Properties

Label 1323.2.i.d.1097.14
Level $1323$
Weight $2$
Character 1323.1097
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(521,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1097.14
Character \(\chi\) \(=\) 1323.1097
Dual form 1323.2.i.d.521.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57819i q^{2} -4.64709 q^{4} +(1.16595 + 2.01948i) q^{5} +6.82470i q^{8} +(5.20660 - 3.00603i) q^{10} +(-3.78114 - 2.18304i) q^{11} +(1.14392 + 0.660445i) q^{13} +8.30123 q^{16} +(-2.89327 - 5.01130i) q^{17} +(-0.584876 - 0.337678i) q^{19} +(-5.41825 - 9.38468i) q^{20} +(-5.62830 + 9.74851i) q^{22} +(-4.81799 + 2.78167i) q^{23} +(-0.218858 + 0.379074i) q^{25} +(1.70276 - 2.94926i) q^{26} +(-3.86926 + 2.23392i) q^{29} +4.01796i q^{31} -7.75278i q^{32} +(-12.9201 + 7.45942i) q^{34} +(-1.50829 + 2.61243i) q^{37} +(-0.870601 + 1.50792i) q^{38} +(-13.7823 + 7.95723i) q^{40} +(-3.29501 + 5.70713i) q^{41} +(3.89217 + 6.74143i) q^{43} +(17.5713 + 10.1448i) q^{44} +(7.17168 + 12.4217i) q^{46} -0.493410 q^{47} +(0.977326 + 0.564259i) q^{50} +(-5.31591 - 3.06914i) q^{52} +(-3.59025 + 2.07283i) q^{53} -10.1812i q^{55} +(5.75947 + 9.97570i) q^{58} -4.31398 q^{59} -2.05145i q^{61} +10.3591 q^{62} -3.38572 q^{64} +3.08017i q^{65} -4.82437 q^{67} +(13.4453 + 23.2879i) q^{68} -1.17135i q^{71} +(-13.0902 + 7.55766i) q^{73} +(6.73536 + 3.88866i) q^{74} +(2.71797 + 1.56922i) q^{76} -10.6086 q^{79} +(9.67878 + 16.7641i) q^{80} +(14.7141 + 8.49518i) q^{82} +(-5.32432 - 9.22199i) q^{83} +(6.74680 - 11.6858i) q^{85} +(17.3807 - 10.0348i) q^{86} +(14.8986 - 25.8051i) q^{88} +(-1.66268 + 2.87984i) q^{89} +(22.3896 - 12.9266i) q^{92} +1.27211i q^{94} -1.57486i q^{95} +(12.7531 - 7.36299i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 24 q^{11} + 48 q^{16} - 48 q^{23} - 24 q^{25} + 96 q^{44} - 48 q^{50} + 48 q^{53} - 48 q^{64} - 168 q^{74} + 48 q^{79} - 24 q^{85} + 24 q^{86} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57819i 1.82306i −0.411235 0.911529i \(-0.634902\pi\)
0.411235 0.911529i \(-0.365098\pi\)
\(3\) 0 0
\(4\) −4.64709 −2.32354
\(5\) 1.16595 + 2.01948i 0.521427 + 0.903138i 0.999689 + 0.0249208i \(0.00793335\pi\)
−0.478263 + 0.878217i \(0.658733\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 6.82470i 2.41290i
\(9\) 0 0
\(10\) 5.20660 3.00603i 1.64647 0.950591i
\(11\) −3.78114 2.18304i −1.14006 0.658212i −0.193612 0.981078i \(-0.562020\pi\)
−0.946444 + 0.322867i \(0.895353\pi\)
\(12\) 0 0
\(13\) 1.14392 + 0.660445i 0.317267 + 0.183174i 0.650174 0.759785i \(-0.274696\pi\)
−0.332906 + 0.942960i \(0.608029\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 8.30123 2.07531
\(17\) −2.89327 5.01130i −0.701722 1.21542i −0.967862 0.251484i \(-0.919082\pi\)
0.266140 0.963935i \(-0.414252\pi\)
\(18\) 0 0
\(19\) −0.584876 0.337678i −0.134180 0.0774687i 0.431407 0.902157i \(-0.358017\pi\)
−0.565587 + 0.824688i \(0.691350\pi\)
\(20\) −5.41825 9.38468i −1.21156 2.09848i
\(21\) 0 0
\(22\) −5.62830 + 9.74851i −1.19996 + 2.07839i
\(23\) −4.81799 + 2.78167i −1.00462 + 0.580018i −0.909612 0.415459i \(-0.863621\pi\)
−0.0950080 + 0.995477i \(0.530288\pi\)
\(24\) 0 0
\(25\) −0.218858 + 0.379074i −0.0437717 + 0.0758147i
\(26\) 1.70276 2.94926i 0.333938 0.578397i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.86926 + 2.23392i −0.718503 + 0.414828i −0.814202 0.580582i \(-0.802825\pi\)
0.0956983 + 0.995410i \(0.469492\pi\)
\(30\) 0 0
\(31\) 4.01796i 0.721646i 0.932634 + 0.360823i \(0.117504\pi\)
−0.932634 + 0.360823i \(0.882496\pi\)
\(32\) 7.75278i 1.37051i
\(33\) 0 0
\(34\) −12.9201 + 7.45942i −2.21578 + 1.27928i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50829 + 2.61243i −0.247961 + 0.429482i −0.962960 0.269644i \(-0.913094\pi\)
0.714999 + 0.699126i \(0.246427\pi\)
\(38\) −0.870601 + 1.50792i −0.141230 + 0.244618i
\(39\) 0 0
\(40\) −13.7823 + 7.95723i −2.17918 + 1.25815i
\(41\) −3.29501 + 5.70713i −0.514594 + 0.891303i 0.485262 + 0.874369i \(0.338724\pi\)
−0.999857 + 0.0169348i \(0.994609\pi\)
\(42\) 0 0
\(43\) 3.89217 + 6.74143i 0.593550 + 1.02806i 0.993750 + 0.111631i \(0.0356074\pi\)
−0.400200 + 0.916428i \(0.631059\pi\)
\(44\) 17.5713 + 10.1448i 2.64897 + 1.52938i
\(45\) 0 0
\(46\) 7.17168 + 12.4217i 1.05741 + 1.83148i
\(47\) −0.493410 −0.0719712 −0.0359856 0.999352i \(-0.511457\pi\)
−0.0359856 + 0.999352i \(0.511457\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.977326 + 0.564259i 0.138215 + 0.0797983i
\(51\) 0 0
\(52\) −5.31591 3.06914i −0.737184 0.425614i
\(53\) −3.59025 + 2.07283i −0.493159 + 0.284725i −0.725884 0.687817i \(-0.758569\pi\)
0.232725 + 0.972543i \(0.425236\pi\)
\(54\) 0 0
\(55\) 10.1812i 1.37284i
\(56\) 0 0
\(57\) 0 0
\(58\) 5.75947 + 9.97570i 0.756256 + 1.30987i
\(59\) −4.31398 −0.561633 −0.280816 0.959762i \(-0.590605\pi\)
−0.280816 + 0.959762i \(0.590605\pi\)
\(60\) 0 0
\(61\) 2.05145i 0.262661i −0.991339 0.131330i \(-0.958075\pi\)
0.991339 0.131330i \(-0.0419249\pi\)
\(62\) 10.3591 1.31560
\(63\) 0 0
\(64\) −3.38572 −0.423215
\(65\) 3.08017i 0.382048i
\(66\) 0 0
\(67\) −4.82437 −0.589390 −0.294695 0.955591i \(-0.595218\pi\)
−0.294695 + 0.955591i \(0.595218\pi\)
\(68\) 13.4453 + 23.2879i 1.63048 + 2.82408i
\(69\) 0 0
\(70\) 0 0
\(71\) 1.17135i 0.139014i −0.997581 0.0695068i \(-0.977857\pi\)
0.997581 0.0695068i \(-0.0221426\pi\)
\(72\) 0 0
\(73\) −13.0902 + 7.55766i −1.53210 + 0.884557i −0.532833 + 0.846221i \(0.678872\pi\)
−0.999265 + 0.0383363i \(0.987794\pi\)
\(74\) 6.73536 + 3.88866i 0.782970 + 0.452048i
\(75\) 0 0
\(76\) 2.71797 + 1.56922i 0.311772 + 0.180002i
\(77\) 0 0
\(78\) 0 0
