361\) −6.58684 + 11.4087i −0.346676 + 0.600460i
\(362\) −21.9173 −1.15195
\(363\) −1.87786 + 29.8350i −0.0985622 + 1.56593i
\(364\) 0 0
\(365\) 6.60022 3.81064i 0.345472 0.199458i
\(366\) 30.1291 14.9552i 1.57487 0.781722i
\(367\) −2.68222 + 1.54858i −0.140011 + 0.0808352i −0.568369 0.822774i \(-0.692425\pi\)
0.428358 + 0.903609i \(0.359092\pi\)
\(368\) −6.21028 3.58551i −0.323733 0.186907i
\(369\) −35.6595 4.50679i −1.85636 0.234614i
\(370\) 9.45532i 0.491559i
\(371\) 0 0
\(372\) 5.91934 + 11.9252i 0.306904 + 0.618295i
\(373\) −4.84999 + 8.40043i −0.251123 + 0.434958i −0.963835 0.266499i \(-0.914133\pi\)
0.712712 + 0.701457i \(0.247467\pi\)
\(374\) 15.8731 0.820780
\(375\) 9.59819 4.76426i 0.495648 0.246025i
\(376\) 3.63625i 0.187526i
\(377\) 38.1195 1.96326
\(378\) 0 0
\(379\) 7.76103 0.398657 0.199329 0.979933i \(-0.436124\pi\)
0.199329 + 0.979933i \(0.436124\pi\)
\(380\) 2.11349i 0.108420i
\(381\) 3.87842 1.92514i 0.198698 0.0986277i
\(382\) 37.1442 1.90046
\(383\) −12.3063 + 21.3152i −0.628825 + 1.08916i 0.358963 + 0.933352i \(0.383130\pi\)
−0.987788 + 0.155804i \(0.950203\pi\)
\(384\) −6.88876 13.8783i −0.351541 0.708222i
\(385\) 0 0
\(386\) 30.9459i 1.57511i
\(387\) 3.51697 + 8.36780i 0.178778 + 0.425359i
\(388\) −19.5236 11.2720i −0.991162 0.572248i
\(389\) −5.56578 + 3.21340i −0.282196 + 0.162926i −0.634417 0.772991i \(-0.718760\pi\)
0.352221 + 0.935917i \(0.385427\pi\)
\(390\) 9.40816 4.66994i 0.476401 0.236471i
\(391\) 2.07712 1.19923i 0.105044 0.0606474i
\(392\) 0 0
\(393\) 0.275761 4.38121i 0.0139103 0.221003i
\(394\) 34.2776 1.72688
\(395\) −2.24725 + 3.89235i −0.113071 + 0.195846i
\(396\) 2.71214 21.4596i 0.136290 1.07838i
\(397\) 11.4835 6.62998i 0.576338 0.332749i −0.183339 0.983050i \(-0.558690\pi\)
0.759677 + 0.650301i \(0.225357\pi\)
\(398\) 16.5291 28.6292i 0.828528 1.43505i
\(399\) 0 0
\(400\) −11.1672 19.3421i −0.558358 0.967105i
\(401\) 13.6877 + 7.90259i 0.683530 + 0.394636i 0.801184 0.598418i \(-0.204204\pi\)
−0.117653 + 0.993055i \(0.537537\pi\)
\(402\) −14.3268 28.8631i −0.714556 1.43956i
\(403\) −14.5291 25.1652i −0.723747 1.25357i
\(404\) 3.15447 + 5.46370i 0.156941 + 0.271829i
\(405\) 5.62742 + 1.44552i 0.279629 + 0.0718286i
\(406\) 0 0
\(407\) −36.8056 21.2497i −1.82439 1.05331i
\(408\) 3.32246 + 0.209121i 0.164486 + 0.0103530i
\(409\) 5.41851i 0.267928i −0.990986 0.133964i \(-0.957229\pi\)
0.990986 0.133964i \(-0.0427707\pi\)
\(410\) 14.1699i 0.699803i
\(411\) 1.16263 1.74979i 0.0573481 0.0863109i
\(412\) 12.1035 + 6.98795i 0.596296 + 0.344271i
\(413\) 0 0
\(414\) −3.13376 7.45605i −0.154016 0.366445i
\(415\) −2.26994 3.93165i −0.111427 0.192997i
\(416\) −16.8410 29.1694i −0.825697 1.43015i
\(417\) −6.77107 + 10.1907i −0.331581 + 0.499040i
\(418\) −20.3582 11.7538i −0.995754 0.574899i
\(419\) −12.2469 21.2123i −0.598302 1.03629i −0.993072 0.117509i \(-0.962509\pi\)
0.394770 0.918780i \(-0.370824\pi\)
\(420\) 0 0
\(421\) 5.99347 10.3810i 0.292104 0.505939i −0.682203 0.731163i \(-0.738978\pi\)
0.974307 + 0.225224i \(0.0723113\pi\)
\(422\) −12.8034 + 7.39206i −0.623261 + 0.359840i
\(423\) −5.59329 + 7.36806i −0.271955 + 0.358248i
\(424\) 1.39269 2.41221i 0.0676350 0.117147i
\(425\) 7.47005 0.362351
\(426\) 13.5462 6.72394i 0.656315 0.325776i
\(427\) 0 0
\(428\) −0.362424 + 0.209245i −0.0175184 + 0.0101143i
\(429\) −2.96563 + 47.1172i −0.143182 + 2.27484i
\(430\) −3.09897 + 1.78919i −0.149446 + 0.0862825i
\(431\) 26.6926 + 15.4110i 1.28574 + 0.742320i 0.977891 0.209117i \(-0.0670590\pi\)
0.307845 + 0.951437i \(0.400392\pi\)
\(432\) 4.74670 24.8722i 0.228376 1.19666i
\(433\) 6.06173i 0.291308i −0.989336 0.145654i \(-0.953471\pi\)
0.989336 0.145654i \(-0.0465287\pi\)
\(434\) 0 0
\(435\) −4.60049 + 6.92389i −0.220577 + 0.331975i
\(436\) −4.26455 + 7.38642i −0.204235 + 0.353745i
\(437\) −3.55204 −0.169917
\(438\) 2.35319 37.3869i 0.112440 1.78641i
\(439\) 27.1448i 1.29555i 0.761831 + 0.647776i \(0.224301\pi\)
−0.761831 + 0.647776i \(0.775699\pi\)
\(440\) −4.04697 −0.192932
\(441\) 0 0
\(442\) 15.3101 0.728228
\(443\) 5.35163i 0.254264i 0.991886 + 0.127132i \(0.0405771\pi\)
−0.991886 + 0.127132i \(0.959423\pi\)
\(444\) 15.6430 + 10.3938i 0.742383 + 0.493267i
