Properties

Label 441.2.i.d.68.24
Level $441$
Weight $2$
Character 441.68
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(68,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.68"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 68.24
Character \(\chi\) \(=\) 441.68
Dual form 441.2.i.d.227.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57819i q^{2} +(1.08633 + 1.34903i) q^{3} -4.64709 q^{4} +(1.16595 + 2.01948i) q^{5} +(-3.47807 + 2.80076i) q^{6} -6.82470i q^{8} +(-0.639786 + 2.93099i) q^{9} +(-5.20660 + 3.00603i) q^{10} +(3.78114 + 2.18304i) q^{11} +(-5.04826 - 6.26908i) q^{12} +(-1.14392 - 0.660445i) q^{13} +(-1.45774 + 3.76671i) q^{15} +8.30123 q^{16} +(-2.89327 - 5.01130i) q^{17} +(-7.55665 - 1.64949i) q^{18} +(0.584876 + 0.337678i) q^{19} +(-5.41825 - 9.38468i) q^{20} +(-5.62830 + 9.74851i) q^{22} +(4.81799 - 2.78167i) q^{23} +(9.20675 - 7.41386i) q^{24} +(-0.218858 + 0.379074i) q^{25} +(1.70276 - 2.94926i) q^{26} +(-4.64902 + 2.32092i) q^{27} +(3.86926 - 2.23392i) q^{29} +(-9.71132 - 3.75835i) q^{30} -4.01796i q^{31} +7.75278i q^{32} +(1.16256 + 7.47238i) q^{33} +(12.9201 - 7.45942i) q^{34} +(2.97314 - 13.6205i) q^{36} +(-1.50829 + 2.61243i) q^{37} +(-0.870601 + 1.50792i) q^{38} +(-0.351713 - 2.26065i) q^{39} +(13.7823 - 7.95723i) q^{40} +(-3.29501 + 5.70713i) q^{41} +(3.89217 + 6.74143i) q^{43} +(-17.5713 - 10.1448i) q^{44} +(-6.66501 + 2.12534i) q^{45} +(7.17168 + 12.4217i) q^{46} -0.493410 q^{47} +(9.01785 + 11.1986i) q^{48} +(-0.977326 - 0.564259i) q^{50} +(3.61737 - 9.34703i) q^{51} +(5.31591 + 3.06914i) q^{52} +(3.59025 - 2.07283i) q^{53} +(-5.98377 - 11.9861i) q^{54} +10.1812i q^{55} +(0.179827 + 1.15585i) q^{57} +(5.75947 + 9.97570i) q^{58} -4.31398 q^{59} +(6.77426 - 17.5042i) q^{60} +2.05145i q^{61} +10.3591 q^{62} -3.38572 q^{64} -3.08017i q^{65} +(-19.2652 + 2.99730i) q^{66} -4.82437 q^{67} +(13.4453 + 23.2879i) q^{68} +(8.98648 + 3.47783i) q^{69} +1.17135i q^{71} +(20.0031 + 4.36635i) q^{72} +(13.0902 - 7.55766i) q^{73} +(-6.73536 - 3.88866i) q^{74} +(-0.749135 + 0.116551i) q^{75} +(-2.71797 - 1.56922i) q^{76} +(5.82840 - 0.906785i) q^{78} -10.6086 q^{79} +(9.67878 + 16.7641i) q^{80} +(-8.18135 - 3.75041i) q^{81} +(-14.7141 - 8.49518i) q^{82} +(-5.32432 - 9.22199i) q^{83} +(6.74680 - 11.6858i) q^{85} +(-17.3807 + 10.0348i) q^{86} +(7.21691 + 2.79300i) q^{87} +(14.8986 - 25.8051i) q^{88} +(-1.66268 + 2.87984i) q^{89} +(-5.47953 - 17.1837i) q^{90} +(-22.3896 + 12.9266i) q^{92} +(5.42036 - 4.36482i) q^{93} -1.27211i q^{94} +1.57486i q^{95} +(-10.4588 + 8.42206i) q^{96} +(-12.7531 + 7.36299i) q^{97} +(-8.81758 + 9.68578i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} - 8 q^{9} + 24 q^{11} - 40 q^{15} + 48 q^{16} - 16 q^{18} + 48 q^{23} - 24 q^{25} - 24 q^{30} - 8 q^{36} - 56 q^{39} - 96 q^{44} + 48 q^{50} - 24 q^{51} - 48 q^{53} + 80 q^{57} + 168 q^{60}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57819i 1.82306i 0.411235 + 0.911529i \(0.365098\pi\)
−0.411235 + 0.911529i \(0.634902\pi\)
\(3\) 1.08633 + 1.34903i 0.627191 + 0.778865i
\(4\) −4.64709 −2.32354
\(5\) 1.16595 + 2.01948i 0.521427 + 0.903138i 0.999689 + 0.0249208i \(0.00793335\pi\)
−0.478263 + 0.878217i \(0.658733\pi\)
\(6\) −3.47807 + 2.80076i −1.41992 + 1.14341i
\(7\) 0 0
\(8\) 6.82470i 2.41290i
\(9\) −0.639786 + 2.93099i −0.213262 + 0.976995i
\(10\) −5.20660 + 3.00603i −1.64647 + 0.950591i
\(11\) 3.78114 + 2.18304i 1.14006 + 0.658212i 0.946444 0.322867i \(-0.104647\pi\)
0.193612 + 0.981078i \(0.437980\pi\)
\(12\) −5.04826 6.26908i −1.45731 1.80973i
\(13\) −1.14392 0.660445i −0.317267 0.183174i 0.332906 0.942960i \(-0.391971\pi\)
−0.650174 + 0.759785i \(0.725304\pi\)
\(14\) 0 0
\(15\) −1.45774 + 3.76671i −0.376388 + 0.972561i
\(16\) 8.30123 2.07531
\(17\) −2.89327 5.01130i −0.701722 1.21542i −0.967862 0.251484i \(-0.919082\pi\)
0.266140 0.963935i \(-0.414252\pi\)
\(18\) −7.55665 1.64949i −1.78112 0.388789i
\(19\) 0.584876 + 0.337678i 0.134180 + 0.0774687i 0.565587 0.824688i \(-0.308650\pi\)
−0.431407 + 0.902157i \(0.641983\pi\)
\(20\) −5.41825 9.38468i −1.21156 2.09848i
\(21\) 0 0
\(22\) −5.62830 + 9.74851i −1.19996 + 2.07839i
\(23\) 4.81799 2.78167i 1.00462 0.580018i 0.0950080 0.995477i \(-0.469712\pi\)
0.909612 + 0.415459i \(0.136379\pi\)
\(24\) 9.20675 7.41386i 1.87932 1.51335i
\(25\) −0.218858 + 0.379074i −0.0437717 + 0.0758147i
\(26\) 1.70276 2.94926i 0.333938 0.578397i
\(27\) −4.64902 + 2.32092i −0.894704 + 0.446661i
\(28\) 0 0
\(29\) 3.86926 2.23392i 0.718503 0.414828i −0.0956983 0.995410i \(-0.530508\pi\)
0.814202 + 0.580582i \(0.197175\pi\)
\(30\) −9.71132 3.75835i −1.77304 0.686178i
\(31\) 4.01796i 0.721646i −0.932634 0.360823i \(-0.882496\pi\)
0.932634 0.360823i \(-0.117504\pi\)
\(32\) 7.75278i 1.37051i
\(33\) 1.16256 + 7.47238i 0.202375 + 1.30077i
\(34\) 12.9201 7.45942i 2.21578 1.27928i
\(35\) 0 0
\(36\) 2.97314 13.6205i 0.495523 2.27009i
\(37\) −1.50829 + 2.61243i −0.247961 + 0.429482i −0.962960 0.269644i \(-0.913094\pi\)
0.714999 + 0.699126i \(0.246427\pi\)
\(38\) −0.870601 + 1.50792i −0.141230 + 0.244618i
\(39\) −0.351713 2.26065i −0.0563192 0.361994i
\(40\) 13.7823 7.95723i 2.17918 1.25815i
\(41\) −3.29501 + 5.70713i −0.514594 + 0.891303i 0.485262 + 0.874369i \(0.338724\pi\)
−0.999857 + 0.0169348i \(0.994609\pi\)
\(42\) 0 0
\(43\) 3.89217 + 6.74143i 0.593550 + 1.02806i 0.993750 + 0.111631i \(0.0356074\pi\)
−0.400200 + 0.916428i \(0.631059\pi\)
\(44\) −17.5713 10.1448i −2.64897 1.52938i
\(45\) −6.66501 + 2.12534i −0.993561 + 0.316826i
\(46\) 7.17168 + 12.4217i 1.05741 + 1.83148i
\(47\) −0.493410 −0.0719712 −0.0359856 0.999352i \(-0.511457\pi\)
−0.0359856 + 0.999352i \(0.511457\pi\)
\(48\) 9.01785 + 11.1986i 1.30161 + 1.61638i
\(49\) 0 0
\(50\) −0.977326 0.564259i −0.138215 0.0797983i
\(51\) 3.61737 9.34703i 0.506533 1.30885i
\(52\) 5.31591 + 3.06914i 0.737184 + 0.425614i