\(79\) −10.6086 −1.19356 −0.596778 0.802406i \(-0.703553\pi\)
−0.596778 + 0.802406i \(0.703553\pi\)
\(80\) 9.67878 + 16.7641i 1.08212 + 1.87429i
\(81\) 0 0
\(82\) 14.7141 + 8.49518i 1.62490 + 0.938135i
\(83\) −5.32432 9.22199i −0.584420 1.01225i −0.994947 0.100397i \(-0.967989\pi\)
0.410527 0.911848i \(-0.365345\pi\)
\(84\) 0 0
\(85\) 6.74680 11.6858i 0.731793 1.26750i
\(86\) 17.3807 10.0348i 1.87421 1.08208i
\(87\) 0 0
\(88\) 14.8986 25.8051i 1.58820 2.75084i
\(89\) −1.66268 + 2.87984i −0.176243 + 0.305262i −0.940591 0.339542i \(-0.889728\pi\)
0.764348 + 0.644804i \(0.223061\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 22.3896 12.9266i 2.33428 1.34770i
\(93\) 0 0
\(94\) 1.27211i 0.131208i
\(95\) 1.57486i 0.161577i
\(96\) 0 0
\(97\) 12.7531 7.36299i 1.29488 0.747598i 0.315363 0.948971i \(-0.397874\pi\)
0.979515 + 0.201373i \(0.0645403\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.01705 1.76159i 0.101705 0.176159i
\(101\) −0.832092 + 1.44123i −0.0827963 + 0.143407i −0.904450 0.426580i \(-0.859718\pi\)
0.821654 + 0.569987i \(0.193052\pi\)
\(102\) 0 0
\(103\) 1.40783 0.812812i 0.138718 0.0800887i −0.429035 0.903288i \(-0.641146\pi\)
0.567753 + 0.823199i \(0.307813\pi\)
\(104\) −4.50734 + 7.80694i −0.441981 + 0.765533i
\(105\) 0 0
\(106\) 5.34416 + 9.25636i 0.519071 + 0.899057i
\(107\) −15.8596 9.15652i −1.53320 0.885194i −0.999212 0.0397036i \(-0.987359\pi\)
−0.533990 0.845491i \(-0.679308\pi\)
\(108\) 0 0
\(109\) 7.98678 + 13.8335i 0.764995 + 1.32501i 0.940249 + 0.340487i \(0.110592\pi\)
−0.175254 + 0.984523i \(0.556075\pi\)
\(110\) −26.2492 −2.50276
\(111\) 0 0
\(112\) 0 0
\(113\) 5.07612 + 2.93070i 0.477521 + 0.275697i 0.719383 0.694614i \(-0.244425\pi\)
−0.241862 + 0.970311i \(0.577758\pi\)
\(114\) 0 0
\(115\) −11.2350 6.48654i −1.04767 0.604873i
\(116\) 17.9808 10.3812i 1.66947 0.963871i
\(117\) 0 0
\(118\) 11.1223i 1.02389i
\(119\) 0 0
\(120\) 0 0
\(121\) 4.03134 + 6.98248i 0.366485 + 0.634771i
\(122\) −5.28903 −0.478846
\(123\) 0 0
\(124\) 18.6718i 1.67678i
\(125\) 10.6387 0.951559
\(126\) 0 0
\(127\) −16.5710 −1.47044 −0.735218 0.677831i \(-0.762920\pi\)
−0.735218 + 0.677831i \(0.762920\pi\)
\(128\) 6.77652i 0.598965i
\(129\) 0 0
\(130\) 7.94128 0.696496
\(131\) −3.55989 6.16591i −0.311029 0.538718i 0.667556 0.744559i \(-0.267340\pi\)
−0.978585 + 0.205841i \(0.934007\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.4382i 1.07449i
\(135\) 0 0
\(136\) 34.2006 19.7457i 2.93268 1.69318i
\(137\) −0.716584 0.413720i −0.0612219 0.0353465i 0.469077 0.883157i \(-0.344587\pi\)
−0.530298 + 0.847811i \(0.677920\pi\)
\(138\) 0 0
\(139\) 12.0735 + 6.97062i 1.02406 + 0.591241i 0.915277 0.402825i \(-0.131972\pi\)
0.108782 + 0.994066i \(0.465305\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3.01997 −0.253430
\(143\) −2.88356 4.99447i −0.241135 0.417658i
\(144\) 0 0
\(145\) −9.02269 5.20925i −0.749294 0.432605i
\(146\) 19.4851 + 33.7492i 1.61260 + 2.79310i
\(147\) 0 0
\(148\) 7.00915 12.1402i 0.576149 0.997919i
\(149\) −9.46916 + 5.46702i −0.775744 + 0.447876i −0.834920 0.550372i \(-0.814486\pi\)
0.0591761 + 0.998248i \(0.481153\pi\)
\(150\) 0 0
\(151\) 6.97277 12.0772i 0.567436 0.982828i −0.429383 0.903123i \(-0.641269\pi\)
0.996818 0.0797050i \(-0.0253978\pi\)
\(152\) 2.30455 3.99160i 0.186924 0.323762i
\(153\) 0 0
\(154\) 0 0
\(155\) −8.11417 + 4.68472i −0.651746 + 0.376286i
\(156\) 0 0
\(157\) 15.7779i 1.25921i −0.776914 0.629606i \(-0.783216\pi\)
0.776914 0.629606i \(-0.216784\pi\)
\(158\) 27.3509i 2.17592i
\(159\) 0 0
\(160\) 15.6566 9.03932i 1.23776 0.714621i
\(161\) 0 0
\(162\) 0 0
\(163\) 3.38276 5.85911i 0.264958 0.458921i −0.702594 0.711590i \(-0.747975\pi\)
0.967553 + 0.252669i \(0.0813085\pi\)
\(164\) 15.3122 26.5215i 1.19568 2.07098i
\(165\) 0 0
\(166\) −23.7761 + 13.7271i −1.84538 + 1.06543i
\(167\) 9.54631 16.5347i 0.738716 1.27949i −0.214358 0.976755i \(-0.568766\pi\)
0.953074 0.302738i \(-0.0979008\pi\)
\(168\) 0 0
\(169\) −5.62763 9.74733i −0.432894 0.749795i
\(170\) −30.1283 17.3946i −2.31073 1.33410i
\(171\) 0 0
\(172\) −18.0872 31.3280i −1.37914 2.38874i
\(173\) 21.8491 1.66116 0.830579 0.556902i \(-0.188010\pi\)
0.830579 + 0.556902i \(0.188010\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −31.3881 18.1219i −2.36597 1.36599i
\(177\) 0 0
\(178\) 7.42478 + 4.28670i 0.556511 + 0.321302i
\(179\) −14.8866 + 8.59481i −1.11268 + 0.642406i −0.939522 0.342488i \(-0.888730\pi\)
−0.173158 + 0.984894i \(0.555397\pi\)
\(180\) 0 0
\(181\) 16.6462i 1.23730i −0.785666 0.618650i \(-0.787680\pi\)
0.785666 0.618650i \(-0.212320\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −18.9840 32.8813i −1.39952 2.42404i
\(185\) −7.03433 −0.517175
\(186\) 0 0
\(187\) 25.2645i 1.84753i
\(188\) 2.29292 0.167228
\(189\) 0 0
\(190\) −4.06029 −0.294565
\(191\) 0.954076i 0.0690345i −0.999404 0.0345173i \(-0.989011\pi\)
0.999404 0.0345173i \(-0.0109894\pi\)
\(192\) 0 0
\(193\) −1.69441 −0.121966 −0.0609830 0.998139i \(-0.519424\pi\)
−0.0609830 + 0.998139i \(0.519424\pi\)
\(194\) −18.9832 32.8799i −1.36292 2.36064i
\(195\) 0 0
\(196\) 0 0
\(197\) 12.7486i 0.908301i 0.890925 + 0.454150i \(0.150057\pi\)
−0.890925 + 0.454150i \(0.849943\pi\)
\(198\) 0 0
\(199\) −3.77420 + 2.17903i −0.267546 + 0.154468i −0.627772 0.778397i \(-0.716033\pi\)
0.360226 + 0.932865i \(0.382700\pi\)
\(200\) −2.58706 1.49364i −0.182933 0.105616i
\(201\) 0 0
\(202\) 3.71576 + 2.14530i 0.261440 + 0.150942i
\(203\) 0 0
\(204\) 0 0
\(205\) −15.3672 −1.07329
\(206\) −2.09559 3.62966i −0.146006 0.252891i
\(207\) 0 0
\(208\) 9.49598 + 5.48250i 0.658427 + 0.380143i
\(209\) 1.47433 + 2.55362i 0.101982 + 0.176637i