\(445\) −2.79320 −0.132411
\(446\) 21.4135 37.0893i 1.01396 1.75623i
\(447\) 11.9817 + 0.754147i 0.566714 + 0.0356699i
\(448\) 0 0
\(449\) 34.2418i 1.61597i −0.589204 0.807985i \(-0.700558\pi\)
0.589204 0.807985i \(-0.299442\pi\)
\(450\) 3.15847 24.9910i 0.148891 1.17809i
\(451\) 55.1577 + 31.8453i 2.59727 + 1.49954i
\(452\) −10.4825 + 6.05208i −0.493056 + 0.284666i
\(453\) 9.11571 + 6.05681i 0.428293 + 0.284574i
\(454\) 22.9151 13.2300i 1.07546 0.620916i
\(455\) 0 0
\(456\) −4.10640 2.72844i −0.192300 0.127771i
\(457\) −15.8604 −0.741917 −0.370958 0.928649i \(-0.620971\pi\)
−0.370958 + 0.928649i \(0.620971\pi\)
\(458\) 12.0123 20.8059i 0.561299 0.972198i
\(459\) 6.41055 + 5.53434i 0.299219 + 0.258321i
\(460\) 1.11587 0.644247i 0.0520276 0.0300382i
\(461\) −6.50676 + 11.2700i −0.303050 + 0.524898i −0.976825 0.214038i \(-0.931338\pi\)
0.673775 + 0.738936i \(0.264672\pi\)
\(462\) 0 0
\(463\) −6.01941 10.4259i −0.279746 0.484534i 0.691576 0.722304i \(-0.256917\pi\)
−0.971321 + 0.237770i \(0.923583\pi\)
\(464\) 31.3749 + 18.1143i 1.45654 + 0.840935i
\(465\) 6.32437 + 0.398066i 0.293286 + 0.0184599i
\(466\) 7.74215 + 13.4098i 0.358648 + 0.621197i
\(467\) 10.1728 + 17.6199i 0.470743 + 0.815351i 0.999440 0.0334596i \(-0.0106525\pi\)
−0.528697 + 0.848811i \(0.677319\pi\)
\(468\) 2.61594 20.6984i 0.120922 0.956783i
\(469\) 0 0
\(470\) −3.15829 1.82344i −0.145681 0.0841090i
\(471\) 1.53269 + 3.08780i 0.0706227 + 0.142278i
\(472\) 3.48865i 0.160578i
\(473\) 16.0840i 0.739544i
\(474\) 9.82226 + 19.7882i 0.451151 + 0.908900i
\(475\) −9.58078 5.53146i −0.439596 0.253801i
\(476\) 0 0
\(477\) 6.53244 2.74557i 0.299100 0.125711i
\(478\) 25.6085 + 44.3553i 1.17131 + 2.02876i
\(479\) −12.1492 21.0430i −0.555109 0.961477i −0.997895 0.0648499i \(-0.979343\pi\)
0.442786 0.896627i \(-0.353990\pi\)
\(480\) 7.33070 + 0.461406i 0.334599 + 0.0210602i
\(481\) −35.5001 20.4960i −1.61867 0.934538i
\(482\) 20.5259 + 35.5519i 0.934929 + 1.61934i
\(483\) 0 0
\(484\) −11.7045 + 20.2728i −0.532023 + 0.921491i
\(485\) −9.29273 + 5.36516i −0.421961 + 0.243619i
\(486\) 21.2256 19.1065i 0.962813 0.866687i
\(487\) 13.6546 23.6504i 0.618747 1.07170i −0.370968 0.928646i \(-0.620974\pi\)
0.989715 0.143055i \(-0.0456927\pi\)
\(488\) −12.5005 −0.565871
\(489\) −8.63748 5.73907i −0.390601 0.259530i
\(490\) 0 0
\(491\) −13.2899 + 7.67290i −0.599763 + 0.346273i −0.768948 0.639311i \(-0.779220\pi\)
0.169185 + 0.985584i \(0.445886\pi\)
\(492\) −23.4429 15.5763i −1.05689 0.702235i
\(493\) −10.4938 + 6.05859i −0.472616 + 0.272865i
\(494\) −19.6361 11.3369i −0.883471 0.510072i
\(495\) −8.20028 6.22505i −0.368575 0.279795i
\(496\) 27.6168i 1.24003i
\(497\) 0 0
\(498\) −22.2708 1.40176i −0.997976 0.0628143i
\(499\) 5.15504 8.92879i 0.230771 0.399707i −0.727264 0.686358i \(-0.759208\pi\)
0.958035 + 0.286650i \(0.0925418\pi\)
\(500\) 8.39101 0.375257
\(501\) −2.01389 1.33810i −0.0899740 0.0597820i
\(502\) 11.7174i 0.522972i
\(503\) −24.6770 −1.10029 −0.550146 0.835068i \(-0.685428\pi\)
−0.550146 + 0.835068i \(0.685428\pi\)
\(504\) 0 0
\(505\) 3.00289 0.133627
\(506\) 14.3315i 0.637114i
\(507\) −1.44601 + 22.9738i −0.0642194 + 1.02030i
\(508\) 3.39063 0.150435
\(509\) −2.58601 + 4.47911i −0.114623 + 0.198533i −0.917629 0.397438i \(-0.869899\pi\)
0.803006 + 0.595971i \(0.203233\pi\)
\(510\) −1.84771 + 2.78087i −0.0818181 + 0.123139i
\(511\) 0 0
\(512\) 20.5181i 0.906778i
\(513\) −4.12381 11.8450i −0.182071 0.522971i
\(514\) −5.25807 3.03575i −0.231924 0.133901i
\(515\) 5.76093 3.32608i 0.253857 0.146564i
\(516\) −0.446492 + 7.09374i −0.0196557 + 0.312285i
\(517\) 14.1958 8.19594i 0.624330 0.360457i
\(518\) 0 0
\(519\) −11.8066 + 5.86047i −0.518254 + 0.257246i
\(520\) −3.90342 −0.171176
\(521\) −19.1664 + 33.1972i −0.839696 + 1.45440i 0.0504538 + 0.998726i \(0.483933\pi\)
−0.890149 + 0.455669i \(0.849400\pi\)
\(522\) 15.8320 + 37.6686i 0.692950 + 1.64871i
\(523\) 23.6468 13.6525i 1.03400 0.596982i 0.115874 0.993264i \(-0.463033\pi\)
0.918129 + 0.396282i \(0.129700\pi\)
\(524\) 1.71878 2.97702i 0.0750855 0.130052i
\(525\) 0 0
\(526\) 20.7844 + 35.9997i 0.906245 + 1.56966i
\(527\) 7.99934 + 4.61842i 0.348457 + 0.201182i