\(53\) 3.59025 2.07283i 0.493159 0.284725i −0.232725 0.972543i \(-0.574764\pi\)
0.725884 + 0.687817i \(0.241431\pi\)
\(54\) −5.98377 11.9861i −0.814288 1.63110i
\(55\) 10.1812i 1.37284i
\(56\) 0 0
\(57\) 0.179827 + 1.15585i 0.0238187 + 0.153096i
\(58\) 5.75947 + 9.97570i 0.756256 + 1.30987i
\(59\) −4.31398 −0.561633 −0.280816 0.959762i \(-0.590605\pi\)
−0.280816 + 0.959762i \(0.590605\pi\)
\(60\) 6.77426 17.5042i 0.874554 2.25979i
\(61\) 2.05145i 0.262661i 0.991339 + 0.131330i \(0.0419249\pi\)
−0.991339 + 0.131330i \(0.958075\pi\)
\(62\) 10.3591 1.31560
\(63\) 0 0
\(64\) −3.38572 −0.423215
\(65\) 3.08017i 0.382048i
\(66\) −19.2652 + 2.99730i −2.37139 + 0.368942i
\(67\) −4.82437 −0.589390 −0.294695 0.955591i \(-0.595218\pi\)
−0.294695 + 0.955591i \(0.595218\pi\)
\(68\) 13.4453 + 23.2879i 1.63048 + 2.82408i
\(69\) 8.98648 + 3.47783i 1.08184 + 0.418681i
\(70\) 0 0
\(71\) 1.17135i 0.139014i 0.997581 + 0.0695068i \(0.0221426\pi\)
−0.997581 + 0.0695068i \(0.977857\pi\)
\(72\) 20.0031 + 4.36635i 2.35739 + 0.514579i
\(73\) 13.0902 7.55766i 1.53210 0.884557i 0.532833 0.846221i \(-0.321128\pi\)
0.999265 0.0383363i \(-0.0122058\pi\)
\(74\) −6.73536 3.88866i −0.782970 0.452048i
\(75\) −0.749135 + 0.116551i −0.0865027 + 0.0134581i
\(76\) −2.71797 1.56922i −0.311772 0.180002i
\(77\) 0 0
\(78\) 5.82840 0.906785i 0.659936 0.102673i
\(79\) −10.6086 −1.19356 −0.596778 0.802406i \(-0.703553\pi\)
−0.596778 + 0.802406i \(0.703553\pi\)
\(80\) 9.67878 + 16.7641i 1.08212 + 1.87429i
\(81\) −8.18135 3.75041i −0.909039 0.416712i
\(82\) −14.7141 8.49518i −1.62490 0.938135i
\(83\) −5.32432 9.22199i −0.584420 1.01225i −0.994947 0.100397i \(-0.967989\pi\)
0.410527 0.911848i \(-0.365345\pi\)
\(84\) 0 0
\(85\) 6.74680 11.6858i 0.731793 1.26750i
\(86\) −17.3807 + 10.0348i −1.87421 + 1.08208i
\(87\) 7.21691 + 2.79300i 0.773734 + 0.299441i
\(88\) 14.8986 25.8051i 1.58820 2.75084i
\(89\) −1.66268 + 2.87984i −0.176243 + 0.305262i −0.940591 0.339542i \(-0.889728\pi\)
0.764348 + 0.644804i \(0.223061\pi\)
\(90\) −5.47953 17.1837i −0.577593 1.81132i
\(91\) 0 0
\(92\) −22.3896 + 12.9266i −2.33428 + 1.34770i
\(93\) 5.42036 4.36482i 0.562065 0.452610i
\(94\) 1.27211i 0.131208i
\(95\) 1.57486i 0.161577i
\(96\) −10.4588 + 8.42206i −1.06744 + 0.859573i
\(97\) −12.7531 + 7.36299i −1.29488 + 0.747598i −0.979515 0.201373i \(-0.935460\pi\)
−0.315363 + 0.948971i \(0.602126\pi\)
\(98\) 0 0
\(99\) −8.81758 + 9.68578i −0.886200 + 0.973458i
\(100\) 1.01705 1.76159i 0.101705 0.176159i
\(101\) −0.832092 + 1.44123i −0.0827963 + 0.143407i −0.904450 0.426580i \(-0.859718\pi\)
0.821654 + 0.569987i \(0.193052\pi\)
\(102\) 24.0985 + 9.32628i 2.38610 + 0.923439i
\(103\) −1.40783 + 0.812812i −0.138718 + 0.0800887i −0.567753 0.823199i \(-0.692187\pi\)
0.429035 + 0.903288i \(0.358854\pi\)
\(104\) −4.50734 + 7.80694i −0.441981 + 0.765533i
\(105\) 0 0
\(106\) 5.34416 + 9.25636i 0.519071 + 0.899057i
\(107\) 15.8596 + 9.15652i 1.53320 + 0.885194i 0.999212 + 0.0397036i \(0.0126414\pi\)
0.533990 + 0.845491i \(0.320692\pi\)
\(108\) 21.6044 10.7855i 2.07888 1.03783i
\(109\) 7.98678 + 13.8335i 0.764995 + 1.32501i 0.940249 + 0.340487i \(0.110592\pi\)
−0.175254 + 0.984523i \(0.556075\pi\)
\(110\) −26.2492 −2.50276
\(111\) −5.16276 + 0.803225i −0.490027 + 0.0762387i
\(112\) 0 0
\(113\) −5.07612 2.93070i −0.477521 0.275697i 0.241862 0.970311i \(-0.422242\pi\)
−0.719383 + 0.694614i \(0.755575\pi\)
\(114\) −2.98000 + 0.463630i −0.279102 + 0.0434229i
\(115\) 11.2350 + 6.48654i 1.04767 + 0.604873i
\(116\) −17.9808 + 10.3812i −1.66947 + 0.963871i
\(117\) 2.66762 2.93028i 0.246622 0.270905i
\(118\) 11.1223i 1.02389i
\(119\) 0 0
\(120\) 25.7067 + 9.94867i 2.34669 + 0.908185i
\(121\) 4.03134 + 6.98248i 0.366485 + 0.634771i
\(122\) −5.28903 −0.478846
\(123\) −11.2786 + 1.75473i −1.01695 + 0.158218i
\(124\) 18.6718i 1.67678i
\(125\) 10.6387 0.951559
\(126\) 0 0
\(127\) −16.5710 −1.47044 −0.735218 0.677831i \(-0.762920\pi\)
−0.735218 + 0.677831i \(0.762920\pi\)
\(128\) 6.77652i 0.598965i
\(129\) −4.86625 + 12.5741i −0.428450 + 1.10708i
\(130\) 7.94128 0.696496
\(131\) −3.55989 6.16591i −0.311029 0.538718i 0.667556 0.744559i \(-0.267340\pi\)
−0.978585 + 0.205841i \(0.934007\pi\)
\(132\) −5.40250 34.7248i −0.470227 3.02241i
\(133\) 0 0
\(134\) 12.4382i 1.07449i
\(135\) −10.1075 6.68252i −0.869918 0.575140i
\(136\) −34.2006 + 19.7457i −2.93268 + 1.69318i
\(137\) 0.716584 + 0.413720i 0.0612219 + 0.0353465i 0.530298 0.847811i \(-0.322080\pi\)
−0.469077 + 0.883157i \(0.655413\pi\)
\(138\) −8.96652 + 23.1689i −0.763281 + 1.97227i
\(139\) −12.0735 6.97062i −1.02406 0.591241i −0.108782 0.994066i \(-0.534695\pi\)
−0.915277 + 0.402825i \(0.868028\pi\)
\(140\) 0 0
\(141\) −0.536005 0.665627i −0.0451397 0.0560559i
\(142\) −3.01997 −0.253430
\(143\) −2.88356 4.99447i −0.241135 0.417658i
\(144\) −5.31101 + 24.3308i −0.442584 + 2.02757i
\(145\) 9.02269 + 5.20925i 0.749294 + 0.432605i
\(146\) 19.4851 + 33.7492i 1.61260 + 2.79310i
\(147\) 0 0
\(148\) 7.00915 12.1402i 0.576149 0.997919i
\(149\) 9.46916 5.46702i 0.775744 0.447876i −0.0591761 0.998248i \(-0.518847\pi\)
0.834920 + 0.550372i \(0.185514\pi\)
\(150\) −0.300491 1.93142i −0.0245350 0.157699i
\(151\) 6.97277 12.0772i 0.567436 0.982828i −0.429383 0.903123i \(-0.641269\pi\)
0.996818 0.0797050i \(-0.0253978\pi\)
\(152\) 2.30455 3.99160i 0.186924 0.323762i
\(153\) 16.5391 5.27399i 1.33711 0.426376i
\(154\) 0 0
\(155\) 8.11417 4.68472i 0.651746 0.376286i
\(156\) 1.63444 + 10.5054i 0.130860 + 0.841108i
\(157\) 15.7779i 1.25921i 0.776914 + 0.629606i \(0.216784\pi\)
−0.776914 + 0.629606i \(0.783216\pi\)
\(158\) 27.3509i 2.17592i
\(159\) 6.69651 + 2.59160i 0.531068 + 0.205527i
\(160\) −15.6566 + 9.03932i −1.23776 + 0.714621i
\(161\) 0 0
\(162\) 9.66928 21.0931i 0.759690 1.65723i
\(163\) 3.38276 5.85911i 0.264958 0.458921i −0.702594 0.711590i \(-0.747975\pi\)
0.967553 + 0.252669i \(0.0813085\pi\)
\(164\) 15.3122 26.5215i 1.19568 2.07098i