\(210\) 0 0
\(211\) −2.24368 + 3.88617i −0.154461 + 0.267535i −0.932863 0.360232i \(-0.882698\pi\)
0.778401 + 0.627767i \(0.216031\pi\)
\(212\) 16.6842 9.63263i 1.14588 0.661571i
\(213\) 0 0
\(214\) −23.6073 + 40.8890i −1.61376 + 2.79512i
\(215\) −9.07611 + 15.7203i −0.618986 + 1.07211i
\(216\) 0 0
\(217\) 0 0
\(218\) 35.6655 20.5915i 2.41557 1.39463i
\(219\) 0 0
\(220\) 47.3130i 3.18984i
\(221\) 7.64339i 0.514150i
\(222\) 0 0
\(223\) −18.0005 + 10.3926i −1.20540 + 0.695939i −0.961751 0.273924i \(-0.911678\pi\)
−0.243650 + 0.969863i \(0.578345\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 7.55591 13.0872i 0.502612 0.870549i
\(227\) 14.1579 24.5223i 0.939696 1.62760i 0.173657 0.984806i \(-0.444442\pi\)
0.766039 0.642795i \(-0.222225\pi\)
\(228\) 0 0
\(229\) 18.8670 10.8929i 1.24677 0.719821i 0.276303 0.961071i \(-0.410891\pi\)
0.970463 + 0.241250i \(0.0775573\pi\)
\(230\) −16.7236 + 28.9661i −1.10272 + 1.90997i
\(231\) 0 0
\(232\) −15.2458 26.4065i −1.00094 1.73367i
\(233\) 13.1926 + 7.61674i 0.864275 + 0.498989i 0.865441 0.501010i \(-0.167038\pi\)
−0.00116682 + 0.999999i \(0.500371\pi\)
\(234\) 0 0
\(235\) −0.575289 0.996430i −0.0375277 0.0649999i
\(236\) 20.0474 1.30498
\(237\) 0 0
\(238\) 0 0
\(239\) 4.95125 + 2.85861i 0.320270 + 0.184908i 0.651513 0.758638i \(-0.274135\pi\)
−0.331243 + 0.943545i \(0.607468\pi\)
\(240\) 0 0
\(241\) −3.87212 2.23557i −0.249425 0.144006i 0.370076 0.929002i \(-0.379332\pi\)
−0.619501 + 0.784996i \(0.712665\pi\)
\(242\) 18.0022 10.3936i 1.15722 0.668124i
\(243\) 0 0
\(244\) 9.53325i 0.610304i
\(245\) 0 0
\(246\) 0 0
\(247\) −0.446036 0.772557i −0.0283806 0.0491566i
\(248\) −27.4214 −1.74126
\(249\) 0 0
\(250\) 27.4288i 1.73475i
\(251\) −11.6265 −0.733861 −0.366931 0.930248i \(-0.619591\pi\)
−0.366931 + 0.930248i \(0.619591\pi\)
\(252\) 0 0
\(253\) 24.2900 1.52710
\(254\) 42.7232i 2.68069i
\(255\) 0 0
\(256\) −24.2426 −1.51516
\(257\) 1.05140 + 1.82108i 0.0655846 + 0.113596i 0.896953 0.442126i \(-0.145775\pi\)
−0.831369 + 0.555721i \(0.812442\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 14.3138i 0.887705i
\(261\) 0 0
\(262\) −15.8969 + 9.17809i −0.982114 + 0.567024i
\(263\) −1.90773 1.10143i −0.117636 0.0679170i 0.440028 0.897984i \(-0.354969\pi\)
−0.557663 + 0.830067i \(0.688302\pi\)
\(264\) 0 0
\(265\) −8.37207 4.83362i −0.514292 0.296927i
\(266\) 0 0
\(267\) 0 0
\(268\) 22.4192 1.36947
\(269\) 13.9312 + 24.1295i 0.849398 + 1.47120i 0.881746 + 0.471724i \(0.156368\pi\)
−0.0323483 + 0.999477i \(0.510299\pi\)
\(270\) 0 0
\(271\) 9.94228 + 5.74018i 0.603950 + 0.348691i 0.770594 0.637326i \(-0.219960\pi\)
−0.166644 + 0.986017i \(0.553293\pi\)
\(272\) −24.0177 41.5999i −1.45629 2.52237i
\(273\) 0 0
\(274\) −1.06665 + 1.84749i −0.0644387 + 0.111611i
\(275\) 1.65507 0.955553i 0.0998043 0.0576220i
\(276\) 0 0
\(277\) 5.10000 8.83346i 0.306429 0.530751i −0.671149 0.741322i \(-0.734199\pi\)
0.977579 + 0.210571i \(0.0675323\pi\)
\(278\) 17.9716 31.1278i 1.07787 1.86692i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.45116 + 5.45663i −0.563809 + 0.325515i −0.754673 0.656101i \(-0.772204\pi\)
0.190864 + 0.981617i \(0.438871\pi\)
\(282\) 0 0
\(283\) 11.8664i 0.705386i 0.935739 + 0.352693i \(0.114734\pi\)
−0.935739 + 0.352693i \(0.885266\pi\)
\(284\) 5.44336i 0.323004i
\(285\) 0 0
\(286\) −12.8767 + 7.43437i −0.761415 + 0.439603i
\(287\) 0 0
\(288\) 0 0
\(289\) −8.24207 + 14.2757i −0.484828 + 0.839746i
\(290\) −13.4305 + 23.2622i −0.788664 + 1.36601i
\(291\) 0 0
\(292\) 60.8315 35.1211i 3.55989 2.05531i
\(293\) 9.55012 16.5413i 0.557924 0.966353i −0.439746 0.898122i \(-0.644931\pi\)
0.997670 0.0682302i \(-0.0217352\pi\)
\(294\) 0 0
\(295\) −5.02987 8.71199i −0.292850 0.507232i
\(296\) −17.8291 10.2936i −1.03629 0.598305i
\(297\) 0 0
\(298\) 14.0950 + 24.4133i 0.816504 + 1.41423i
\(299\) −7.34855 −0.424978
\(300\) 0 0
\(301\) 0 0
\(302\) −31.1373 17.9772i −1.79175 1.03447i
\(303\) 0 0
\(304\) −4.85519 2.80315i −0.278464 0.160771i
\(305\) 4.14285 2.39188i 0.237219 0.136958i
\(306\) 0 0
\(307\) 2.35488i 0.134400i −0.997740 0.0672001i \(-0.978593\pi\)
0.997740 0.0672001i \(-0.0214066\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0781 + 20.9199i 0.685991 + 1.18817i
\(311\) −7.84967 −0.445114 −0.222557 0.974920i \(-0.571440\pi\)
−0.222557 + 0.974920i \(0.571440\pi\)
\(312\) 0 0
\(313\) 30.0532i 1.69870i 0.527826 + 0.849352i \(0.323007\pi\)
−0.527826 + 0.849352i \(0.676993\pi\)
\(314\) −40.6785 −2.29562
\(315\) 0 0
\(316\) 49.2989 2.77328
\(317\) 11.1071i 0.623838i 0.950109 + 0.311919i \(0.100972\pi\)
−0.950109 + 0.311919i \(0.899028\pi\)
\(318\) 0 0
\(319\) 19.5069 1.09218
\(320\) −3.94757 6.83739i −0.220676 0.382222i
\(321\) 0 0
\(322\) 0 0
\(323\) 3.90798i 0.217446i
\(324\) 0 0
\(325\) −0.500715 + 0.289088i −0.0277746 + 0.0160357i
\(326\) −15.1059 8.72141i −0.836640 0.483034i
\(327\) 0 0
\(328\) −38.9494 22.4875i −2.15062 1.24166i
\(329\) 0 0
\(330\) 0 0
\(331\) −17.2672 −0.949093 −0.474547 0.880230i \(-0.657388\pi\)
−0.474547 + 0.880230i \(0.657388\pi\)
\(332\) 24.7426 + 42.8554i 1.35792 + 2.35199i
\(333\) 0 0
\(334\) −42.6297 24.6123i −2.33259 1.34672i
\(335\) −5.62495 9.74270i −0.307324 0.532300i
\(336\) 0 0
\(337\) −3.82962 + 6.63309i −0.208612 + 0.361327i −0.951278 0.308336i \(-0.900228\pi\)
0.742665 + 0.669663i \(0.233561\pi\)
\(338\) −25.1305 + 14.5091i −1.36692 + 0.789192i
\(339\) 0 0
\(340\) −31.3530 + 54.3049i −1.70035 + 2.94510i
\(341\) 8.77137 15.1925i 0.474996 0.822717i
\(342\) 0 0
\(343\) 0 0
\(344\) −46.0082 + 26.5629i −2.48060 + 1.43217i
\(345\) 0 0
\(346\) 56.3312i 3.02839i