\(528\) −24.8309 + 37.3713i −1.08062 + 1.62638i
\(529\) −10.4172 18.0432i −0.452924 0.784487i
\(530\) 1.39676 + 2.41926i 0.0606714 + 0.105086i
\(531\) 5.36625 7.06898i 0.232875 0.306768i
\(532\) 0 0
\(533\) 53.2012 + 30.7158i 2.30440 + 1.33045i
\(534\) −7.59805 + 11.4353i −0.328800 + 0.494855i
\(535\) 0.199190i 0.00861175i
\(536\) 11.9752i 0.517251i
\(537\) 15.9861 + 1.00619i 0.689853 + 0.0434205i
\(538\) 4.38055 + 2.52911i 0.188859 + 0.109038i
\(539\) 0 0
\(540\) 3.44387 + 2.97315i 0.148201 + 0.127944i
\(541\) −9.78052 16.9404i −0.420498 0.728323i 0.575491 0.817808i \(-0.304811\pi\)
−0.995988 + 0.0894853i \(0.971478\pi\)
\(542\) −5.57779 9.66102i −0.239587 0.414977i
\(543\) 9.21290 + 18.5605i 0.395363 + 0.796508i
\(544\) 9.27219 + 5.35330i 0.397542 + 0.229521i
\(545\) 2.02981 + 3.51574i 0.0869476 + 0.150598i
\(546\) 0 0
\(547\) 12.6246 21.8665i 0.539790 0.934944i −0.459125 0.888372i \(-0.651837\pi\)
0.998915 0.0465723i \(-0.0148298\pi\)
\(548\) 1.42469 0.822544i 0.0608597 0.0351373i
\(549\) −25.3295 19.2283i −1.08104 0.820642i
\(550\) −22.3180 + 38.6559i −0.951642 + 1.64829i
\(551\) 17.9452 0.764492
\(552\) −0.188811 + 2.99978i −0.00803632 + 0.127679i
\(553\) 0 0
\(554\) 14.9673 8.64136i 0.635898 0.367136i
\(555\) 8.00718 3.97453i 0.339886 0.168710i
\(556\) −8.29730 + 4.79045i −0.351884 + 0.203160i
\(557\) 28.8204 + 16.6395i 1.22116 + 0.705036i 0.965165 0.261642i \(-0.0842640\pi\)
0.255994 + 0.966678i \(0.417597\pi\)
\(558\) 18.8332 24.8090i 0.797272 1.05025i
\(559\) 15.5135i 0.656152i
\(560\) 0 0
\(561\) −6.67225 13.4421i −0.281703 0.567525i
\(562\) 4.83540 8.37516i 0.203969 0.353285i
\(563\) 30.5175 1.28616 0.643079 0.765800i \(-0.277657\pi\)
0.643079 + 0.765800i \(0.277657\pi\)
\(564\) −6.48847 + 3.22069i −0.273214 + 0.135615i
\(565\) 5.76126i 0.242378i
\(566\) −36.0358 −1.51470
\(567\) 0 0
\(568\) −5.62028 −0.235822
\(569\) 15.4781i 0.648876i −0.945907 0.324438i \(-0.894825\pi\)
0.945907 0.324438i \(-0.105175\pi\)
\(570\) 4.42900 2.19843i 0.185510 0.0920819i
\(571\) −24.4085 −1.02146 −0.510731 0.859740i \(-0.670625\pi\)
−0.510731 + 0.859740i \(0.670625\pi\)
\(572\) −18.4845 + 32.0160i −0.772875 + 1.33866i
\(573\) −15.6135 31.4553i −0.652264 1.31407i
\(574\) 0 0
\(575\) 6.74455i 0.281267i
\(576\) 4.15122 5.46843i 0.172968 0.227851i
\(577\) 12.6901 + 7.32664i 0.528296 + 0.305012i 0.740322 0.672252i \(-0.234673\pi\)
−0.212026 + 0.977264i \(0.568006\pi\)
\(578\) 22.7572 13.1389i 0.946574 0.546505i
\(579\) 26.2064 13.0081i 1.08910 0.540598i
\(580\) −5.63746 + 3.25479i −0.234083 + 0.135148i
\(581\) 0 0
\(582\) −3.31316 + 52.6385i −0.137335 + 2.18194i
\(583\) −12.5562 −0.520026
\(584\) −6.96085 + 12.0565i −0.288042 + 0.498904i
\(585\) −7.90942 6.00424i −0.327014 0.248245i
\(586\) −28.9280 + 16.7016i −1.19500 + 0.689936i
\(587\) −11.6129 + 20.1141i −0.479314 + 0.830197i −0.999719 0.0237232i \(-0.992448\pi\)
0.520404 + 0.853920i \(0.325781\pi\)
\(588\) 0 0
\(589\) −6.83975 11.8468i −0.281827 0.488139i
\(590\) 3.03009 + 1.74942i 0.124747 + 0.0720225i
\(591\) −14.4085 29.0278i −0.592688 1.19404i
\(592\) −19.4793 33.7391i −0.800594 1.38667i
\(593\) 5.55605 + 9.62337i 0.228160 + 0.395184i 0.957263 0.289220i \(-0.0933958\pi\)
−0.729103 + 0.684404i \(0.760062\pi\)
\(594\) −47.7916 + 16.6385i −1.96091 + 0.682684i
\(595\) 0 0
\(596\) 8.14153 + 4.70051i 0.333490 + 0.192541i
\(597\) −31.1925 1.96330i −1.27662 0.0803527i
\(598\) 13.8232i 0.565272i
\(599\) 15.6555i 0.639667i −0.947474 0.319833i \(-0.896373\pi\)
0.947474 0.319833i \(-0.103627\pi\)
\(600\) −5.18072 + 7.79715i −0.211502 + 0.318317i
\(601\) 30.5665 + 17.6476i 1.24684 + 0.719861i 0.970477 0.241194i \(-0.0775390\pi\)
0.276358 + 0.961055i \(0.410872\pi\)
\(602\) 0 0
\(603\) −18.4203 + 24.2652i −0.750133 + 0.988154i
\(604\) 4.28512 + 7.42205i 0.174359 + 0.301999i
\(605\) 5.57104 + 9.64932i 0.226495 + 0.392301i
\(606\) 8.16843 12.2938i 0.331820 0.499400i
\(607\) −33.6062 19.4025i −1.36403 0.787524i −0.373874 0.927479i \(-0.621971\pi\)
−0.990158 + 0.139955i \(0.955304\pi\)
\(608\) −7.92809 13.7318i −0.321526 0.556900i
\(609\) 0 0
\(610\) 6.26850 10.8574i 0.253804 0.439602i
\(611\) 13.6923 7.90523i 0.553929 0.319811i