\(165\) −13.7348 + 11.0601i −1.06925 + 0.861031i
\(166\) 23.7761 13.7271i 1.84538 1.06543i
\(167\) 9.54631 16.5347i 0.738716 1.27949i −0.214358 0.976755i \(-0.568766\pi\)
0.953074 0.302738i \(-0.0979008\pi\)
\(168\) 0 0
\(169\) −5.62763 9.74733i −0.432894 0.749795i
\(170\) 30.1283 + 17.3946i 2.31073 + 1.33410i
\(171\) −1.36393 + 1.49822i −0.104302 + 0.114572i
\(172\) −18.0872 31.3280i −1.37914 2.38874i
\(173\) 21.8491 1.66116 0.830579 0.556902i \(-0.188010\pi\)
0.830579 + 0.556902i \(0.188010\pi\)
\(174\) −7.20089 + 18.6066i −0.545898 + 1.41056i
\(175\) 0 0
\(176\) 31.3881 + 18.1219i 2.36597 + 1.36599i
\(177\) −4.68640 5.81971i −0.352251 0.437436i
\(178\) −7.42478 4.28670i −0.556511 0.321302i
\(179\) 14.8866 8.59481i 1.11268 0.642406i 0.173158 0.984894i \(-0.444603\pi\)
0.939522 + 0.342488i \(0.111270\pi\)
\(180\) 30.9729 9.87662i 2.30858 0.736160i
\(181\) 16.6462i 1.23730i 0.785666 + 0.618650i \(0.212320\pi\)
−0.785666 + 0.618650i \(0.787680\pi\)
\(182\) 0 0
\(183\) −2.76747 + 2.22854i −0.204577 + 0.164739i
\(184\) −18.9840 32.8813i −1.39952 2.42404i
\(185\) −7.03433 −0.517175
\(186\) 11.2533 + 13.9747i 0.825135 + 1.02468i
\(187\) 25.2645i 1.84753i
\(188\) 2.29292 0.167228
\(189\) 0 0
\(190\) −4.06029 −0.294565
\(191\) 0.954076i 0.0690345i 0.999404 + 0.0345173i \(0.0109894\pi\)
−0.999404 + 0.0345173i \(0.989011\pi\)
\(192\) −3.67800 4.56745i −0.265437 0.329628i
\(193\) −1.69441 −0.121966 −0.0609830 0.998139i \(-0.519424\pi\)
−0.0609830 + 0.998139i \(0.519424\pi\)
\(194\) −18.9832 32.8799i −1.36292 2.36064i
\(195\) 4.15526 3.34607i 0.297564 0.239617i
\(196\) 0 0
\(197\) 12.7486i 0.908301i −0.890925 0.454150i \(-0.849943\pi\)
0.890925 0.454150i \(-0.150057\pi\)
\(198\) −24.9718 22.7334i −1.77467 1.61559i
\(199\) 3.77420 2.17903i 0.267546 0.154468i −0.360226 0.932865i \(-0.617300\pi\)
0.627772 + 0.778397i \(0.283967\pi\)
\(200\) 2.58706 + 1.49364i 0.182933 + 0.105616i
\(201\) −5.24084 6.50824i −0.369660 0.459056i
\(202\) −3.71576 2.14530i −0.261440 0.150942i
\(203\) 0 0
\(204\) −16.8102 + 43.4365i −1.17695 + 3.04116i
\(205\) −15.3672 −1.07329
\(206\) −2.09559 3.62966i −0.146006 0.252891i
\(207\) 5.07054 + 15.9011i 0.352427 + 1.10520i
\(208\) −9.49598 5.48250i −0.658427 0.380143i
\(209\) 1.47433 + 2.55362i 0.101982 + 0.176637i
\(210\) 0 0
\(211\) −2.24368 + 3.88617i −0.154461 + 0.267535i −0.932863 0.360232i \(-0.882698\pi\)
0.778401 + 0.627767i \(0.216031\pi\)
\(212\) −16.6842 + 9.63263i −1.14588 + 0.661571i
\(213\) −1.58019 + 1.27247i −0.108273 + 0.0871882i
\(214\) −23.6073 + 40.8890i −1.61376 + 2.79512i
\(215\) −9.07611 + 15.7203i −0.618986 + 1.07211i
\(216\) 15.8396 + 31.7281i 1.07775 + 2.15883i
\(217\) 0 0
\(218\) −35.6655 + 20.5915i −2.41557 + 1.39463i
\(219\) 24.4158 + 9.44910i 1.64987 + 0.638511i
\(220\) 47.3130i 3.18984i
\(221\) 7.64339i 0.514150i
\(222\) −2.07087 13.3106i −0.138988 0.893349i
\(223\) 18.0005 10.3926i 1.20540 0.695939i 0.243650 0.969863i \(-0.421655\pi\)
0.961751 + 0.273924i \(0.0883218\pi\)
\(224\) 0 0
\(225\) −0.971037 0.883997i −0.0647358 0.0589331i
\(226\) 7.55591 13.0872i 0.502612 0.870549i
\(227\) 14.1579 24.5223i 0.939696 1.62760i 0.173657 0.984806i \(-0.444442\pi\)
0.766039 0.642795i \(-0.222225\pi\)
\(228\) −0.835673 5.37132i −0.0553438 0.355724i
\(229\) −18.8670 + 10.8929i −1.24677 + 0.719821i −0.970463 0.241250i \(-0.922443\pi\)
−0.276303 + 0.961071i \(0.589109\pi\)
\(230\) −16.7236 + 28.9661i −1.10272 + 1.90997i
\(231\) 0 0
\(232\) −15.2458 26.4065i −1.00094 1.73367i
\(233\) −13.1926 7.61674i −0.864275 0.498989i 0.00116682 0.999999i \(-0.499629\pi\)
−0.865441 + 0.501010i \(0.832962\pi\)
\(234\) 7.55483 + 6.87764i 0.493875 + 0.449606i
\(235\) −0.575289 0.996430i −0.0375277 0.0649999i
\(236\) 20.0474 1.30498
\(237\) −11.5244 14.3113i −0.748588 0.929619i
\(238\) 0 0
\(239\) −4.95125 2.85861i −0.320270 0.184908i 0.331243 0.943545i \(-0.392532\pi\)
−0.651513 + 0.758638i \(0.725865\pi\)
\(240\) −12.1011 + 31.2684i −0.781121 + 2.01836i
\(241\) 3.87212 + 2.23557i 0.249425 + 0.144006i 0.619501 0.784996i \(-0.287335\pi\)
−0.370076 + 0.929002i \(0.620668\pi\)
\(242\) −18.0022 + 10.3936i −1.15722 + 0.668124i
\(243\) −3.82820 15.1111i −0.245579 0.969377i
\(244\) 9.53325i 0.610304i
\(245\) 0 0
\(246\) −4.52402 29.0783i −0.288441 1.85397i
\(247\) −0.446036 0.772557i −0.0283806 0.0491566i
\(248\) −27.4214 −1.74126
\(249\) 6.65683 17.2008i 0.421859 1.09006i
\(250\) 27.4288i 1.73475i
\(251\) −11.6265 −0.733861 −0.366931 0.930248i \(-0.619591\pi\)
−0.366931 + 0.930248i \(0.619591\pi\)
\(252\) 0 0
\(253\) 24.2900 1.52710
\(254\) 42.7232i 2.68069i
\(255\) 23.0938 3.59294i 1.44619 0.224999i
\(256\) −24.2426 −1.51516
\(257\) 1.05140 + 1.82108i 0.0655846 + 0.113596i 0.896953 0.442126i \(-0.145775\pi\)
−0.831369 + 0.555721i \(0.812442\pi\)
\(258\) −32.4184 12.5461i −2.01828 0.781089i
\(259\) 0 0
\(260\) 14.3138i 0.887705i
\(261\) 4.07208 + 12.7700i 0.252056 + 0.790441i
\(262\) 15.8969 9.17809i 0.982114 0.567024i
\(263\) 1.90773 + 1.10143i 0.117636 + 0.0679170i 0.557663 0.830067i \(-0.311698\pi\)
−0.440028 + 0.897984i \(0.645031\pi\)
\(264\) 50.9968 7.93410i 3.13863 0.488310i
\(265\) 8.37207 + 4.83362i 0.514292 + 0.296927i
\(266\) 0 0
\(267\) −5.69121 + 0.885441i −0.348296 + 0.0541881i
\(268\) 22.4192 1.36947
\(269\) 13.9312 + 24.1295i 0.849398 + 1.47120i 0.881746 + 0.471724i \(0.156368\pi\)
−0.0323483 + 0.999477i \(0.510299\pi\)
\(270\) 17.2288 26.0592i 1.04851 1.58591i
\(271\) −9.94228 5.74018i −0.603950 0.348691i 0.166644 0.986017i \(-0.446707\pi\)
−0.770594 + 0.637326i \(0.780040\pi\)
\(272\) −24.0177 41.5999i −1.45629 2.52237i
\(273\) 0 0
\(274\) −1.06665 + 1.84749i −0.0644387 + 0.111611i
\(275\) −1.65507 + 0.955553i −0.0998043 + 0.0576220i
\(276\) −41.7609 16.1618i −2.51371 0.972824i
\(277\) 5.10000 8.83346i 0.306429 0.530751i −0.671149 0.741322i \(-0.734199\pi\)
0.977579 + 0.210571i \(0.0675323\pi\)