\(347\) 13.1652i 0.706747i −0.935482 0.353374i \(-0.885034\pi\)
0.935482 0.353374i \(-0.114966\pi\)
\(348\) 0 0
\(349\) 1.05185 0.607283i 0.0563040 0.0325071i −0.471584 0.881821i \(-0.656318\pi\)
0.527888 + 0.849314i \(0.322984\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.9246 + 29.3143i −0.902087 + 1.56246i
\(353\) −13.4114 + 23.2292i −0.713816 + 1.23637i 0.249598 + 0.968349i \(0.419701\pi\)
−0.963414 + 0.268016i \(0.913632\pi\)
\(354\) 0 0
\(355\) 2.36551 1.36573i 0.125548 0.0724854i
\(356\) 7.72659 13.3829i 0.409509 0.709290i
\(357\) 0 0
\(358\) 22.1591 + 38.3807i 1.17114 + 2.02848i
\(359\) 6.45209 + 3.72512i 0.340529 + 0.196604i 0.660506 0.750821i \(-0.270342\pi\)
−0.319977 + 0.947425i \(0.603675\pi\)
\(360\) 0 0
\(361\) −9.27195 16.0595i −0.487997 0.845236i
\(362\) −42.9171 −2.25567
\(363\) 0 0
\(364\) 0 0
\(365\) −30.5250 17.6236i −1.59775 0.922463i
\(366\) 0 0
\(367\) 30.3000 + 17.4937i 1.58165 + 0.913166i 0.994619 + 0.103601i \(0.0330365\pi\)
0.587031 + 0.809565i \(0.300297\pi\)
\(368\) −39.9952 + 23.0913i −2.08490 + 1.20371i
\(369\) 0 0
\(370\) 18.1359i 0.942840i
\(371\) 0 0
\(372\) 0 0
\(373\) 15.0495 + 26.0665i 0.779233 + 1.34967i 0.932384 + 0.361469i \(0.117725\pi\)
−0.153151 + 0.988203i \(0.548942\pi\)
\(374\) 65.1369 3.36815
\(375\) 0 0
\(376\) 3.36737i 0.173659i
\(377\) −5.90152 −0.303944
\(378\) 0 0
\(379\) −27.0996 −1.39201 −0.696006 0.718036i \(-0.745041\pi\)
−0.696006 + 0.718036i \(0.745041\pi\)
\(380\) 7.31850i 0.375431i
\(381\) 0 0
\(382\) −2.45979 −0.125854
\(383\) 1.83015 + 3.16992i 0.0935164 + 0.161975i 0.908988 0.416821i \(-0.136856\pi\)
−0.815472 + 0.578796i \(0.803523\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.36851i 0.222351i
\(387\) 0 0
\(388\) −59.2646 + 34.2164i −3.00870 + 1.73708i
\(389\) 10.5387 + 6.08449i 0.534331 + 0.308496i 0.742778 0.669537i \(-0.233508\pi\)
−0.208447 + 0.978034i \(0.566841\pi\)
\(390\) 0 0
\(391\) 27.8795 + 16.0962i 1.40993 + 0.814022i
\(392\) 0 0
\(393\) 0 0
\(394\) 32.8684 1.65589
\(395\) −12.3690 21.4237i −0.622352 1.07795i
\(396\) 0 0
\(397\) −23.1870 13.3870i −1.16372 0.671876i −0.211530 0.977371i \(-0.567845\pi\)
−0.952194 + 0.305495i \(0.901178\pi\)
\(398\) 5.61797 + 9.73061i 0.281603 + 0.487752i
\(399\) 0 0
\(400\) −1.81679 + 3.14678i −0.0908397 + 0.157339i
\(401\) 6.69428 3.86494i 0.334296 0.193006i −0.323451 0.946245i \(-0.604843\pi\)
0.657747 + 0.753239i \(0.271510\pi\)
\(402\) 0 0
\(403\) −2.65364 + 4.59624i −0.132187 + 0.228955i
\(404\) 3.86680 6.69750i 0.192381 0.333213i
\(405\) 0 0
\(406\) 0 0
\(407\) 11.4061 6.58532i 0.565380 0.326422i
\(408\) 0 0
\(409\) 9.06047i 0.448012i −0.974588 0.224006i \(-0.928087\pi\)
0.974588 0.224006i \(-0.0719135\pi\)
\(410\) 39.6197i 1.95668i
\(411\) 0 0
\(412\) −6.54231 + 3.77720i −0.322316 + 0.186090i
\(413\) 0 0
\(414\) 0 0
\(415\) 12.4157 21.5047i 0.609464 1.05562i
\(416\) 5.12029 8.86860i 0.251043 0.434819i
\(417\) 0 0
\(418\) 6.58372 3.80111i 0.322020 0.185919i
\(419\) −3.30466 + 5.72384i −0.161443 + 0.279628i −0.935386 0.353627i \(-0.884948\pi\)
0.773943 + 0.633255i \(0.218282\pi\)
\(420\) 0 0
\(421\) 6.39209 + 11.0714i 0.311531 + 0.539588i 0.978694 0.205324i \(-0.0658248\pi\)
−0.667163 + 0.744912i \(0.732491\pi\)
\(422\) 10.0193 + 5.78464i 0.487732 + 0.281592i
\(423\) 0 0
\(424\) −14.1465 24.5024i −0.687013 1.18994i
\(425\) 2.53287 0.122862
\(426\) 0 0
\(427\) 0 0
\(428\) 73.7007 + 42.5511i 3.56246 + 2.05679i
\(429\) 0 0
\(430\) 40.5299 + 23.4000i 1.95453 + 1.12845i
\(431\) −18.9756 + 10.9556i −0.914023 + 0.527712i −0.881723 0.471767i \(-0.843616\pi\)
−0.0322998 + 0.999478i \(0.510283\pi\)
\(432\) 0 0
\(433\) 8.21181i 0.394635i −0.980340 0.197317i \(-0.936777\pi\)
0.980340 0.197317i \(-0.0632229\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −37.1153 64.2855i −1.77750 3.07872i
\(437\) 3.75724 0.179733
\(438\) 0 0
\(439\) 37.8737i 1.80761i −0.427942 0.903806i \(-0.640761\pi\)
0.427942 0.903806i \(-0.359239\pi\)
\(440\) 69.4838 3.31251
\(441\) 0 0
\(442\) −19.7061 −0.937326
\(443\) 20.4624i 0.972200i −0.873903 0.486100i \(-0.838419\pi\)
0.873903 0.486100i \(-0.161581\pi\)
\(444\) 0 0
\(445\) −7.75436 −0.367592
\(446\) 26.7941 + 46.4087i 1.26874 + 2.19752i
\(447\) 0 0
\(448\) 0 0
\(449\) 35.7054i 1.68504i −0.538665 0.842520i \(-0.681071\pi\)
0.538665 0.842520i \(-0.318929\pi\)
\(450\) 0 0
\(451\) 24.9178 14.3863i 1.17333 0.677424i
\(452\) −23.5892 13.6192i −1.10954 0.640594i
\(453\) 0 0
\(454\) −63.2232 36.5019i −2.96721 1.71312i
\(455\) 0 0
\(456\) 0 0
\(457\) −0.254179 −0.0118900 −0.00594501 0.999982i \(-0.501892\pi\)
−0.00594501 + 0.999982i \(0.501892\pi\)
\(458\) −28.0839 48.6428i −1.31228 2.27293i
\(459\) 0 0
\(460\) 52.2101 + 30.1435i 2.43431 + 1.40545i
\(461\) −12.2175 21.1613i −0.569025 0.985581i −0.996663 0.0816304i \(-0.973987\pi\)
0.427637 0.903950i \(-0.359346\pi\)
\(462\) 0 0
\(463\) 0.409986 0.710116i 0.0190536 0.0330019i −0.856341 0.516410i \(-0.827268\pi\)
0.875395 + 0.483408i \(0.160601\pi\)
\(464\) −32.1196 + 18.5443i −1.49112 + 0.860896i
\(465\) 0 0
\(466\) 19.6374 34.0130i 0.909686 1.57562i
\(467\) 0.909625 1.57552i 0.0420924 0.0729062i −0.844212 0.536010i \(-0.819931\pi\)
0.886304 + 0.463104i \(0.153264\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.56899 + 1.48321i −0.118499 + 0.0684152i
\(471\) 0 0
\(472\) 29.4416i 1.35516i
\(473\) 33.9870i 1.56273i
\(474\) 0 0
\(475\) 0.256010 0.147807i 0.0117465 0.00678187i
\(476\) 0 0
\(477\) 0 0
\(478\) 7.37004 12.7653i 0.337098 0.583871i
\(479\) −0.681074 + 1.17965i −0.0311191 + 0.0538998i −0.881166 0.472808i \(-0.843240\pi\)