\(612\) 2.56960 + 6.11375i 0.103870 + 0.247134i
\(613\) −15.8786 + 27.5025i −0.641330 + 1.11082i 0.343806 + 0.939041i \(0.388284\pi\)
−0.985136 + 0.171776i \(0.945049\pi\)
\(614\) 47.7145 1.92560
\(615\) −11.9997 + 5.95632i −0.483876 + 0.240182i
\(616\) 0 0
\(617\) 1.25518 0.724680i 0.0505317 0.0291745i −0.474521 0.880244i \(-0.657379\pi\)
0.525053 + 0.851070i \(0.324045\pi\)
\(618\) 2.05396 32.6327i 0.0826223 1.31268i
\(619\) 25.2590 14.5833i 1.01524 0.586152i 0.102522 0.994731i \(-0.467309\pi\)
0.912723 + 0.408579i \(0.133976\pi\)
\(620\) 4.29740 + 2.48110i 0.172588 + 0.0996435i
\(621\) −4.99684 + 5.78795i −0.200516 + 0.232263i
\(622\) 51.8217i 2.07786i
\(623\) 0 0
\(624\) −23.9501 + 36.0457i −0.958771 + 1.44298i
\(625\) −9.46116 + 16.3872i −0.378446 + 0.655488i
\(626\) 10.2153 0.408284
\(627\) −1.39611 + 22.1810i −0.0557551 + 0.885822i
\(628\) 2.69944i 0.107719i
\(629\) 13.0303 0.519551
\(630\) 0 0
\(631\) 11.7428 0.467473 0.233736 0.972300i \(-0.424905\pi\)
0.233736 + 0.972300i \(0.424905\pi\)
\(632\) 8.21005i 0.326578i
\(633\) 11.6418 + 7.73526i 0.462721 + 0.307449i
\(634\) −61.4976 −2.44238
\(635\) 0.806924 1.39763i 0.0320218 0.0554634i
\(636\) 5.53783 + 0.348560i 0.219589 + 0.0138213i
\(637\) 0 0
\(638\) 72.4041i 2.86651i
\(639\) −11.3883 8.64512i −0.450512 0.341996i
\(640\) −5.00119 2.88744i −0.197689 0.114136i
\(641\) 10.0267 5.78891i 0.396030 0.228648i −0.288740 0.957408i \(-0.593236\pi\)
0.684770 + 0.728760i \(0.259903\pi\)
\(642\) 0.815481 + 0.541836i 0.0321845 + 0.0213846i
\(643\) −13.1240 + 7.57712i −0.517558 + 0.298812i −0.735935 0.677052i \(-0.763257\pi\)
0.218377 + 0.975865i \(0.429924\pi\)
\(644\) 0 0
\(645\) 2.81782 + 1.87226i 0.110951 + 0.0737203i
\(646\) 7.20741 0.283572
\(647\) 6.22057 10.7743i 0.244556 0.423583i −0.717451 0.696609i \(-0.754691\pi\)
0.962007 + 0.273026i \(0.0880246\pi\)
\(648\) −10.2226 + 2.85302i −0.401582 + 0.112077i
\(649\) −13.6195 + 7.86325i −0.534614 + 0.308659i
\(650\) −21.5264 + 37.2847i −0.844333 + 1.46243i
\(651\) 0 0
\(652\) −4.06032 7.03268i −0.159014 0.275421i
\(653\) 3.97013 + 2.29216i 0.155363 + 0.0896990i 0.575666 0.817685i \(-0.304743\pi\)
−0.420303 + 0.907384i \(0.638076\pi\)
\(654\) 19.9148 + 1.25347i 0.778732 + 0.0490147i
\(655\) −0.818096 1.41698i −0.0319656 0.0553661i
\(656\) 29.1921 + 50.5621i 1.13976 + 1.97412i
\(657\) −32.6500 + 13.7227i −1.27380 + 0.535375i
\(658\) 0 0
\(659\) 15.6110 + 9.01301i 0.608118 + 0.351097i 0.772228 0.635345i \(-0.219142\pi\)
−0.164111 + 0.986442i \(0.552475\pi\)
\(660\) −3.58446 7.22133i −0.139525 0.281090i
\(661\) 0.640781i 0.0249235i 0.999922 + 0.0124617i \(0.00396680\pi\)
−0.999922 + 0.0124617i \(0.996033\pi\)
\(662\) 55.6449i 2.16270i
\(663\) −6.43559 12.9653i −0.249937 0.503530i
\(664\) 7.18189 + 4.14647i 0.278711 + 0.160914i
\(665\) 0 0
\(666\) 5.50943 43.5927i 0.213486 1.68918i
\(667\) −5.47018 9.47462i −0.211806 0.366859i
\(668\) −0.946692 1.63972i −0.0366286 0.0634426i
\(669\) −40.4100 2.54347i −1.56234 0.0983363i
\(670\) −10.4012 6.00511i −0.401832 0.231998i
\(671\) 28.1755 + 48.8014i 1.08770 + 1.88396i
\(672\) 0 0
\(673\) −11.0695 + 19.1729i −0.426697 + 0.739061i −0.996577 0.0826667i \(-0.973656\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(674\) 5.90591 3.40978i 0.227487 0.131340i
\(675\) −22.4912 + 7.83022i −0.865685 + 0.301385i
\(676\) −9.01280 + 15.6106i −0.346646 + 0.600409i
\(677\) −20.0320 −0.769893 −0.384947 0.922939i \(-0.625780\pi\)
−0.384947 + 0.922939i \(0.625780\pi\)
\(678\) 23.5865 + 15.6717i 0.905833 + 0.601869i
\(679\) 0 0
\(680\) 1.07456 0.620397i 0.0412074 0.0237911i
\(681\) −20.8361 13.8443i −0.798441 0.530514i
\(682\) −47.7986 + 27.5966i −1.83030 + 1.05673i
\(683\) −18.1316 10.4683i −0.693786 0.400558i 0.111243 0.993793i \(-0.464517\pi\)
−0.805029 + 0.593235i \(0.797850\pi\)
\(684\) 1.23149 9.74400i 0.0470870 0.372571i
\(685\) 0.783018i 0.0299176i
\(686\) 0 0
\(687\) −22.6688 1.42681i −0.864867 0.0544361i
\(688\) 7.37198 12.7686i 0.281054 0.486800i
\(689\) −12.1109 −0.461387
\(690\) −2.51079 1.66826i −0.0955842 0.0635097i
\(691\) 1.54072i 0.0586116i 0.999570 + 0.0293058i \(0.00932966\pi\)
−0.999570 + 0.0293058i \(0.990670\pi\)
\(692\) −10.3217 −0.392372