\(278\) 17.9716 31.1278i 1.07787 1.86692i
\(279\) 11.7766 + 2.57063i 0.705045 + 0.153900i
\(280\) 0 0
\(281\) 9.45116 5.45663i 0.563809 0.325515i −0.190864 0.981617i \(-0.561129\pi\)
0.754673 + 0.656101i \(0.227796\pi\)
\(282\) 1.71612 1.38192i 0.102193 0.0822924i
\(283\) 11.8664i 0.705386i −0.935739 0.352693i \(-0.885266\pi\)
0.935739 0.352693i \(-0.114734\pi\)
\(284\) 5.44336i 0.323004i
\(285\) −2.12454 + 1.71081i −0.125847 + 0.101340i
\(286\) 12.8767 7.43437i 0.761415 0.439603i
\(287\) 0 0
\(288\) −22.7233 4.96012i −1.33898 0.292278i
\(289\) −8.24207 + 14.2757i −0.484828 + 0.839746i
\(290\) −13.4305 + 23.2622i −0.788664 + 1.36601i
\(291\) −23.7869 9.20571i −1.39441 0.539648i
\(292\) −60.8315 + 35.1211i −3.55989 + 2.05531i
\(293\) 9.55012 16.5413i 0.557924 0.966353i −0.439746 0.898122i \(-0.644931\pi\)
0.997670 0.0682302i \(-0.0217352\pi\)
\(294\) 0 0
\(295\) −5.02987 8.71199i −0.292850 0.507232i
\(296\) 17.8291 + 10.2936i 1.03629 + 0.598305i
\(297\) −22.6452 1.37329i −1.31401 0.0796863i
\(298\) 14.0950 + 24.4133i 0.816504 + 1.41423i
\(299\) −7.34855 −0.424978
\(300\) 3.48129 0.541622i 0.200993 0.0312705i
\(301\) 0 0
\(302\) 31.1373 + 17.9772i 1.79175 + 1.03447i
\(303\) −2.84819 + 0.443123i −0.163624 + 0.0254567i
\(304\) 4.85519 + 2.80315i 0.278464 + 0.160771i
\(305\) −4.14285 + 2.39188i −0.237219 + 0.136958i
\(306\) 13.5974 + 42.6410i 0.777309 + 2.43763i
\(307\) 2.35488i 0.134400i 0.997740 + 0.0672001i \(0.0214066\pi\)
−0.997740 + 0.0672001i \(0.978593\pi\)
\(308\) 0 0
\(309\) −2.62588 1.01623i −0.149381 0.0578114i
\(310\) 12.0781 + 20.9199i 0.685991 + 1.18817i
\(311\) −7.84967 −0.445114 −0.222557 0.974920i \(-0.571440\pi\)
−0.222557 + 0.974920i \(0.571440\pi\)
\(312\) −15.4283 + 2.40034i −0.873454 + 0.135892i
\(313\) 30.0532i 1.69870i −0.527826 0.849352i \(-0.676993\pi\)
0.527826 0.849352i \(-0.323007\pi\)
\(314\) −40.6785 −2.29562
\(315\) 0 0
\(316\) 49.2989 2.77328
\(317\) 11.1071i 0.623838i −0.950109 0.311919i \(-0.899028\pi\)
0.950109 0.311919i \(-0.100972\pi\)
\(318\) −6.68164 + 17.2649i −0.374688 + 0.968167i
\(319\) 19.5069 1.09218
\(320\) −3.94757 6.83739i −0.220676 0.382222i
\(321\) 4.87621 + 31.3421i 0.272164 + 1.74934i
\(322\) 0 0
\(323\) 3.90798i 0.217446i
\(324\) 38.0194 + 17.4285i 2.11219 + 0.968248i
\(325\) 0.500715 0.289088i 0.0277746 0.0160357i
\(326\) 15.1059 + 8.72141i 0.836640 + 0.483034i
\(327\) −9.98562 + 25.8022i −0.552206 + 1.42686i
\(328\) 38.9494 + 22.4875i 2.15062 + 1.24166i
\(329\) 0 0
\(330\) −28.5152 35.4110i −1.56971 1.94931i
\(331\) −17.2672 −0.949093 −0.474547 0.880230i \(-0.657388\pi\)
−0.474547 + 0.880230i \(0.657388\pi\)
\(332\) 24.7426 + 42.8554i 1.35792 + 2.35199i
\(333\) −6.69202 6.09217i −0.366721 0.333849i
\(334\) 42.6297 + 24.6123i 2.33259 + 1.34672i
\(335\) −5.62495 9.74270i −0.307324 0.532300i
\(336\) 0 0
\(337\) −3.82962 + 6.63309i −0.208612 + 0.361327i −0.951278 0.308336i \(-0.900228\pi\)
0.742665 + 0.669663i \(0.233561\pi\)
\(338\) 25.1305 14.5091i 1.36692 0.789192i
\(339\) −1.56071 10.0316i −0.0847664 0.544840i
\(340\) −31.3530 + 54.3049i −1.70035 + 2.94510i
\(341\) 8.77137 15.1925i 0.474996 0.822717i
\(342\) −3.86271 3.51647i −0.208871 0.190149i
\(343\) 0 0
\(344\) 46.0082 26.5629i 2.48060 1.43217i
\(345\) 3.45434 + 22.2029i 0.185976 + 1.19537i
\(346\) 56.3312i 3.02839i
\(347\) 13.1652i 0.706747i 0.935482 + 0.353374i \(0.114966\pi\)
−0.935482 + 0.353374i \(0.885034\pi\)
\(348\) −33.5376 12.9793i −1.79780 0.695763i
\(349\) −1.05185 + 0.607283i −0.0563040 + 0.0325071i −0.527888 0.849314i \(-0.677016\pi\)
0.471584 + 0.881821i \(0.343682\pi\)
\(350\) 0 0
\(351\) 6.85096 + 0.415467i 0.365677 + 0.0221760i
\(352\) −16.9246 + 29.3143i −0.902087 + 1.56246i
\(353\) −13.4114 + 23.2292i −0.713816 + 1.23637i 0.249598 + 0.968349i \(0.419701\pi\)
−0.963414 + 0.268016i \(0.913632\pi\)
\(354\) 15.0043 12.0824i 0.797472 0.642175i
\(355\) −2.36551 + 1.36573i −0.125548 + 0.0724854i
\(356\) 7.72659 13.3829i 0.409509 0.709290i
\(357\) 0 0
\(358\) 22.1591 + 38.3807i 1.17114 + 2.02848i
\(359\) −6.45209 3.72512i −0.340529 0.196604i 0.319977 0.947425i \(-0.396325\pi\)
−0.660506 + 0.750821i \(0.729658\pi\)
\(360\) 14.5048 + 45.4867i 0.764469 + 2.39736i
\(361\) −9.27195 16.0595i −0.487997 0.845236i
\(362\) −42.9171 −2.25567
\(363\) −5.04025 + 13.0237i −0.264545 + 0.683565i
\(364\) 0 0
\(365\) 30.5250 + 17.6236i 1.59775 + 0.922463i
\(366\) −5.74562 7.13508i −0.300328 0.372957i
\(367\) −30.3000 17.4937i −1.58165 0.913166i −0.994619 0.103601i \(-0.966963\pi\)
−0.587031 0.809565i \(-0.699703\pi\)
\(368\) 39.9952 23.0913i 2.08490 1.20371i
\(369\) −14.6194 13.3090i −0.761056 0.692837i
\(370\) 18.1359i 0.942840i
\(371\) 0 0
\(372\) −25.1889 + 20.2837i −1.30598 + 1.05166i
\(373\) 15.0495 + 26.0665i 0.779233 + 1.34967i 0.932384 + 0.361469i \(0.117725\pi\)
−0.153151 + 0.988203i \(0.548942\pi\)
\(374\) 65.1369 3.36815
\(375\) 11.5572 + 14.3520i 0.596809 + 0.741136i
\(376\) 3.36737i 0.173659i
\(377\) −5.90152 −0.303944
\(378\) 0 0
\(379\) −27.0996 −1.39201 −0.696006 0.718036i \(-0.745041\pi\)
−0.696006 + 0.718036i \(0.745041\pi\)
\(380\) 7.31850i 0.375431i
\(381\) −18.0015 22.3548i −0.922244 1.14527i
\(382\) −2.45979 −0.125854
\(383\) 1.83015 + 3.16992i 0.0935164 + 0.161975i 0.908988 0.416821i \(-0.136856\pi\)
−0.815472 + 0.578796i \(0.803523\pi\)
\(384\) −9.14176 + 7.36152i −0.466513 + 0.375666i
\(385\) 0 0
\(386\) 4.36851i 0.222351i
\(387\) −22.2492 + 7.09481i −1.13099 + 0.360650i
\(388\) 59.2646 34.2164i 3.00870 1.73708i
\(389\) −10.5387 6.08449i −0.534331 0.308496i 0.208447 0.978034i \(-0.433159\pi\)
−0.742778 + 0.669537i \(0.766492\pi\)
\(390\) 8.62683 + 10.7131i 0.436836 + 0.542477i
\(391\) −27.8795 16.0962i −1.40993 0.814022i
\(392\) 0 0
\(393\) 4.45082 11.5006i 0.224514 0.580129i
\(394\) 32.8684 1.65589
\(395\) −12.3690 21.4237i −0.622352 1.07795i
\(396\) 40.9760 45.0106i 2.05912 2.26187i