0.850046 + 0.526708i \(0.176574\pi\)
\(480\) 0 0
\(481\) −3.45074 + 1.99228i −0.157340 + 0.0908403i
\(482\) −5.76373 + 9.98308i −0.262531 + 0.454717i
\(483\) 0 0
\(484\) −18.7340 32.4482i −0.851544 1.47492i
\(485\) 29.7388 + 17.1697i 1.35037 + 0.779635i
\(486\) 0 0
\(487\) −15.8061 27.3769i −0.716241 1.24057i −0.962479 0.271357i \(-0.912528\pi\)
0.246238 0.969209i \(-0.420806\pi\)
\(488\) 14.0005 0.633773
\(489\) 0 0
\(490\) 0 0
\(491\) 1.97415 + 1.13977i 0.0890919 + 0.0514373i 0.543884 0.839160i \(-0.316953\pi\)
−0.454792 + 0.890598i \(0.650286\pi\)
\(492\) 0 0
\(493\) 22.3897 + 12.9267i 1.00838 + 0.582188i
\(494\) −1.99180 + 1.14997i −0.0896154 + 0.0517395i
\(495\) 0 0
\(496\) 33.3540i 1.49764i
\(497\) 0 0
\(498\) 0 0
\(499\) −13.5195 23.4164i −0.605215 1.04826i −0.992017 0.126101i \(-0.959754\pi\)
0.386802 0.922163i \(-0.373580\pi\)
\(500\) −49.4392 −2.21099
\(501\) 0 0
\(502\) 29.9755i 1.33787i
\(503\) −0.276948 −0.0123485 −0.00617426 0.999981i \(-0.501965\pi\)
−0.00617426 + 0.999981i \(0.501965\pi\)
\(504\) 0 0
\(505\) −3.88070 −0.172689
\(506\) 62.6243i 2.78399i
\(507\) 0 0
\(508\) 77.0067 3.41662
\(509\) −9.21476 15.9604i −0.408437 0.707434i 0.586278 0.810110i \(-0.300593\pi\)
−0.994715 + 0.102676i \(0.967259\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 48.9492i 2.16327i
\(513\) 0 0
\(514\) 4.69510 2.71072i 0.207092 0.119565i
\(515\) 3.28291 + 1.89539i 0.144662 + 0.0835208i
\(516\) 0 0
\(517\) 1.86565 + 1.07713i 0.0820512 + 0.0473723i
\(518\) 0 0
\(519\) 0 0
\(520\) −21.0212 −0.921842
\(521\) 11.6264 + 20.1374i 0.509360 + 0.882237i 0.999941 + 0.0108420i \(0.00345117\pi\)
−0.490581 + 0.871395i \(0.663215\pi\)
\(522\) 0 0
\(523\) −11.5227 6.65262i −0.503852 0.290899i 0.226451 0.974023i \(-0.427288\pi\)
−0.730303 + 0.683124i \(0.760621\pi\)
\(524\) 16.5431 + 28.6535i 0.722689 + 1.25173i
\(525\) 0 0
\(526\) −2.83970 + 4.91850i −0.123817 + 0.214457i
\(527\) 20.1352 11.6251i 0.877102 0.506395i
\(528\) 0 0
\(529\) 3.97534 6.88549i 0.172841 0.299369i
\(530\) −12.4620 + 21.5848i −0.541315 + 0.937585i
\(531\) 0 0
\(532\) 0 0
\(533\) −7.53848 + 4.35235i −0.326528 + 0.188521i
\(534\) 0 0
\(535\) 42.7040i 1.84626i
\(536\) 32.9249i 1.42214i
\(537\) 0 0
\(538\) 62.2105 35.9172i 2.68208 1.54850i
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0846 26.1273i 0.648537 1.12330i −0.334935 0.942241i \(-0.608714\pi\)
0.983472 0.181059i \(-0.0579524\pi\)
\(542\) 14.7993 25.6331i 0.635684 1.10104i
\(543\) 0 0
\(544\) −38.8515 + 22.4309i −1.66574 + 0.961718i
\(545\) −18.6243 + 32.2582i −0.797778 + 1.38179i
\(546\) 0 0
\(547\) −0.572061 0.990840i −0.0244596 0.0423652i 0.853537 0.521033i \(-0.174453\pi\)
−0.877996 + 0.478668i \(0.841120\pi\)
\(548\) 3.33002 + 1.92259i 0.142252 + 0.0821290i
\(549\) 0 0
\(550\) −2.46360 4.26708i −0.105048 0.181949i
\(551\) 3.01738 0.128545
\(552\) 0 0
\(553\) 0 0
\(554\) −22.7744 13.1488i −0.967591 0.558639i
\(555\) 0 0
\(556\) −56.1065 32.3931i −2.37944 1.37377i
\(557\) 8.35388 4.82312i 0.353965 0.204362i −0.312465 0.949929i \(-0.601155\pi\)
0.666430 + 0.745567i \(0.267821\pi\)
\(558\) 0 0
\(559\) 10.2822i 0.434893i
\(560\) 0 0
\(561\) 0 0
\(562\) 14.0683 + 24.3669i 0.593434 + 1.02786i
\(563\) −3.08791 −0.130140 −0.0650698 0.997881i \(-0.520727\pi\)
−0.0650698 + 0.997881i \(0.520727\pi\)
\(564\) 0 0
\(565\) 13.6681i 0.575023i
\(566\) 30.5940 1.28596
\(567\) 0 0
\(568\) 7.99411 0.335425
\(569\) 8.43610i 0.353660i −0.984241 0.176830i \(-0.943416\pi\)
0.984241 0.176830i \(-0.0565842\pi\)
\(570\) 0 0
\(571\) −34.0415 −1.42459 −0.712297 0.701879i \(-0.752345\pi\)
−0.712297 + 0.701879i \(0.752345\pi\)
\(572\) 13.4001 + 23.2097i 0.560288 + 0.970447i
\(573\) 0 0
\(574\) 0 0
\(575\) 2.43516i 0.101553i
\(576\) 0 0
\(577\) −15.6796 + 9.05260i −0.652749 + 0.376865i −0.789509 0.613739i \(-0.789665\pi\)
0.136760 + 0.990604i \(0.456331\pi\)
\(578\) 36.8055 + 21.2497i 1.53091 + 0.883869i
\(579\) 0 0
\(580\) 41.9292 + 24.2078i 1.74102 + 1.00518i
\(581\) 0 0
\(582\) 0 0
\(583\) 18.1003 0.749638
\(584\) −51.5787 89.3370i −2.13434 3.69679i
\(585\) 0 0
\(586\) −42.6467 24.6221i −1.76172 1.01713i
\(587\) 4.04900 + 7.01308i 0.167120 + 0.289461i 0.937406 0.348238i \(-0.113220\pi\)
−0.770286 + 0.637699i \(0.779887\pi\)
\(588\) 0 0
\(589\) 1.35678 2.35001i 0.0559050 0.0968304i
\(590\) −22.4612 + 12.9680i −0.924713 + 0.533883i
\(591\) 0 0
\(592\) −12.5207 + 21.6864i −0.514596 + 0.891306i
\(593\) −3.33216 + 5.77148i −0.136836 + 0.237006i −0.926297 0.376794i \(-0.877027\pi\)
0.789462 + 0.613800i \(0.210360\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 44.0040 25.4057i 1.80247 1.04066i
\(597\) 0 0
\(598\) 18.9460i 0.774759i
\(599\) 3.58607i 0.146523i −0.997313 0.0732614i \(-0.976659\pi\)
0.997313 0.0732614i \(-0.0233407\pi\)
\(600\) 0 0
\(601\) −4.86949 + 2.81140i −0.198631 + 0.114679i −0.596017 0.802972i \(-0.703251\pi\)
0.397386 + 0.917652i \(0.369917\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −32.4030 + 56.1237i −1.31846 + 2.28364i
\(605\) −9.40064 + 16.2824i −0.382190 + 0.661973i
\(606\) 0 0
\(607\) −1.93239 + 1.11566i −0.0784332 + 0.0452834i −0.538704 0.842495i \(-0.681086\pi\)
0.460270 + 0.887779i \(0.347752\pi\)
\(608\) −2.61795 + 4.53442i −0.106172 + 0.183895i
\(609\) 0 0
\(610\) −6.16672 10.6811i −0.249683 0.432464i
\(611\) −0.564423 0.325870i −0.0228341 0.0131833i
\(612\) 0 0
\(613\) 3.41019 + 5.90662i 0.137736 + 0.238566i 0.926639 0.375951i \(-0.122684\pi\)
−0.788903 + 0.614518i \(0.789351\pi\)
\(614\) −6.07134 −0.245019
\(615\) 0 0
\(616\) 0 0
\(617\) 2.35139 + 1.35757i 0.0946632 + 0.0546538i 0.546584 0.837404i \(-0.315928\pi\)