\(693\) 0 0
\(694\) 13.0740 0.496282
\(695\) 4.56025i 0.172980i
\(696\) 0.953889 15.1551i 0.0361571 0.574454i
\(697\) −19.5274 −0.739654
\(698\) −13.9711 + 24.1987i −0.528815 + 0.915935i
\(699\) 8.10161 12.1932i 0.306431 0.461189i
\(700\) 0 0
\(701\) 31.6641i 1.19593i 0.801520 + 0.597967i \(0.204025\pi\)
−0.801520 + 0.597967i \(0.795975\pi\)
\(702\) −46.0964 + 16.0483i −1.73980 + 0.605704i
\(703\) −16.7121 9.64873i −0.630309 0.363909i
\(704\) −10.5358 + 6.08286i −0.397083 + 0.229256i
\(705\) −0.216586 + 3.44106i −0.00815710 + 0.129598i
\(706\) 54.6922 31.5766i 2.05837 1.18840i
\(707\) 0 0
\(708\) 6.22509 3.08995i 0.233953 0.116127i
\(709\) 22.3524 0.839463 0.419732 0.907648i \(-0.362124\pi\)
0.419732 + 0.907648i \(0.362124\pi\)
\(710\) 2.81835 4.88152i 0.105771 0.183200i
\(711\) 12.6287 16.6358i 0.473613 0.623893i
\(712\) 4.41873 2.55116i 0.165599 0.0956086i
\(713\) −4.16988 + 7.22244i −0.156163 + 0.270482i
\(714\) 0 0
\(715\) 8.79812 + 15.2388i 0.329031 + 0.569898i
\(716\) 10.8625 + 6.27149i 0.405952 + 0.234377i
\(717\) 26.7975 40.3311i 1.00077 1.50619i
\(718\) 6.06910 + 10.5120i 0.226497 + 0.392304i
\(719\) −19.4544 33.6959i −0.725525 1.25665i −0.958757 0.284226i \(-0.908264\pi\)
0.233232 0.972421i \(-0.425070\pi\)
\(720\) −3.65677 8.70041i −0.136280 0.324245i
\(721\) 0 0
\(722\) 20.9011 + 12.0672i 0.777858 + 0.449096i
\(723\) 21.4789 32.3264i 0.798808 1.20223i
\(724\) 16.2261i 0.603039i
\(725\) 34.0741i 1.26548i
\(726\) 54.6584 + 3.44029i 2.02856 + 0.127681i
\(727\) −11.4647 6.61915i −0.425202 0.245491i 0.272098 0.962269i \(-0.412282\pi\)
−0.697301 + 0.716779i \(0.745616\pi\)
\(728\) 0 0
\(729\) −25.1024 9.94341i −0.929717 0.368274i
\(730\) −6.98119 12.0918i −0.258385 0.447536i
\(731\) 2.46567 + 4.27066i 0.0911960 + 0.157956i
\(732\) −11.0719 22.3056i −0.409228 0.824440i
\(733\) 28.1222 + 16.2364i 1.03872 + 0.599704i 0.919470 0.393161i \(-0.128618\pi\)
0.119248 + 0.992865i \(0.461952\pi\)
\(734\) 2.83703 + 4.91389i 0.104717 + 0.181375i
\(735\) 0 0
\(736\) −4.83338 + 8.37167i −0.178161 + 0.308584i
\(737\) 46.7508 26.9916i 1.72209 0.994248i
\(738\) −8.25654 + 65.3290i −0.303927 + 2.40479i
\(739\) 6.91965 11.9852i 0.254543 0.440882i −0.710228 0.703972i \(-0.751408\pi\)
0.964771 + 0.263090i \(0.0847415\pi\)
\(740\) 7.00011 0.257329
\(741\) −1.34659 + 21.3942i −0.0494681 + 0.785936i
\(742\) 0 0
\(743\) 31.8593 18.3940i 1.16880 0.674810i 0.215406 0.976525i \(-0.430892\pi\)
0.953398 + 0.301715i \(0.0975591\pi\)
\(744\) −10.3685 + 5.14660i −0.380126 + 0.188683i
\(745\) 3.87515 2.23732i 0.141975 0.0819690i
\(746\) 15.3898 + 8.88530i 0.563461 + 0.325314i
\(747\) 8.17441 + 19.4491i 0.299086 + 0.711605i
\(748\) 11.7514i 0.429675i
\(749\) 0 0
\(750\) −8.72824 17.5841i −0.318710 0.642081i
\(751\) 1.82952 3.16883i 0.0667602 0.115632i −0.830713 0.556701i \(-0.812067\pi\)
0.897473 + 0.441068i \(0.145400\pi\)
\(752\) 15.0262 0.547948
\(753\) −9.92280 + 4.92539i −0.361607 + 0.179491i
\(754\) 69.8359i 2.54327i
\(755\) 4.07921 0.148458
\(756\) 0 0
\(757\) 13.8901 0.504842 0.252421 0.967617i \(-0.418773\pi\)
0.252421 + 0.967617i \(0.418773\pi\)
\(758\) 14.2184i 0.516435i
\(759\) 12.1366 6.02424i 0.440529 0.218666i
\(760\) −1.83758 −0.0666560
\(761\) −6.82083 + 11.8140i −0.247255 + 0.428258i −0.962763 0.270346i \(-0.912862\pi\)
0.715508 + 0.698604i \(0.246195\pi\)
\(762\) −3.52689 7.10536i −0.127766 0.257400i
\(763\) 0 0
\(764\) 27.4991i 0.994884i
\(765\) 3.13165 + 0.395790i 0.113225 + 0.0143098i
\(766\) 39.0500 + 22.5455i 1.41093 + 0.814602i
\(767\) −13.1365 + 7.58434i −0.474330 + 0.273855i
\(768\) −32.5263 + 16.1451i −1.17369 + 0.582587i
\(769\) −22.9328 + 13.2402i −0.826976 + 0.477455i −0.852816 0.522211i \(-0.825107\pi\)
0.0258399 + 0.999666i \(0.491774\pi\)
\(770\) 0 0
\(771\) −0.360583 + 5.72884i −0.0129861 + 0.206319i
\(772\) 22.9104 0.824562
\(773\) −13.1109 + 22.7087i −0.471566 + 0.816776i −0.999471 0.0325274i \(-0.989644\pi\)
0.527905 + 0.849303i \(0.322978\pi\)
\(774\) 15.3300 6.44317i 0.551026 0.231595i
\(775\) −22.4945 + 12.9872i −0.808026 + 0.466514i
\(776\) 9.80047 16.9749i 0.351816 0.609364i
\(777\) 0 0
\(778\) 5.88703 + 10.1966i 0.211060 + 0.365567i
\(779\) 25.0451 + 14.4598i 0.897334 + 0.518076i