\(397\) 23.1870 + 13.3870i 1.16372 + 0.671876i 0.952194 0.305495i \(-0.0988220\pi\)
0.211530 + 0.977371i \(0.432155\pi\)
\(398\) 5.61797 + 9.73061i 0.281603 + 0.487752i
\(399\) 0 0
\(400\) −1.81679 + 3.14678i −0.0908397 + 0.157339i
\(401\) −6.69428 + 3.86494i −0.334296 + 0.193006i −0.657747 0.753239i \(-0.728490\pi\)
0.323451 + 0.946245i \(0.395157\pi\)
\(402\) 16.7795 13.5119i 0.836885 0.673913i
\(403\) −2.65364 + 4.59624i −0.132187 + 0.228955i
\(404\) 3.86680 6.69750i 0.192381 0.333213i
\(405\) −1.96515 20.8948i −0.0976490 1.03827i
\(406\) 0 0
\(407\) −11.4061 + 6.58532i −0.565380 + 0.326422i
\(408\) −63.7907 24.6875i −3.15811 1.22221i
\(409\) 9.06047i 0.448012i 0.974588 + 0.224006i \(0.0719135\pi\)
−0.974588 + 0.224006i \(0.928087\pi\)
\(410\) 39.6197i 1.95668i
\(411\) 0.220322 + 1.41613i 0.0108677 + 0.0698526i
\(412\) 6.54231 3.77720i 0.322316 0.186090i
\(413\) 0 0
\(414\) −40.9962 + 13.0728i −2.01485 + 0.642495i
\(415\) 12.4157 21.5047i 0.609464 1.05562i
\(416\) 5.12029 8.86860i 0.251043 0.434819i
\(417\) −3.71214 23.8599i −0.181784 1.16842i
\(418\) −6.58372 + 3.80111i −0.322020 + 0.185919i
\(419\) −3.30466 + 5.72384i −0.161443 + 0.279628i −0.935386 0.353627i \(-0.884948\pi\)
0.773943 + 0.633255i \(0.218282\pi\)
\(420\) 0 0
\(421\) 6.39209 + 11.0714i 0.311531 + 0.539588i 0.978694 0.205324i \(-0.0658248\pi\)
−0.667163 + 0.744912i \(0.732491\pi\)
\(422\) −10.0193 5.78464i −0.487732 0.281592i
\(423\) 0.315677 1.44618i 0.0153487 0.0703155i
\(424\) −14.1465 24.5024i −0.687013 1.18994i
\(425\) 2.53287 0.122862
\(426\) −3.28067 4.07404i −0.158949 0.197388i
\(427\) 0 0
\(428\) −73.7007 42.5511i −3.56246 2.05679i
\(429\) 3.60522 9.31564i 0.174062 0.449763i
\(430\) −40.5299 23.4000i −1.95453 1.12845i
\(431\) 18.9756 10.9556i 0.914023 0.527712i 0.0322998 0.999478i \(-0.489717\pi\)
0.881723 + 0.471767i \(0.156384\pi\)
\(432\) −38.5925 + 19.2665i −1.85678 + 0.926958i
\(433\) 8.21181i 0.394635i 0.980340 + 0.197317i \(0.0632229\pi\)
−0.980340 + 0.197317i \(0.936777\pi\)
\(434\) 0 0
\(435\) 2.77414 + 17.8309i 0.133010 + 0.854925i
\(436\) −37.1153 64.2855i −1.77750 3.07872i
\(437\) 3.75724 0.179733
\(438\) −24.3616 + 62.9488i −1.16404 + 3.00781i
\(439\) 37.8737i 1.80761i 0.427942 + 0.903806i \(0.359239\pi\)
−0.427942 + 0.903806i \(0.640761\pi\)
\(440\) 69.4838 3.31251
\(441\) 0 0
\(442\) −19.7061 −0.937326
\(443\) 20.4624i 0.972200i 0.873903 + 0.486100i \(0.161581\pi\)
−0.873903 + 0.486100i \(0.838419\pi\)
\(444\) 23.9918 3.73265i 1.13860 0.177144i
\(445\) −7.75436 −0.367592
\(446\) 26.7941 + 46.4087i 1.26874 + 2.19752i
\(447\) 17.6618 + 6.83524i 0.835375 + 0.323296i
\(448\) 0 0
\(449\) 35.7054i 1.68504i 0.538665 + 0.842520i \(0.318929\pi\)
−0.538665 + 0.842520i \(0.681071\pi\)
\(450\) 2.27911 2.50352i 0.107438 0.118017i
\(451\) −24.9178 + 14.3863i −1.17333 + 0.677424i
\(452\) 23.5892 + 13.6192i 1.10954 + 0.640594i
\(453\) 23.8672 3.71328i 1.12138 0.174465i
\(454\) 63.2232 + 36.5019i 2.96721 + 1.71312i
\(455\) 0 0
\(456\) 7.88831 1.22727i 0.369404 0.0574720i
\(457\) −0.254179 −0.0118900 −0.00594501 0.999982i \(-0.501892\pi\)
−0.00594501 + 0.999982i \(0.501892\pi\)
\(458\) −28.0839 48.6428i −1.31228 2.27293i
\(459\) 25.0817 + 16.5826i 1.17071 + 0.774007i
\(460\) −52.2101 30.1435i −2.43431 1.40545i
\(461\) −12.2175 21.1613i −0.569025 0.985581i −0.996663 0.0816304i \(-0.973987\pi\)
0.427637 0.903950i \(-0.359346\pi\)
\(462\) 0 0
\(463\) 0.409986 0.710116i 0.0190536 0.0330019i −0.856341 0.516410i \(-0.827268\pi\)
0.875395 + 0.483408i \(0.160601\pi\)
\(464\) 32.1196 18.5443i 1.49112 0.860896i
\(465\) 15.1345 + 5.85716i 0.701845 + 0.271619i
\(466\) 19.6374 34.0130i 0.909686 1.57562i
\(467\) 0.909625 1.57552i 0.0420924 0.0729062i −0.844212 0.536010i \(-0.819931\pi\)
0.886304 + 0.463104i \(0.153264\pi\)
\(468\) −12.3967 + 13.6173i −0.573036 + 0.629458i
\(469\) 0 0
\(470\) 2.56899 1.48321i 0.118499 0.0684152i
\(471\) −21.2849 + 17.1400i −0.980757 + 0.789767i
\(472\) 29.4416i 1.35516i
\(473\) 33.9870i 1.56273i
\(474\) 36.8973 29.7121i 1.69475 1.36472i
\(475\) −0.256010 + 0.147807i −0.0117465 + 0.00678187i
\(476\) 0 0
\(477\) 3.77845 + 11.8491i 0.173003 + 0.542535i
\(478\) 7.37004 12.7653i 0.337098 0.583871i
\(479\) −0.681074 + 1.17965i −0.0311191 + 0.0538998i −0.881166 0.472808i \(-0.843240\pi\)
0.850046 + 0.526708i \(0.176574\pi\)
\(480\) −29.2025 11.3016i −1.33291 0.515844i
\(481\) 3.45074 1.99228i 0.157340 0.0908403i
\(482\) −5.76373 + 9.98308i −0.262531 + 0.454717i
\(483\) 0 0
\(484\) −18.7340 32.4482i −0.851544 1.47492i
\(485\) −29.7388 17.1697i −1.35037 0.779635i
\(486\) 38.9593 9.86983i 1.76723 0.447705i
\(487\) −15.8061 27.3769i −0.716241 1.24057i −0.962479 0.271357i \(-0.912528\pi\)
0.246238 0.969209i \(-0.420806\pi\)
\(488\) 14.0005 0.633773
\(489\) 11.5789 1.80145i 0.523617 0.0814646i
\(490\) 0 0
\(491\) −1.97415 1.13977i −0.0890919 0.0514373i 0.454792 0.890598i \(-0.349714\pi\)
−0.543884 + 0.839160i \(0.683047\pi\)
\(492\) 52.4125 8.15436i 2.36294 0.367627i
\(493\) −22.3897 12.9267i −1.00838 0.582188i
\(494\) 1.99180 1.14997i 0.0896154 0.0517395i
\(495\) −29.8410 6.51381i −1.34125 0.292774i
\(496\) 33.3540i 1.49764i
\(497\) 0 0
\(498\) 44.3470 + 17.1626i 1.98724 + 0.769074i
\(499\) −13.5195 23.4164i −0.605215 1.04826i −0.992017 0.126101i \(-0.959754\pi\)
0.386802 0.922163i \(-0.373580\pi\)
\(500\) −49.4392 −2.21099
\(501\) 32.6763 5.08379i 1.45987 0.227127i
\(502\) 29.9755i 1.33787i
\(503\) −0.276948 −0.0123485 −0.00617426 0.999981i \(-0.501965\pi\)
−0.00617426 + 0.999981i \(0.501965\pi\)
\(504\) 0 0
\(505\) −3.88070 −0.172689
\(506\) 62.6243i 2.78399i
\(507\) 7.03604 18.1807i 0.312482 0.807431i
\(508\) 77.0067 3.41662
\(509\) −9.21476 15.9604i −0.408437 0.707434i 0.586278 0.810110i \(-0.300593\pi\)
−0.994715 + 0.102676i \(0.967259\pi\)
\(510\) 9.26330 + 59.5402i 0.410186 + 2.63649i
\(511\) 0 0
\(512\) 48.9492i 2.16327i
\(513\) −3.50282 0.212424i −0.154653 0.00937874i