−0.451921 + 0.892058i \(0.649261\pi\)
\(618\) 0 0
\(619\) 23.1886 + 13.3880i 0.932029 + 0.538107i 0.887453 0.460899i \(-0.152473\pi\)
0.0445762 + 0.999006i \(0.485806\pi\)
\(620\) 37.7072 21.7703i 1.51436 0.874316i
\(621\) 0 0
\(622\) 20.2380i 0.811469i
\(623\) 0 0
\(624\) 0 0
\(625\) 13.4985 + 23.3801i 0.539940 + 0.935203i
\(626\) 77.4829 3.09684
\(627\) 0 0
\(628\) 73.3212i 2.92583i
\(629\) 17.4556 0.696000
\(630\) 0 0
\(631\) −11.1620 −0.444354 −0.222177 0.975006i \(-0.571316\pi\)
−0.222177 + 0.975006i \(0.571316\pi\)
\(632\) 72.4002i 2.87993i
\(633\) 0 0
\(634\) 28.6363 1.13729
\(635\) −19.3208 33.4647i −0.766724 1.32801i
\(636\) 0 0
\(637\) 0 0
\(638\) 50.2927i 1.99111i
\(639\) 0 0
\(640\) 13.6850 7.90105i 0.540948 0.312317i
\(641\) 38.6251 + 22.3002i 1.52560 + 0.880805i 0.999539 + 0.0303565i \(0.00966427\pi\)
0.526059 + 0.850448i \(0.323669\pi\)
\(642\) 0 0
\(643\) 23.6268 + 13.6410i 0.931751 + 0.537947i 0.887365 0.461068i \(-0.152534\pi\)
0.0443860 + 0.999014i \(0.485867\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10.0755 0.396417
\(647\) 22.4675 + 38.9148i 0.883288 + 1.52990i 0.847663 + 0.530534i \(0.178009\pi\)
0.0356246 + 0.999365i \(0.488658\pi\)
\(648\) 0 0
\(649\) 16.3118 + 9.41760i 0.640293 + 0.369673i
\(650\) 0.745324 + 1.29094i 0.0292340 + 0.0506348i
\(651\) 0 0
\(652\) −15.7200 + 27.2278i −0.615642 + 1.06632i
\(653\) −24.0549 + 13.8881i −0.941343 + 0.543484i −0.890381 0.455216i \(-0.849562\pi\)
−0.0509617 + 0.998701i \(0.516229\pi\)
\(654\) 0 0
\(655\) 8.30128 14.3782i 0.324358 0.561804i
\(656\) −27.3526 + 47.3762i −1.06794 + 1.84973i
\(657\) 0 0
\(658\) 0 0
\(659\) −0.801975 + 0.463021i −0.0312405 + 0.0180367i −0.515539 0.856866i \(-0.672408\pi\)
0.484298 + 0.874903i \(0.339075\pi\)
\(660\) 0 0
\(661\) 32.6813i 1.27115i 0.772037 + 0.635577i \(0.219238\pi\)
−0.772037 + 0.635577i \(0.780762\pi\)
\(662\) 44.5183i 1.73025i
\(663\) 0 0
\(664\) 62.9373 36.3369i 2.44244 1.41014i
\(665\) 0 0
\(666\) 0 0
\(667\) 12.4280 21.5260i 0.481215 0.833489i
\(668\) −44.3625 + 76.8382i −1.71644 + 2.97296i
\(669\) 0 0
\(670\) −25.1186 + 14.5022i −0.970415 + 0.560269i
\(671\) −4.47839 + 7.75681i −0.172886 + 0.299448i
\(672\) 0 0
\(673\) −15.6947 27.1840i −0.604987 1.04787i −0.992054 0.125816i \(-0.959845\pi\)
0.387067 0.922052i \(-0.373488\pi\)
\(674\) 17.1014 + 9.87349i 0.658721 + 0.380313i
\(675\) 0 0
\(676\) 26.1521 + 45.2967i 1.00585 + 1.74218i
\(677\) −21.5765 −0.829252 −0.414626 0.909992i \(-0.636088\pi\)
−0.414626 + 0.909992i \(0.636088\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 79.7521 + 46.0449i 3.05835 + 1.76574i
\(681\) 0 0
\(682\) −39.1691 22.6143i −1.49986 0.865946i
\(683\) 31.4015 18.1296i 1.20154 0.693711i 0.240645 0.970613i \(-0.422641\pi\)
0.960898 + 0.276902i \(0.0893077\pi\)
\(684\) 0 0
\(685\) 1.92950i 0.0737224i
\(686\) 0 0
\(687\) 0 0
\(688\) 32.3098 + 55.9622i 1.23180 + 2.13354i
\(689\) −5.47596 −0.208618
\(690\) 0 0
\(691\) 7.11745i 0.270761i 0.990794 + 0.135380i \(0.0432256\pi\)
−0.990794 + 0.135380i \(0.956774\pi\)
\(692\) −101.535 −3.85977
\(693\) 0 0
\(694\) −33.9426 −1.28844
\(695\) 32.5095i 1.23315i
\(696\) 0 0
\(697\) 38.1335 1.44441
\(698\) −1.56569 2.71186i −0.0592624 0.102645i
\(699\) 0 0
\(700\) 0 0
\(701\) 29.4609i 1.11272i −0.830940 0.556362i \(-0.812197\pi\)
0.830940 0.556362i \(-0.187803\pi\)
\(702\) 0 0
\(703\) 1.76433 1.01863i 0.0665428 0.0384185i
\(704\) 12.8019 + 7.39117i 0.482489 + 0.278565i
\(705\) 0 0
\(706\) 59.8894 + 34.5772i 2.25397 + 1.30133i
\(707\) 0 0
\(708\) 0 0
\(709\) −38.0722 −1.42983 −0.714916 0.699211i \(-0.753535\pi\)
−0.714916 + 0.699211i \(0.753535\pi\)
\(710\) −3.52112 6.09875i −0.132145 0.228882i
\(711\) 0 0
\(712\) −19.6540 11.3473i −0.736566 0.425257i
\(713\) −11.1766 19.3585i −0.418568 0.724980i
\(714\) 0 0
\(715\) 6.72414 11.6466i 0.251469 0.435556i
\(716\) 69.1795 39.9408i 2.58536 1.49266i
\(717\) 0 0
\(718\) 9.60408 16.6348i 0.358421 0.620803i
\(719\) −19.1057 + 33.0921i −0.712523 + 1.23413i 0.251385 + 0.967887i \(0.419114\pi\)
−0.963907 + 0.266238i \(0.914219\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −41.4045 + 23.9049i −1.54091 + 0.889647i
\(723\) 0 0
\(724\) 77.3562i 2.87492i
\(725\) 1.95565i 0.0726309i
\(726\) 0 0
\(727\) −17.7563 + 10.2516i −0.658546 + 0.380212i −0.791723 0.610881i \(-0.790816\pi\)
0.133177 + 0.991092i \(0.457482\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −45.4372 + 78.6995i −1.68170 + 2.91280i
\(731\) 22.5222 39.0096i 0.833014 1.44282i
\(732\) 0 0
\(733\) 0.900627 0.519977i 0.0332654 0.0192058i −0.483275 0.875469i \(-0.660553\pi\)
0.516540 + 0.856263i \(0.327220\pi\)
\(734\) 45.1023 78.1194i 1.66475 2.88344i
\(735\) 0 0
\(736\) 21.5657 + 37.3528i 0.794921 + 1.37684i
\(737\) 18.2416 + 10.5318i 0.671938 + 0.387944i
\(738\) 0 0
\(739\) −12.0805 20.9240i −0.444387 0.769701i 0.553622 0.832768i \(-0.313245\pi\)
−0.998009 + 0.0630670i \(0.979912\pi\)
\(740\) 32.6892 1.20168
\(741\) 0 0
\(742\) 0 0
\(743\) 13.1637 + 7.60008i 0.482930 + 0.278820i 0.721637 0.692272i \(-0.243390\pi\)
−0.238707 + 0.971092i \(0.576723\pi\)
\(744\) 0 0
\(745\) −22.0810 12.7485i −0.808987 0.467069i
\(746\) 67.2045 38.8005i 2.46053 1.42059i
\(747\) 0 0
\(748\) 117.406i 4.29281i
\(749\) 0 0
\(750\) 0 0
\(751\) −1.52037 2.63336i −0.0554791 0.0960926i 0.836952 0.547276i \(-0.184335\pi\)
−0.892431 + 0.451184i \(0.851002\pi\)
\(752\) −4.09591 −0.149362
\(753\) 0 0
\(754\) 15.2153i 0.554107i
\(755\) 32.5195 1.18350
\(756\) 0 0
\(757\) 43.3700 1.57631 0.788155 0.615477i \(-0.211036\pi\)
0.788155 + 0.615477i \(0.211036\pi\)
\(758\) 69.8680i 2.53772i