\(780\) −3.45732 6.96519i −0.123792 0.249394i
\(781\) 12.6678 + 21.9413i 0.453291 + 0.785123i
\(782\) −2.19701 3.80533i −0.0785649 0.136078i
\(783\) 25.2445 29.2412i 0.902164 1.04500i
\(784\) 0 0
\(785\) 1.11272 + 0.642430i 0.0397148 + 0.0229293i
\(786\) −8.02648 0.505200i −0.286295 0.0180199i
\(787\) 29.0470i 1.03541i 0.855558 + 0.517706i \(0.173214\pi\)
−0.855558 + 0.517706i \(0.826786\pi\)
\(788\) 25.3769i 0.904014i
\(789\) 21.7494 32.7336i 0.774300 1.16535i
\(790\) 7.13088 + 4.11702i 0.253705 + 0.146477i
\(791\) 0 0
\(792\) 18.6581 + 2.35809i 0.662987 + 0.0837909i
\(793\) 27.1761 + 47.0704i 0.965052 + 1.67152i
\(794\) −12.1463 21.0380i −0.431055 0.746610i
\(795\) 1.46161 2.19977i 0.0518379 0.0780178i
\(796\) −21.1952 12.2371i −0.751245 0.433731i
\(797\) −15.8184 27.3983i −0.560317 0.970498i −0.997469 0.0711097i \(-0.977346\pi\)
0.437151 0.899388i \(-0.355987\pi\)
\(798\) 0 0
\(799\) −2.51286 + 4.35240i −0.0888986 + 0.153977i
\(800\) −26.0738 + 15.0537i −0.921848 + 0.532229i
\(801\) 12.8778 + 1.62754i 0.455014 + 0.0575064i
\(802\) 14.4777 25.0762i 0.511227 0.885470i
\(803\) 62.7577 2.21467
\(804\) −21.3684 + 10.6066i −0.753605 + 0.374068i
\(805\) 0 0
\(806\) −46.1032 + 26.6177i −1.62392 + 0.937569i
\(807\) 0.300405 4.77276i 0.0105748 0.168009i
\(808\) −4.75044 + 2.74267i −0.167120 + 0.0964868i
\(809\) 34.5466 + 19.9455i 1.21459 + 0.701245i 0.963756 0.266784i \(-0.0859610\pi\)
0.250836 + 0.968029i \(0.419294\pi\)
\(810\) 2.64823 10.3096i 0.0930493 0.362242i
\(811\) 28.9516i 1.01663i −0.861172 0.508314i \(-0.830269\pi\)
0.861172 0.508314i \(-0.169731\pi\)
\(812\) 0 0
\(813\) −5.83676 + 8.78452i −0.204704 + 0.308087i
\(814\) −38.9300 + 67.4288i −1.36450 + 2.36338i
\(815\) −3.86521 −0.135392
\(816\) 0.864154 13.7294i 0.0302514 0.480627i
\(817\) 7.30317i 0.255505i
\(818\) −9.92684 −0.347084
\(819\) 0 0
\(820\) −10.4905 −0.366344
\(821\) 0.414973i 0.0144826i −0.999974 0.00724132i \(-0.997695\pi\)
0.999974 0.00724132i \(-0.00230500\pi\)
\(822\) −3.20566 2.12996i −0.111810 0.0742909i
\(823\) −13.0963 −0.456508 −0.228254 0.973602i \(-0.573302\pi\)
−0.228254 + 0.973602i \(0.573302\pi\)
\(824\) −6.07570 + 10.5234i −0.211657 + 0.366601i
\(825\) 42.1168 + 2.65090i 1.46632 + 0.0922926i
\(826\) 0 0
\(827\) 35.2637i 1.22624i −0.789990 0.613120i \(-0.789914\pi\)
0.789990 0.613120i \(-0.210086\pi\)
\(828\) −5.51998 + 2.32004i −0.191833 + 0.0806268i
\(829\) −29.0164 16.7526i −1.00778 0.581842i −0.0972388 0.995261i \(-0.531001\pi\)
−0.910541 + 0.413419i \(0.864334\pi\)
\(830\) −7.20287 + 4.15858i −0.250015 + 0.144346i
\(831\) −13.6094 9.04256i −0.472103 0.313683i
\(832\) −10.1621 + 5.86710i −0.352308 + 0.203405i
\(833\) 0 0
\(834\) 18.6696 + 12.4048i 0.646474 + 0.429542i
\(835\) −0.901200 −0.0311873
\(836\) −8.70178 + 15.0719i −0.300957 + 0.521273i
\(837\) −28.9259 5.52032i −0.999825 0.190810i
\(838\) −38.8615 + 22.4367i −1.34245 + 0.775062i
\(839\) 22.4984 38.9684i 0.776731 1.34534i −0.157085 0.987585i \(-0.550210\pi\)
0.933816 0.357753i \(-0.116457\pi\)
\(840\) 0 0
\(841\) 13.1358 + 22.7519i 0.452959 + 0.784548i
\(842\) −19.0182 10.9802i −0.655412 0.378402i
\(843\) −9.12501 0.574343i −0.314282 0.0197814i
\(844\) 5.47260 + 9.47882i 0.188375 + 0.326275i
\(845\) 4.28985 + 7.43024i 0.147575 + 0.255608i
\(846\) 13.4985 + 10.2470i 0.464087 + 0.352301i
\(847\) 0 0
\(848\) −9.96802 5.75504i −0.342303 0.197629i
\(849\) 15.1476 + 30.5167i 0.519864 + 1.04733i
\(850\) 13.6853i 0.469402i
\(851\) 11.7648i 0.403291i
\(852\) −4.97797 10.0287i −0.170542 0.343578i
\(853\) −15.8457 9.14854i −0.542548 0.313240i 0.203563 0.979062i \(-0.434748\pi\)
−0.746111 + 0.665822i \(0.768081\pi\)
\(854\) 0 0
\(855\) −3.72345 2.82657i −0.127339 0.0966665i
\(856\) −0.181929 0.315111i −0.00621822 0.0107703i
\(857\) −5.28926 9.16126i −0.180678 0.312943i 0.761434 0.648243i \(-0.224496\pi\)
−0.942111 + 0.335300i \(0.891162\pi\)
\(858\) 86.3198 + 5.43311i 2.94691 + 0.185483i
\(859\) 28.2972 + 16.3374i 0.965488 + 0.557425i 0.897858 0.440286i \(-0.145123\pi\)
0.0676303 + 0.997710i \(0.478456\pi\)
\(860\) 1.32460 + 2.29428i 0.0451686 + 0.0782343i
\(861\) 0 0
\(862\) 28.2332 48.9014i 0.961628 1.66559i