\(514\) −4.69510 + 2.71072i −0.207092 + 0.119565i
\(515\) −3.28291 1.89539i −0.144662 0.0835208i
\(516\) 22.6139 58.4328i 0.995521 2.57236i
\(517\) −1.86565 1.07713i −0.0820512 0.0473723i
\(518\) 0 0
\(519\) 23.7353 + 29.4752i 1.04186 + 1.29382i
\(520\) −21.0212 −0.921842
\(521\) 11.6264 + 20.1374i 0.509360 + 0.882237i 0.999941 + 0.0108420i \(0.00345117\pi\)
−0.490581 + 0.871395i \(0.663215\pi\)
\(522\) −32.9235 + 10.4986i −1.44102 + 0.459512i
\(523\) 11.5227 + 6.65262i 0.503852 + 0.290899i 0.730303 0.683124i \(-0.239379\pi\)
−0.226451 + 0.974023i \(0.572712\pi\)
\(524\) 16.5431 + 28.6535i 0.722689 + 1.25173i
\(525\) 0 0
\(526\) −2.83970 + 4.91850i −0.123817 + 0.214457i
\(527\) −20.1352 + 11.6251i −0.877102 + 0.506395i
\(528\) 9.65065 + 62.0300i 0.419991 + 2.69951i
\(529\) 3.97534 6.88549i 0.172841 0.299369i
\(530\) −12.4620 + 21.5848i −0.541315 + 0.937585i
\(531\) 2.76003 12.6442i 0.119775 0.548712i
\(532\) 0 0
\(533\) 7.53848 4.35235i 0.326528 0.188521i
\(534\) −2.28284 14.6730i −0.0987881 0.634965i
\(535\) 42.7040i 1.84626i
\(536\) 32.9249i 1.42214i
\(537\) 27.7665 + 10.7458i 1.19821 + 0.463716i
\(538\) −62.2105 + 35.9172i −2.68208 + 1.54850i
\(539\) 0 0
\(540\) 46.9706 + 31.0542i 2.02129 + 1.33636i
\(541\) 15.0846 26.1273i 0.648537 1.12330i −0.334935 0.942241i \(-0.608714\pi\)
0.983472 0.181059i \(-0.0579524\pi\)
\(542\) 14.7993 25.6331i 0.635684 1.10104i
\(543\) −22.4563 + 18.0832i −0.963690 + 0.776024i
\(544\) 38.8515 22.4309i 1.66574 0.961718i
\(545\) −18.6243 + 32.2582i −0.797778 + 1.38179i
\(546\) 0 0
\(547\) −0.572061 0.990840i −0.0244596 0.0423652i 0.853537 0.521033i \(-0.174453\pi\)
−0.877996 + 0.478668i \(0.841120\pi\)
\(548\) −3.33002 1.92259i −0.142252 0.0821290i
\(549\) −6.01276 1.31249i −0.256618 0.0560156i
\(550\) −2.46360 4.26708i −0.105048 0.181949i
\(551\) 3.01738 0.128545
\(552\) 23.7351 61.3300i 1.01023 2.61038i
\(553\) 0 0
\(554\) 22.7744 + 13.1488i 0.967591 + 0.558639i
\(555\) −7.64159 9.48956i −0.324367 0.402809i
\(556\) 56.1065 + 32.3931i 2.37944 + 1.37377i
\(557\) −8.35388 + 4.82312i −0.353965 + 0.204362i −0.666430 0.745567i \(-0.732179\pi\)
0.312465 + 0.949929i \(0.398845\pi\)
\(558\) −6.62759 + 30.3623i −0.280568 + 1.28534i
\(559\) 10.2822i 0.434893i
\(560\) 0 0
\(561\) 34.0827 27.4456i 1.43897 1.15875i
\(562\) 14.0683 + 24.3669i 0.593434 + 1.02786i
\(563\) −3.08791 −0.130140 −0.0650698 0.997881i \(-0.520727\pi\)
−0.0650698 + 0.997881i \(0.520727\pi\)
\(564\) 2.49086 + 3.09322i 0.104884 + 0.130248i
\(565\) 13.6681i 0.575023i
\(566\) 30.5940 1.28596
\(567\) 0 0
\(568\) 7.99411 0.335425
\(569\) 8.43610i 0.353660i 0.984241 + 0.176830i \(0.0565842\pi\)
−0.984241 + 0.176830i \(0.943416\pi\)
\(570\) −4.41081 5.47747i −0.184748 0.229426i
\(571\) −34.0415 −1.42459 −0.712297 0.701879i \(-0.752345\pi\)
−0.712297 + 0.701879i \(0.752345\pi\)
\(572\) 13.4001 + 23.2097i 0.560288 + 0.970447i
\(573\) −1.28708 + 1.03644i −0.0537686 + 0.0432979i
\(574\) 0 0
\(575\) 2.43516i 0.101553i
\(576\) 2.16614 9.92350i 0.0902557 0.413479i
\(577\) 15.6796 9.05260i 0.652749 0.376865i −0.136760 0.990604i \(-0.543669\pi\)
0.789509 + 0.613739i \(0.210335\pi\)
\(578\) −36.8055 21.2497i −1.53091 0.883869i
\(579\) −1.84068 2.28581i −0.0764960 0.0949951i
\(580\) −41.9292 24.2078i −1.74102 1.00518i
\(581\) 0 0
\(582\) 23.7341 61.3273i 0.983810 2.54210i
\(583\) 18.1003 0.749638
\(584\) −51.5787 89.3370i −2.13434 3.69679i
\(585\) 9.02794 + 1.97065i 0.373259 + 0.0814764i
\(586\) 42.6467 + 24.6221i 1.76172 + 1.01713i
\(587\) 4.04900 + 7.01308i 0.167120 + 0.289461i 0.937406 0.348238i \(-0.113220\pi\)
−0.770286 + 0.637699i \(0.779887\pi\)
\(588\) 0 0
\(589\) 1.35678 2.35001i 0.0559050 0.0968304i
\(590\) 22.4612 12.9680i 0.924713 0.533883i
\(591\) 17.1983 13.8492i 0.707444 0.569678i
\(592\) −12.5207 + 21.6864i −0.514596 + 0.891306i
\(593\) −3.33216 + 5.77148i −0.136836 + 0.237006i −0.926297 0.376794i \(-0.877027\pi\)
0.789462 + 0.613800i \(0.210360\pi\)
\(594\) 3.54060 58.3838i 0.145273 2.39552i
\(595\) 0 0
\(596\) −44.0040 + 25.4057i −1.80247 + 1.04066i
\(597\) 7.03960 + 2.72438i 0.288112 + 0.111501i
\(598\) 18.9460i 0.774759i
\(599\) 3.58607i 0.146523i 0.997313 + 0.0732614i \(0.0233407\pi\)
−0.997313 + 0.0732614i \(0.976659\pi\)
\(600\) 0.795424 + 5.11262i 0.0324731 + 0.208722i
\(601\) 4.86949 2.81140i 0.198631 0.114679i −0.397386 0.917652i \(-0.630083\pi\)
0.596017 + 0.802972i \(0.296749\pi\)
\(602\) 0 0
\(603\) 3.08656 14.1401i 0.125695 0.575831i
\(604\) −32.4030 + 56.1237i −1.31846 + 2.28364i
\(605\) −9.40064 + 16.2824i −0.382190 + 0.661973i
\(606\) −1.14246 7.34318i −0.0464091 0.298296i
\(607\) 1.93239 1.11566i 0.0784332 0.0452834i −0.460270 0.887779i \(-0.652248\pi\)
0.538704 + 0.842495i \(0.318914\pi\)
\(608\) −2.61795 + 4.53442i −0.106172 + 0.183895i
\(609\) 0 0
\(610\) −6.16672 10.6811i −0.249683 0.432464i
\(611\) 0.564423 + 0.325870i 0.0228341 + 0.0131833i
\(612\) −76.8587 + 24.5087i −3.10683 + 0.990704i
\(613\) 3.41019 + 5.90662i 0.137736 + 0.238566i 0.926639 0.375951i \(-0.122684\pi\)
−0.788903 + 0.614518i \(0.789351\pi\)
\(614\) −6.07134 −0.245019
\(615\) −16.6938 20.7309i −0.673160 0.835950i
\(616\) 0 0
\(617\) −2.35139 1.35757i −0.0946632 0.0546538i 0.451921 0.892058i \(-0.350739\pi\)
−0.546584 + 0.837404i \(0.684072\pi\)
\(618\) 2.62004 6.77002i 0.105394 0.272330i
\(619\) −23.1886 13.3880i −0.932029 0.538107i −0.0445762 0.999006i \(-0.514194\pi\)
−0.887453 + 0.460899i \(0.847527\pi\)
\(620\) −37.7072 + 21.7703i −1.51436 + 0.874316i
\(621\) −15.9429 + 24.1142i −0.639766 + 0.967668i
\(622\) 20.2380i 0.811469i
\(623\) 0 0
\(624\) −2.91965 18.7662i −0.116880 0.751249i
\(625\) 13.4985 + 23.3801i 0.539940 + 0.935203i
\(626\) 77.4829 3.09684
\(627\) −1.84331 + 4.76299i −0.0736147 + 0.190215i
\(628\) 73.3212i 2.92583i
\(629\) 17.4556 0.696000
\(630\) 0 0
\(631\) −11.1620 −0.444354 −0.222177 0.975006i \(-0.571316\pi\)