\(759\) 0 0
\(760\) 10.7479 0.389869
\(761\) 14.6319 + 25.3432i 0.530406 + 0.918690i 0.999371 + 0.0354731i \(0.0112938\pi\)
−0.468965 + 0.883217i \(0.655373\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.43367i 0.160405i
\(765\) 0 0
\(766\) 8.17266 4.71849i 0.295290 0.170486i
\(767\) −4.93487 2.84915i −0.178188 0.102877i
\(768\) 0 0
\(769\) −29.6496 17.1182i −1.06919 0.617299i −0.141232 0.989977i \(-0.545106\pi\)
−0.927961 + 0.372678i \(0.878440\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.87405 0.283393
\(773\) 16.9927 + 29.4322i 0.611185 + 1.05860i 0.991041 + 0.133558i \(0.0426403\pi\)
−0.379856 + 0.925046i \(0.624026\pi\)
\(774\) 0 0
\(775\) −1.52310 0.879363i −0.0547114 0.0315877i
\(776\) 50.2502 + 87.0359i 1.80388 + 3.12441i
\(777\) 0 0
\(778\) 15.6870 27.1707i 0.562406 0.974117i
\(779\) 3.85435 2.22531i 0.138096 0.0797299i
\(780\) 0 0
\(781\) −2.55710 + 4.42904i −0.0915004 + 0.158483i
\(782\) 41.4993 71.8788i 1.48401 2.57038i
\(783\) 0 0
\(784\) 0 0
\(785\) 31.8631 18.3962i 1.13724 0.656587i
\(786\) 0 0
\(787\) 27.5078i 0.980549i −0.871568 0.490274i \(-0.836897\pi\)
0.871568 0.490274i \(-0.163103\pi\)
\(788\) 59.2439i 2.11048i
\(789\) 0 0
\(790\) −55.2346 + 31.8897i −1.96516 + 1.13458i
\(791\) 0 0
\(792\) 0 0
\(793\) 1.35487 2.34670i 0.0481128 0.0833338i
\(794\) −34.5144 + 59.7807i −1.22487 + 2.12154i
\(795\) 0 0
\(796\) 17.5390 10.1262i 0.621654 0.358912i
\(797\) −21.0873 + 36.5243i −0.746952 + 1.29376i 0.202326 + 0.979318i \(0.435150\pi\)
−0.949277 + 0.314440i \(0.898183\pi\)
\(798\) 0 0
\(799\) 1.42757 + 2.47262i 0.0505038 + 0.0874751i
\(800\) 2.93888 + 1.69676i 0.103905 + 0.0599896i
\(801\) 0 0
\(802\) −9.96458 17.2592i −0.351861 0.609442i
\(803\) 65.9947 2.32890
\(804\) 0 0
\(805\) 0 0
\(806\) 11.8500 + 6.84160i 0.417398 + 0.240985i
\(807\) 0 0
\(808\) −9.83594 5.67878i −0.346027 0.199779i
\(809\) −4.18377 + 2.41550i −0.147094 + 0.0849245i −0.571740 0.820435i \(-0.693732\pi\)
0.424647 + 0.905359i \(0.360398\pi\)
\(810\) 0 0
\(811\) 6.46035i 0.226853i −0.993546 0.113427i \(-0.963817\pi\)
0.993546 0.113427i \(-0.0361827\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16.9782 29.4071i −0.595086 1.03072i
\(815\) 15.7765 0.552625
\(816\) 0 0
\(817\) 5.25720i 0.183926i
\(818\) −23.3597 −0.816751
\(819\) 0 0
\(820\) 71.4128 2.49384
\(821\) 16.7957i 0.586172i −0.956086 0.293086i \(-0.905318\pi\)
0.956086 0.293086i \(-0.0946823\pi\)
\(822\) 0 0
\(823\) −15.0350 −0.524087 −0.262043 0.965056i \(-0.584396\pi\)
−0.262043 + 0.965056i \(0.584396\pi\)
\(824\) 5.54719 + 9.60802i 0.193246 + 0.334711i
\(825\) 0 0
\(826\) 0 0
\(827\) 29.2462i 1.01699i 0.861065 + 0.508495i \(0.169798\pi\)
−0.861065 + 0.508495i \(0.830202\pi\)
\(828\) 0 0
\(829\) 1.30270 0.752115i 0.0452447 0.0261220i −0.477207 0.878791i \(-0.658351\pi\)
0.522452 + 0.852669i \(0.325017\pi\)
\(830\) −55.4433 32.0102i −1.92446 1.11109i
\(831\) 0 0
\(832\) −3.87301 2.23608i −0.134272 0.0775222i
\(833\) 0 0
\(834\) 0 0
\(835\) 44.5219 1.54075
\(836\) −6.85135 11.8669i −0.236959 0.410425i
\(837\) 0 0
\(838\) 14.7572 + 8.52005i 0.509778 + 0.294320i
\(839\) 22.9477 + 39.7466i 0.792243 + 1.37221i 0.924575 + 0.381000i \(0.124420\pi\)
−0.132331 + 0.991206i \(0.542246\pi\)
\(840\) 0 0
\(841\) −4.51923 + 7.82753i −0.155835 + 0.269915i
\(842\) 28.5443 16.4800i 0.983701 0.567940i
\(843\) 0 0
\(844\) 10.4266 18.0593i 0.358897 0.621628i
\(845\) 13.1230 22.7297i 0.451445 0.781926i
\(846\) 0 0
\(847\) 0 0
\(848\) −29.8035 + 17.2071i −1.02346 + 0.590893i
\(849\) 0 0
\(850\) 6.53023i 0.223985i
\(851\) 16.7822i 0.575288i
\(852\) 0 0
\(853\) −24.3086 + 14.0346i −0.832310 + 0.480534i −0.854643 0.519216i \(-0.826224\pi\)
0.0223330 + 0.999751i \(0.492891\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 62.4905 108.237i 2.13588 3.69946i
\(857\) 8.55426 14.8164i 0.292208 0.506119i −0.682123 0.731237i \(-0.738943\pi\)
0.974332 + 0.225118i \(0.0722767\pi\)
\(858\) 0 0
\(859\) −4.50996 + 2.60383i −0.153878 + 0.0888414i −0.574962 0.818180i \(-0.694983\pi\)
0.421084 + 0.907022i \(0.361650\pi\)
\(860\) 42.1775 73.0535i 1.43824 2.49110i
\(861\) 0 0
\(862\) 28.2456 + 48.9228i 0.962049 + 1.66632i
\(863\) −38.7134 22.3512i −1.31782 0.760844i −0.334442 0.942416i \(-0.608548\pi\)
−0.983378 + 0.181573i \(0.941881\pi\)
\(864\) 0 0
\(865\) 25.4749 + 44.1238i 0.866172 + 1.50025i
\(866\) −21.1716 −0.719442
\(867\) 0 0
\(868\) 0 0
\(869\) 40.1124 + 23.1589i 1.36072 + 0.785613i
\(870\) 0 0
\(871\) −5.51871 3.18623i −0.186994 0.107961i
\(872\) −94.4096 + 54.5074i −3.19711 + 1.84585i
\(873\) 0 0
\(874\) 9.68688i 0.327664i
\(875\) 0 0
\(876\) 0 0
\(877\) 2.87432 + 4.97846i 0.0970587 + 0.168111i 0.910466 0.413584i \(-0.135723\pi\)
−0.813407 + 0.581695i \(0.802390\pi\)
\(878\) −97.6457 −3.29538
\(879\) 0 0
\(880\) 84.5167i 2.84906i
\(881\) −9.98120 −0.336275 −0.168138 0.985764i \(-0.553775\pi\)
−0.168138 + 0.985764i \(0.553775\pi\)
\(882\) 0 0
\(883\) −32.0942 −1.08006 −0.540028 0.841647i \(-0.681586\pi\)
−0.540028 + 0.841647i \(0.681586\pi\)
\(884\) 35.5195i 1.19465i
\(885\) 0 0
\(886\) −52.7561 −1.77238
\(887\) −4.26812 7.39260i −0.143309 0.248219i 0.785432 0.618949i \(-0.212441\pi\)
−0.928741 + 0.370729i \(0.879108\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 19.9922i 0.670141i
\(891\) 0 0
\(892\) 83.6498 48.2952i 2.80080 1.61704i
\(893\) 0.288584 + 0.166614i 0.00965709 + 0.00557552i
\(894\) 0 0
\(895\) −34.7140 20.0422i −1.16036 0.669935i
\(896\) 0 0
\(897\) 0 0
\(898\) −92.0554 −3.07193
\(899\) −8.97579 15.5465i −0.299359 0.518505i
\(900\) 0 0
\(901\) 20.7752 + 11.9945i 0.692121 + 0.399596i