\(863\) −8.09878 + 4.67583i −0.275686 + 0.159167i −0.631469 0.775401i \(-0.717548\pi\)
0.355783 + 0.934569i \(0.384214\pi\)
\(864\) −33.5285 6.39871i −1.14066 0.217689i
\(865\) −2.45643 + 4.25465i −0.0835210 + 0.144663i
\(866\) −11.1052 −0.377372
\(867\) −20.6925 13.7489i −0.702755 0.466937i
\(868\) 0 0
\(869\) −32.0517 + 18.5050i −1.08728 + 0.627741i
\(870\) 12.6847 + 8.42821i 0.430053 + 0.285743i
\(871\) 45.0925 26.0342i 1.52790 0.882135i
\(872\) −6.42216 3.70783i −0.217482 0.125563i
\(873\) 45.9693 19.3208i 1.55583 0.653910i
\(874\) 6.50742i 0.220117i
\(875\) 0 0
\(876\) −27.6788 1.74215i −0.935181 0.0588618i
\(877\) −0.619077 + 1.07227i −0.0209048 + 0.0362081i −0.876289 0.481787i \(-0.839988\pi\)
0.855384 + 0.517995i \(0.173321\pi\)
\(878\) 49.7300 1.67831
\(879\) 26.3035 + 17.4770i 0.887195 + 0.589485i
\(880\) 16.7233i 0.563744i
\(881\) −37.3480 −1.25828 −0.629142 0.777290i \(-0.716594\pi\)
−0.629142 + 0.777290i \(0.716594\pi\)
\(882\) 0 0
\(883\) 3.90708 0.131484 0.0657419 0.997837i \(-0.479059\pi\)
0.0657419 + 0.997837i \(0.479059\pi\)
\(884\) 11.3346i 0.381224i
\(885\) 0.207794 3.30138i 0.00698493 0.110975i
\(886\) 9.80432 0.329383
\(887\) −7.25578 + 12.5674i −0.243625 + 0.421972i −0.961744 0.273949i \(-0.911670\pi\)
0.718119 + 0.695920i \(0.245003\pi\)
\(888\) −9.03691 + 13.6009i −0.303259 + 0.456415i
\(889\) 0 0
\(890\) 5.11722i 0.171530i
\(891\) 34.1793 + 33.4781i 1.14505 + 1.12156i
\(892\) −27.4585 15.8532i −0.919379 0.530804i
\(893\) 6.44579 3.72148i 0.215700 0.124534i
\(894\) 1.38162 21.9507i 0.0462081 0.734142i
\(895\) 5.17028 2.98506i 0.172823 0.0997797i
\(896\) 0 0
\(897\) 11.7061 5.81056i 0.390855 0.194009i
\(898\) −62.7317 −2.09339
\(899\) 21.0666 36.4884i 0.702610 1.21696i
\(900\) −18.5017 2.33832i −0.616725 0.0779441i
\(901\) 3.33395 1.92486i 0.111070 0.0641263i
\(902\) 58.3414 101.050i 1.94256 3.36460i
\(903\) 0 0
\(904\) −5.26201 9.11407i −0.175012 0.303129i
\(905\) 6.68849 + 3.86160i 0.222333 + 0.128364i
\(906\) 11.0962 16.7002i 0.368647 0.554827i
\(907\) 9.60695 + 16.6397i 0.318993 + 0.552513i 0.980278 0.197622i \(-0.0633219\pi\)
−0.661285 + 0.750135i \(0.729989\pi\)
\(908\) −9.79466 16.9648i −0.325047 0.562998i
\(909\) −13.8445 1.74972i −0.459193 0.0580346i
\(910\) 0 0
\(911\) 10.1252 + 5.84579i 0.335463 + 0.193680i 0.658264 0.752787i \(-0.271291\pi\)
−0.322801 + 0.946467i \(0.604624\pi\)
\(912\) −11.2748 + 16.9689i −0.373345 + 0.561897i
\(913\) 37.3837i 1.23722i
\(914\) 29.0566i 0.961106i
\(915\) −11.8295 0.744565i −0.391070 0.0246146i
\(916\) −15.4034 8.89314i −0.508942 0.293838i
\(917\) 0 0
\(918\) 10.1390 11.7443i 0.334638 0.387619i
\(919\) −19.9930 34.6289i −0.659508 1.14230i −0.980743 0.195301i \(-0.937432\pi\)
0.321236 0.946999i \(-0.395902\pi\)
\(920\) 0.560143 + 0.970196i 0.0184674 + 0.0319864i
\(921\) −20.0567 40.4067i −0.660892 1.33145i
\(922\) 20.6470 + 11.9205i 0.679972 + 0.392582i
\(923\) 12.2185 + 21.1631i 0.402177 + 0.696591i
\(924\) 0 0
\(925\) −18.3209 + 31.7326i −0.602386 + 1.04336i
\(926\) −19.1005 + 11.0277i −0.627683 + 0.362393i
\(927\) −28.4982 + 11.9777i −0.936004 + 0.393401i
\(928\) 24.4187 42.2944i 0.801582 1.38838i
\(929\) −12.7672 −0.418877 −0.209439 0.977822i \(-0.567164\pi\)
−0.209439 + 0.977822i \(0.567164\pi\)
\(930\) 0.729267 11.5864i 0.0239136 0.379933i
\(931\) 0 0
\(932\) 9.92775 5.73179i 0.325194 0.187751i
\(933\) 43.8849 21.7832i 1.43673 0.713149i
\(934\) 32.2801 18.6369i 1.05624 0.609818i
\(935\) −4.84400 2.79669i −0.158416 0.0914614i
\(936\) 17.9963 + 2.27444i 0.588228 + 0.0743425i
\(937\) 11.9436i 0.390179i −0.980785 0.195090i \(-0.937500\pi\)
0.980785 0.195090i \(-0.0624997\pi\)
\(938\) 0 0
\(939\) −4.29398 8.65074i −0.140129 0.282306i
\(940\) −1.34996 + 2.33819i −0.0440307 + 0.0762634i
\(941\) 25.0317 0.816011 0.408006 0.912979i \(-0.366224\pi\)
0.408006 + 0.912979i \(0.366224\pi\)
\(942\) 5.65692 2.80793i 0.184312 0.0914872i
\(943\) 17.6309i 0.574142i
\(944\) −14.4162 −0.469208
\(945\) 0 0
\(946\) −29.4663 −0.958032
\(947\) 32.7555i 1.06441i 0.846615 + 0.532205i \(0.178637\pi\)
−0.846615 + 0.532205i \(0.821363\pi\)
\(948\) 14.6499 7.27177i 0.475806 0.236176i
\(949\) 60.5316 1.96494
\(950\) −10.1338 + 17.5522i −0.328783 + 0.569469i