−0.222177 + 0.975006i \(0.571316\pi\)
\(632\) 72.4002i 2.87993i
\(633\) −7.67994 + 1.19485i −0.305250 + 0.0474910i
\(634\) 28.6363 1.13729
\(635\) −19.3208 33.4647i −0.766724 1.32801i
\(636\) −31.1192 12.0434i −1.23396 0.477551i
\(637\) 0 0
\(638\) 50.2927i 1.99111i
\(639\) −3.43321 0.749413i −0.135816 0.0296463i
\(640\) −13.6850 + 7.90105i −0.540948 + 0.312317i
\(641\) −38.6251 22.3002i −1.52560 0.880805i −0.999539 0.0303565i \(-0.990336\pi\)
−0.526059 0.850448i \(-0.676331\pi\)
\(642\) −80.8059 + 12.5718i −3.18916 + 0.496170i
\(643\) −23.6268 13.6410i −0.931751 0.537947i −0.0443860 0.999014i \(-0.514133\pi\)
−0.887365 + 0.461068i \(0.847466\pi\)
\(644\) 0 0
\(645\) −31.0668 + 4.83339i −1.22326 + 0.190315i
\(646\) 10.0755 0.396417
\(647\) 22.4675 + 38.9148i 0.883288 + 1.52990i 0.847663 + 0.530534i \(0.178009\pi\)
0.0356246 + 0.999365i \(0.488658\pi\)
\(648\) −25.5954 + 55.8352i −1.00548 + 2.19342i
\(649\) −16.3118 9.41760i −0.640293 0.369673i
\(650\) 0.745324 + 1.29094i 0.0292340 + 0.0506348i
\(651\) 0 0
\(652\) −15.7200 + 27.2278i −0.615642 + 1.06632i
\(653\) 24.0549 13.8881i 0.941343 0.543484i 0.0509617 0.998701i \(-0.483771\pi\)
0.890381 + 0.455216i \(0.150438\pi\)
\(654\) −66.5230 25.7449i −2.60125 1.00670i
\(655\) 8.30128 14.3782i 0.324358 0.561804i
\(656\) −27.3526 + 47.3762i −1.06794 + 1.84973i
\(657\) 13.7764 + 43.2026i 0.537470 + 1.68549i
\(658\) 0 0
\(659\) 0.801975 0.463021i 0.0312405 0.0180367i −0.484298 0.874903i \(-0.660925\pi\)
0.515539 + 0.856866i \(0.327592\pi\)
\(660\) 63.8269 51.3974i 2.48446 2.00064i
\(661\) 32.6813i 1.27115i −0.772037 0.635577i \(-0.780762\pi\)
0.772037 0.635577i \(-0.219238\pi\)
\(662\) 44.5183i 1.73025i
\(663\) −10.3112 + 8.30322i −0.400454 + 0.322471i
\(664\) −62.9373 + 36.3369i −2.44244 + 1.41014i
\(665\) 0 0
\(666\) 15.7068 17.2533i 0.608626 0.668553i
\(667\) 12.4280 21.5260i 0.481215 0.833489i
\(668\) −44.3625 + 76.8382i −1.71644 + 2.97296i
\(669\) 33.5744 + 12.9935i 1.29806 + 0.502358i
\(670\) 25.1186 14.5022i 0.970415 0.560269i
\(671\) −4.47839 + 7.75681i −0.172886 + 0.299448i
\(672\) 0 0
\(673\) −15.6947 27.1840i −0.604987 1.04787i −0.992054 0.125816i \(-0.959845\pi\)
0.387067 0.922052i \(-0.373488\pi\)
\(674\) −17.1014 9.87349i −0.658721 0.380313i
\(675\) 0.137677 2.27027i 0.00529921 0.0873828i
\(676\) 26.1521 + 45.2967i 1.00585 + 1.74218i
\(677\) −21.5765 −0.829252 −0.414626 0.909992i \(-0.636088\pi\)
−0.414626 + 0.909992i \(0.636088\pi\)
\(678\) 25.8633 4.02383i 0.993274 0.154534i
\(679\) 0 0
\(680\) −79.7521 46.0449i −3.05835 1.76574i
\(681\) 48.4615 7.53967i 1.85705 0.288921i
\(682\) 39.1691 + 22.6143i 1.49986 + 0.865946i
\(683\) −31.4015 + 18.1296i −1.20154 + 0.693711i −0.960898 0.276902i \(-0.910692\pi\)
−0.240645 + 0.970613i \(0.577359\pi\)
\(684\) 6.33828 6.96236i 0.242350 0.266213i
\(685\) 1.92950i 0.0737224i
\(686\) 0 0
\(687\) −35.1906 13.6190i −1.34260 0.519597i
\(688\) 32.3098 + 55.9622i 1.23180 + 2.13354i
\(689\) −5.47596 −0.208618
\(690\) −57.2435 + 8.90597i −2.17922 + 0.339044i
\(691\) 7.11745i 0.270761i −0.990794 0.135380i \(-0.956774\pi\)
0.990794 0.135380i \(-0.0432256\pi\)
\(692\) −101.535 −3.85977
\(693\) 0 0
\(694\) −33.9426 −1.28844
\(695\) 32.5095i 1.23315i
\(696\) 19.0614 49.2533i 0.722519 1.86694i
\(697\) 38.1335 1.44441
\(698\) −1.56569 2.71186i −0.0592624 0.102645i
\(699\) −4.05622 26.0715i −0.153420 0.986115i
\(700\) 0 0
\(701\) 29.4609i 1.11272i 0.830940 + 0.556362i \(0.187803\pi\)
−0.830940 + 0.556362i \(0.812197\pi\)
\(702\) −1.07115 + 17.6631i −0.0404281 + 0.666651i
\(703\) −1.76433 + 1.01863i −0.0665428 + 0.0384185i
\(704\) −12.8019 7.39117i −0.482489 0.278565i
\(705\) 0.719266 1.85853i 0.0270891 0.0699964i
\(706\) −59.8894 34.5772i −2.25397 1.30133i
\(707\) 0 0
\(708\) 21.7781 + 27.0447i 0.818471 + 1.01640i
\(709\) −38.0722 −1.42983 −0.714916 0.699211i \(-0.753535\pi\)
−0.714916 + 0.699211i \(0.753535\pi\)
\(710\) −3.52112 6.09875i −0.132145 0.228882i
\(711\) 6.78721 31.0935i 0.254540 1.16610i
\(712\) 19.6540 + 11.3473i 0.736566 + 0.425257i
\(713\) −11.1766 19.3585i −0.418568 0.724980i
\(714\) 0 0
\(715\) 6.72414 11.6466i 0.251469 0.435556i
\(716\) −69.1795 + 39.9408i −2.58536 + 1.49266i
\(717\) −1.52232 9.78479i −0.0568522 0.365420i
\(718\) 9.60408 16.6348i 0.358421 0.620803i
\(719\) −19.1057 + 33.0921i −0.712523 + 1.23413i 0.251385 + 0.967887i \(0.419114\pi\)
−0.963907 + 0.266238i \(0.914219\pi\)
\(720\) −55.3278 + 17.6429i −2.06195 + 0.657512i
\(721\) 0 0
\(722\) 41.4045 23.9049i 1.54091 0.889647i
\(723\) 1.19053 + 7.65218i 0.0442763 + 0.284588i
\(724\) 77.3562i 2.87492i
\(725\) 1.95565i 0.0726309i
\(726\) −33.5775 12.9947i −1.24618 0.482280i
\(727\) 17.7563 10.2516i 0.658546 0.380212i −0.133177 0.991092i \(-0.542518\pi\)
0.791723 + 0.610881i \(0.209184\pi\)
\(728\) 0 0
\(729\) 16.2267 21.5800i 0.600989 0.799257i
\(730\) −45.4372 + 78.6995i −1.68170 + 2.91280i
\(731\) 22.5222 39.0096i 0.833014 1.44282i
\(732\) 12.8607 10.3562i 0.475344 0.382777i
\(733\) −0.900627 + 0.519977i −0.0332654 + 0.0192058i −0.516540 0.856263i \(-0.672780\pi\)
0.483275 + 0.875469i \(0.339447\pi\)
\(734\) 45.1023 78.1194i 1.66475 2.88344i
\(735\) 0 0
\(736\) 21.5657 + 37.3528i 0.794921 + 1.37684i
\(737\) −18.2416 10.5318i −0.671938 0.387944i
\(738\) 34.3131 37.6917i 1.26308 1.38745i
\(739\) −12.0805 20.9240i −0.444387 0.769701i 0.553622 0.832768i \(-0.313245\pi\)
−0.998009 + 0.0630670i \(0.979912\pi\)
\(740\) 32.6892 1.20168
\(741\) 0.557665 1.44097i 0.0204863 0.0529353i
\(742\) 0 0
\(743\) −13.1637 7.60008i −0.482930 0.278820i 0.238707 0.971092i \(-0.423277\pi\)
−0.721637 + 0.692272i \(0.756610\pi\)
\(744\) −29.7886 36.9923i −1.09210 1.35620i
\(745\) 22.0810 + 12.7485i 0.808987 + 0.467069i
\(746\) −67.2045 + 38.8005i −2.46053 + 1.42059i
\(747\) 30.4359 9.70540i 1.11359 0.355102i
\(748\) 117.406i 4.29281i
\(749\) 0 0
\(750\) −37.0023 + 29.7966i −1.35113 + 1.08802i