\(902\) −37.0906 64.2429i −1.23498 2.13905i
\(903\) 0 0
\(904\) −20.0011 + 34.6430i −0.665228 + 1.15221i
\(905\) 33.6166 19.4085i 1.11745 0.645162i
\(906\) 0 0
\(907\) −16.0272 + 27.7599i −0.532175 + 0.921754i 0.467120 + 0.884194i \(0.345292\pi\)
−0.999294 + 0.0375597i \(0.988042\pi\)
\(908\) −65.7932 + 113.957i −2.18342 + 3.78180i
\(909\) 0 0
\(910\) 0 0
\(911\) −26.3261 + 15.1994i −0.872221 + 0.503577i −0.868086 0.496414i \(-0.834650\pi\)
−0.00413539 + 0.999991i \(0.501316\pi\)
\(912\) 0 0
\(913\) 46.4928i 1.53869i
\(914\) 0.655324i 0.0216762i
\(915\) 0 0
\(916\) −87.6765 + 50.6201i −2.89691 + 1.67253i
\(917\) 0 0
\(918\) 0 0
\(919\) 8.72153 15.1061i 0.287697 0.498305i −0.685563 0.728013i \(-0.740444\pi\)
0.973260 + 0.229708i \(0.0737772\pi\)
\(920\) 44.2687 76.6757i 1.45950 2.52792i
\(921\) 0 0
\(922\) −54.5580 + 31.4991i −1.79677 + 1.03737i
\(923\) 0.773612 1.33994i 0.0254637 0.0441045i
\(924\) 0 0
\(925\) −0.660203 1.14351i −0.0217074 0.0375982i
\(926\) −1.83082 1.05702i −0.0601644 0.0347359i
\(927\) 0 0
\(928\) 17.3191 + 29.9975i 0.568527 + 0.984717i
\(929\) 10.4278 0.342126 0.171063 0.985260i \(-0.445280\pi\)
0.171063 + 0.985260i \(0.445280\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −61.3070 35.3956i −2.00818 1.15942i
\(933\) 0 0
\(934\) −4.06199 2.34519i −0.132912 0.0767369i
\(935\) −51.0212 + 29.4571i −1.66857 + 0.963350i
\(936\) 0 0
\(937\) 51.3201i 1.67655i 0.545245 + 0.838277i \(0.316437\pi\)
−0.545245 + 0.838277i \(0.683563\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.67342 + 4.63049i 0.0871973 + 0.151030i
\(941\) 49.3347 1.60827 0.804133 0.594450i \(-0.202630\pi\)
0.804133 + 0.594450i \(0.202630\pi\)
\(942\) 0 0
\(943\) 36.6625i 1.19389i
\(944\) −35.8114 −1.16556
\(945\) 0 0
\(946\) −87.6252 −2.84894
\(947\) 43.9327i 1.42762i 0.700339 + 0.713810i \(0.253032\pi\)
−0.700339 + 0.713810i \(0.746968\pi\)
\(948\) 0 0
\(949\) −19.9657 −0.648113
\(950\) −0.381076 0.660044i −0.0123637 0.0214146i
\(951\) 0 0
\(952\) 0 0
\(953\) 21.0833i 0.682956i 0.939890 + 0.341478i \(0.110928\pi\)
−0.939890 + 0.341478i \(0.889072\pi\)
\(954\) 0 0
\(955\) 1.92673 1.11240i 0.0623477 0.0359964i
\(956\) −23.0089 13.2842i −0.744161 0.429641i
\(957\) 0 0
\(958\) 3.04138 + 1.75594i 0.0982625 + 0.0567319i
\(959\) 0 0
\(960\) 0 0
\(961\) 14.8560 0.479226
\(962\) 5.13650 + 8.89667i 0.165607 + 0.286840i
\(963\) 0 0
\(964\) 17.9941 + 10.3889i 0.579550 + 0.334603i
\(965\) −1.97558 3.42181i −0.0635963 0.110152i
\(966\) 0 0
\(967\) −27.6671 + 47.9209i −0.889716 + 1.54103i −0.0495039 + 0.998774i \(0.515764\pi\)
−0.840212 + 0.542259i \(0.817569\pi\)
\(968\) −47.6533 + 27.5127i −1.53164 + 0.884290i
\(969\) 0 0
\(970\) 44.2668 76.6723i 1.42132 2.46180i
\(971\) −3.41733 + 5.91898i −0.109667 + 0.189949i −0.915635 0.402010i \(-0.868312\pi\)
0.805968 + 0.591959i \(0.201645\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −70.5830 + 40.7511i −2.26162 + 1.30575i
\(975\) 0 0
\(976\) 17.0295i 0.545102i
\(977\) 36.0246i 1.15253i 0.817264 + 0.576264i \(0.195490\pi\)
−0.817264 + 0.576264i \(0.804510\pi\)
\(978\) 0 0
\(979\) 12.5736 7.25938i 0.401854 0.232011i
\(980\) 0 0
\(981\) 0 0
\(982\) 2.93856 5.08973i 0.0937731 0.162420i
\(983\) 20.6863 35.8298i 0.659791 1.14279i −0.320878 0.947120i \(-0.603978\pi\)
0.980670 0.195671i \(-0.0626886\pi\)
\(984\) 0 0
\(985\) −25.7455 + 14.8642i −0.820321 + 0.473612i
\(986\) 33.3275 57.7249i 1.06136 1.83833i
\(987\) 0 0
\(988\) 2.07277 + 3.59014i 0.0659435 + 0.114218i
\(989\) −37.5048 21.6534i −1.19258 0.688539i
\(990\) 0 0
\(991\) 10.8367 + 18.7697i 0.344239 + 0.596240i 0.985215 0.171321i \(-0.0548036\pi\)
−0.640976 + 0.767561i \(0.721470\pi\)
\(992\) 31.1504 0.989025
\(993\) 0 0
\(994\) 0 0
\(995\) −8.80102 5.08127i −0.279011 0.161087i
\(996\) 0 0
\(997\) −11.8699 6.85308i −0.375923 0.217039i 0.300120 0.953901i \(-0.402973\pi\)
−0.676043 + 0.736862i \(0.736307\pi\)
\(998\) −60.3721 + 34.8559i −1.91105 + 1.10334i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.i.d.1097.14 48
3.2 odd 2 441.2.i.d.68.23 48
7.2 even 3 1323.2.o.e.881.1 48
7.3 odd 6 1323.2.s.d.962.23 48
7.4 even 3 1323.2.s.d.962.24 48
7.5 odd 6 1323.2.o.e.881.2 48
7.6 odd 2 inner 1323.2.i.d.1097.2 48
9.2 odd 6 1323.2.s.d.656.23 48
9.7 even 3 441.2.s.d.362.2 48
21.2 odd 6 441.2.o.e.293.24 yes 48
21.5 even 6 441.2.o.e.293.23 yes 48
21.11 odd 6 441.2.s.d.374.1 48
21.17 even 6 441.2.s.d.374.2 48
21.20 even 2 441.2.i.d.68.24 48
63.2 odd 6 1323.2.o.e.440.2 48
63.11 odd 6 inner 1323.2.i.d.521.2 48
63.16 even 3 441.2.o.e.146.23 48
63.20 even 6 1323.2.s.d.656.24 48
63.25 even 3 441.2.i.d.227.2 48
63.34 odd 6 441.2.s.d.362.1 48
63.38 even 6 inner 1323.2.i.d.521.14 48
63.47 even 6 1323.2.o.e.440.1 48
63.52 odd 6 441.2.i.d.227.1 48
63.61 odd 6 441.2.o.e.146.24 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.23 48 3.2 odd 2
441.2.i.d.68.24 48 21.20 even 2
441.2.i.d.227.1 48 63.52 odd 6
441.2.i.d.227.2 48 63.25 even 3
441.2.o.e.146.23 48 63.16 even 3
441.2.o.e.146.24 yes 48 63.61 odd 6
441.2.o.e.293.23 yes 48 21.5 even 6
441.2.o.e.293.24 yes 48 21.2 odd 6
441.2.s.d.362.1 48 63.34 odd 6
441.2.s.d.362.2 48 9.7 even 3
441.2.s.d.374.1 48 21.11 odd 6
441.2.s.d.374.2 48 21.17 even 6
1323.2.i.d.521.2 48 63.11 odd 6 inner
1323.2.i.d.521.14 48 63.38 even 6 inner
1323.2.i.d.1097.2 48 7.6 odd 2 inner
1323.2.i.d.1097.14 48 1.1 even 1 trivial
1323.2.o.e.440.1 48 63.47 even 6
1323.2.o.e.440.2 48 63.2 odd 6
1323.2.o.e.881.1 48 7.2 even 3
1323.2.o.e.881.2 48 7.5 odd 6
1323.2.s.d.656.23 48 9.2 odd 6
1323.2.s.d.656.24 48 63.20 even 6
1323.2.s.d.962.23 48 7.3 odd 6
1323.2.s.d.962.24 48 7.4 even 3