\(951\) 25.8504 + 52.0789i 0.838258 + 1.68877i
\(952\) 0 0
\(953\) 6.77705i 0.219530i −0.993958 0.109765i \(-0.964990\pi\)
0.993958 0.109765i \(-0.0350099\pi\)
\(954\) −5.02996 11.9676i −0.162851 0.387465i
\(955\) −11.3353 6.54443i −0.366801 0.211773i
\(956\) 32.8378 18.9589i 1.06205 0.613175i
\(957\) −61.3150 + 30.4350i −1.98203 + 0.983823i
\(958\) −38.5512 + 22.2575i −1.24553 + 0.719109i
\(959\) 0 0
\(960\) 0.160746 2.55388i 0.00518804 0.0824262i
\(961\) −1.11779 −0.0360578
\(962\) −37.5492 + 65.0371i −1.21063 + 2.09688i
\(963\) 0.116064 0.918346i 0.00374012 0.0295933i
\(964\) 26.3203 15.1960i 0.847721 0.489432i
\(965\) 5.45236 9.44377i 0.175518 0.304006i
\(966\) 0 0
\(967\) 20.7901 + 36.0096i 0.668566 + 1.15799i 0.978305 + 0.207169i \(0.0664249\pi\)
−0.309739 + 0.950822i \(0.600242\pi\)
\(968\) −17.6263 10.1765i −0.566530 0.327086i
\(969\) −3.02963 6.10355i −0.0973256 0.196074i
\(970\) 9.82910 + 17.0245i 0.315593 + 0.546624i
\(971\) −20.6257 35.7248i −0.661910 1.14646i −0.980113 0.198439i \(-0.936413\pi\)
0.318203 0.948023i \(-0.396921\pi\)
\(972\) −14.1452 15.7141i −0.453707 0.504029i
\(973\) 0 0
\(974\) −43.3281 25.0155i −1.38832 0.801547i
\(975\) 40.6229 + 2.55687i 1.30098 + 0.0818855i
\(976\) 51.6560i 1.65347i
\(977\) 4.57847i 0.146478i 0.997314 + 0.0732391i \(0.0233336\pi\)
−0.997314 + 0.0732391i \(0.976666\pi\)
\(978\) −10.5141 + 15.8241i −0.336204 + 0.505998i
\(979\) −19.9192 11.5004i −0.636621 0.367553i
\(980\) 0 0
\(981\) −7.30968 17.3917i −0.233380 0.555273i
\(982\) 14.0569 + 24.3473i 0.448575 + 0.776955i
\(983\) −12.2401 21.2004i −0.390397 0.676188i 0.602105 0.798417i \(-0.294329\pi\)
−0.992502 + 0.122229i \(0.960996\pi\)
\(984\) 13.5429 20.3825i 0.431732 0.649771i
\(985\) −10.4605 6.03936i −0.333299 0.192430i
\(986\) 11.0995 + 19.2249i 0.353480 + 0.612245i
\(987\) 0 0
\(988\) −8.39312 + 14.5373i −0.267021 + 0.462494i
\(989\) −3.85589 + 2.22620i −0.122610 + 0.0707890i
\(990\) −11.4044 + 15.0231i −0.362457 + 0.477466i
\(991\) 21.0927 36.5337i 0.670032 1.16053i −0.307862 0.951431i \(-0.599614\pi\)
0.977894 0.209099i \(-0.0670531\pi\)
\(992\) −37.2284 −1.18200
\(993\) 47.1226 23.3903i 1.49539 0.742268i
\(994\) 0 0
\(995\) −10.0884 + 5.82452i −0.319822 + 0.184650i
\(996\) −1.03777 + 16.4878i −0.0328830 + 0.522437i
\(997\) 8.38168 4.83917i 0.265451 0.153258i −0.361368 0.932423i \(-0.617690\pi\)
0.626818 + 0.779165i \(0.284357\pi\)
\(998\) −16.3578 9.44415i −0.517796 0.298949i
\(999\) −39.2321 + 13.6585i −1.24125 + 0.432137i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.d.227.7 48
3.2 odd 2 1323.2.i.d.521.15 48
7.2 even 3 441.2.s.d.362.8 48
7.3 odd 6 441.2.o.e.146.17 48
7.4 even 3 441.2.o.e.146.18 yes 48
7.5 odd 6 441.2.s.d.362.7 48
7.6 odd 2 inner 441.2.i.d.227.8 48
9.4 even 3 1323.2.s.d.962.18 48
9.5 odd 6 441.2.s.d.374.7 48
21.2 odd 6 1323.2.s.d.656.17 48
21.5 even 6 1323.2.s.d.656.18 48
21.11 odd 6 1323.2.o.e.440.7 48
21.17 even 6 1323.2.o.e.440.8 48
21.20 even 2 1323.2.i.d.521.17 48
63.4 even 3 1323.2.o.e.881.8 48
63.5 even 6 inner 441.2.i.d.68.17 48
63.13 odd 6 1323.2.s.d.962.17 48
63.23 odd 6 inner 441.2.i.d.68.18 48
63.31 odd 6 1323.2.o.e.881.7 48
63.32 odd 6 441.2.o.e.293.17 yes 48
63.40 odd 6 1323.2.i.d.1097.15 48
63.41 even 6 441.2.s.d.374.8 48
63.58 even 3 1323.2.i.d.1097.17 48
63.59 even 6 441.2.o.e.293.18 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.17 48 63.5 even 6 inner
441.2.i.d.68.18 48 63.23 odd 6 inner
441.2.i.d.227.7 48 1.1 even 1 trivial
441.2.i.d.227.8 48 7.6 odd 2 inner
441.2.o.e.146.17 48 7.3 odd 6
441.2.o.e.146.18 yes 48 7.4 even 3
441.2.o.e.293.17 yes 48 63.32 odd 6
441.2.o.e.293.18 yes 48 63.59 even 6
441.2.s.d.362.7 48 7.5 odd 6
441.2.s.d.362.8 48 7.2 even 3
441.2.s.d.374.7 48 9.5 odd 6
441.2.s.d.374.8 48 63.41 even 6
1323.2.i.d.521.15 48 3.2 odd 2
1323.2.i.d.521.17 48 21.20 even 2
1323.2.i.d.1097.15 48 63.40 odd 6
1323.2.i.d.1097.17 48 63.58 even 3
1323.2.o.e.440.7 48 21.11 odd 6
1323.2.o.e.440.8 48 21.17 even 6
1323.2.o.e.881.7 48 63.31 odd 6
1323.2.o.e.881.8 48 63.4 even 3
1323.2.s.d.656.17 48 21.2 odd 6
1323.2.s.d.656.18 48 21.5 even 6
1323.2.s.d.962.17 48 63.13 odd 6
1323.2.s.d.962.18 48 9.4 even 3