\(751\) −1.52037 2.63336i −0.0554791 0.0960926i 0.836952 0.547276i \(-0.184335\pi\)
−0.892431 + 0.451184i \(0.851002\pi\)
\(752\) −4.09591 −0.149362
\(753\) −12.6302 15.6846i −0.460271 0.571579i
\(754\) 15.2153i 0.554107i
\(755\) 32.5195 1.18350
\(756\) 0 0
\(757\) 43.3700 1.57631 0.788155 0.615477i \(-0.211036\pi\)
0.788155 + 0.615477i \(0.211036\pi\)
\(758\) 69.8680i 2.53772i
\(759\) 26.3869 + 32.7680i 0.957782 + 1.18940i
\(760\) 10.7479 0.389869
\(761\) 14.6319 + 25.3432i 0.530406 + 0.918690i 0.999371 + 0.0354731i \(0.0112938\pi\)
−0.468965 + 0.883217i \(0.655373\pi\)
\(762\) 57.6350 46.4113i 2.08790 1.68131i
\(763\) 0 0
\(764\) 4.43367i 0.160405i
\(765\) 29.9344 + 27.2512i 1.08228 + 0.985269i
\(766\) −8.17266 + 4.71849i −0.295290 + 0.170486i
\(767\) 4.93487 + 2.84915i 0.178188 + 0.102877i
\(768\) −26.3354 32.7041i −0.950298 1.18011i
\(769\) 29.6496 + 17.1182i 1.06919 + 0.617299i 0.927961 0.372678i \(-0.121560\pi\)
0.141232 + 0.989977i \(0.454894\pi\)
\(770\) 0 0
\(771\) −1.31453 + 3.39666i −0.0473418 + 0.122328i
\(772\) 7.87405 0.283393
\(773\) 16.9927 + 29.4322i 0.611185 + 1.05860i 0.991041 + 0.133558i \(0.0426403\pi\)
−0.379856 + 0.925046i \(0.624026\pi\)
\(774\) −18.2918 57.3627i −0.657485 2.06186i
\(775\) 1.52310 + 0.879363i 0.0547114 + 0.0315877i
\(776\) 50.2502 + 87.0359i 1.80388 + 3.12441i
\(777\) 0 0
\(778\) 15.6870 27.1707i 0.562406 0.974117i
\(779\) −3.85435 + 2.22531i −0.138096 + 0.0797299i
\(780\) −19.3098 + 15.5495i −0.691403 + 0.556761i
\(781\) −2.55710 + 4.42904i −0.0915004 + 0.158483i
\(782\) 41.4993 71.8788i 1.48401 2.57038i
\(783\) −12.8035 + 19.3657i −0.457560 + 0.692075i
\(784\) 0 0
\(785\) −31.8631 + 18.3962i −1.13724 + 0.656587i
\(786\) 29.6508 + 11.4751i 1.05761 + 0.409302i
\(787\) 27.5078i 0.980549i 0.871568 + 0.490274i \(0.163103\pi\)
−0.871568 + 0.490274i \(0.836897\pi\)
\(788\) 59.2439i 2.11048i
\(789\) 0.586555 + 3.77011i 0.0208819 + 0.134219i
\(790\) 55.2346 31.8897i 1.96516 1.13458i
\(791\) 0 0
\(792\) 66.1025 + 60.1773i 2.34885 + 2.13831i
\(793\) 1.35487 2.34670i 0.0481128 0.0833338i
\(794\) −34.5144 + 59.7807i −1.22487 + 2.12154i
\(795\) 2.57410 + 16.5451i 0.0912937 + 0.586794i
\(796\) −17.5390 + 10.1262i −0.621654 + 0.358912i
\(797\) −21.0873 + 36.5243i −0.746952 + 1.29376i 0.202326 + 0.979318i \(0.435150\pi\)
−0.949277 + 0.314440i \(0.898183\pi\)
\(798\) 0 0
\(799\) 1.42757 + 2.47262i 0.0505038 + 0.0874751i
\(800\) −2.93888 1.69676i −0.103905 0.0599896i
\(801\) −7.37701 6.71576i −0.260654 0.237290i
\(802\) −9.96458 17.2592i −0.351861 0.609442i
\(803\) 65.9947 2.32890
\(804\) 24.3546 + 30.2443i 0.858922 + 1.06664i
\(805\) 0 0
\(806\) −11.8500 6.84160i −0.417398 0.240985i
\(807\) −17.4177 + 45.0061i −0.613132 + 1.58429i
\(808\) 9.83594 + 5.67878i 0.346027 + 0.199779i
\(809\) 4.18377 2.41550i 0.147094 0.0849245i −0.424647 0.905359i \(-0.639602\pi\)
0.571740 + 0.820435i \(0.306268\pi\)
\(810\) 53.8709 5.06653i 1.89283 0.178020i
\(811\) 6.46035i 0.226853i 0.993546 + 0.113427i \(0.0361827\pi\)
−0.993546 + 0.113427i \(0.963817\pi\)
\(812\) 0 0
\(813\) −3.05687 19.6482i −0.107209 0.689092i
\(814\) −16.9782 29.4071i −0.595086 1.03072i
\(815\) 15.7765 0.552625
\(816\) 30.0286 77.5919i 1.05121 2.71626i
\(817\) 5.25720i 0.183926i
\(818\) −23.3597 −0.816751
\(819\) 0 0
\(820\) 71.4128 2.49384
\(821\) 16.7957i 0.586172i 0.956086 + 0.293086i \(0.0946823\pi\)
−0.956086 + 0.293086i \(0.905318\pi\)
\(822\) −3.65106 + 0.568034i −0.127345 + 0.0198124i
\(823\) −15.0350 −0.524087 −0.262043 0.965056i \(-0.584396\pi\)
−0.262043 + 0.965056i \(0.584396\pi\)
\(824\) 5.54719 + 9.60802i 0.193246 + 0.334711i
\(825\) −3.08702 1.19470i −0.107476 0.0415940i
\(826\) 0 0
\(827\) 29.2462i 1.01699i −0.861065 0.508495i \(-0.830202\pi\)
0.861065 0.508495i \(-0.169798\pi\)
\(828\) −23.5632 73.8939i −0.818879 2.56799i
\(829\) −1.30270 + 0.752115i −0.0452447 + 0.0261220i −0.522452 0.852669i \(-0.674983\pi\)
0.477207 + 0.878791i \(0.341649\pi\)
\(830\) 55.4433 + 32.0102i 1.92446 + 1.11109i
\(831\) 17.4569 2.71596i 0.605574 0.0942155i
\(832\) 3.87301 + 2.23608i 0.134272 + 0.0775222i
\(833\) 0 0
\(834\) 61.5155 9.57061i 2.13011 0.331403i
\(835\) 44.5219 1.54075
\(836\) −6.85135 11.8669i −0.236959 0.410425i
\(837\) 9.32534 + 18.6795i 0.322331 + 0.645660i
\(838\) −14.7572 8.52005i −0.509778 0.294320i
\(839\) 22.9477 + 39.7466i 0.792243 + 1.37221i 0.924575 + 0.381000i \(0.124420\pi\)
−0.132331 + 0.991206i \(0.542246\pi\)
\(840\) 0 0
\(841\) −4.51923 + 7.82753i −0.155835 + 0.269915i
\(842\) −28.5443 + 16.4800i −0.983701 + 0.567940i
\(843\) 17.6282 + 6.82225i 0.607149 + 0.234971i
\(844\) 10.4266 18.0593i 0.358897 0.621628i
\(845\) 13.1230 22.7297i 0.451445 0.781926i
\(846\) 3.72853 + 0.813876i 0.128189 + 0.0279816i
\(847\) 0 0
\(848\) 29.8035 17.2071i 1.02346 0.590893i
\(849\) 16.0082 12.8908i 0.549401 0.442412i
\(850\) 6.53023i 0.223985i
\(851\) 16.7822i 0.575288i
\(852\) 7.34328 5.91327i 0.251577 0.202585i
\(853\) 24.3086 14.0346i 0.832310 0.480534i −0.0223330 0.999751i \(-0.507109\pi\)
0.854643 + 0.519216i \(0.173776\pi\)
\(854\) 0 0
\(855\) −4.61589 1.00757i −0.157860 0.0344583i
\(856\) 62.4905 108.237i 2.13588 3.69946i
\(857\) 8.55426 14.8164i 0.292208 0.506119i −0.682123 0.731237i \(-0.738943\pi\)
0.974332 + 0.225118i \(0.0722767\pi\)
\(858\) 24.0175 + 9.29495i 0.819945 + 0.317325i
\(859\) 4.50996 2.60383i 0.153878 0.0888414i −0.421084 0.907022i \(-0.638350\pi\)
0.574962 + 0.818180i \(0.305017\pi\)
\(860\) 42.1775 73.0535i 1.43824 2.49110i
\(861\) 0 0
\(862\) 28.2456 + 48.9228i 0.962049 + 1.66632i
\(863\) 38.7134 + 22.3512i 1.31782 + 0.760844i 0.983378 0.181573i \(-0.0581187\pi\)
0.334442 + 0.942416i \(0.391452\pi\)
\(864\) −17.9936 36.0428i −0.612153 1.22620i
\(865\) 25.4749 + 44.1238i 0.866172 + 1.50025i
\(866\) −21.1716 −0.719442
\(867\) −28.2120 + 4.38923i −0.958129 + 0.149066i
\(868\) 0 0
\(869\) −40.1124 23.1589i −1.36072 0.785613i
\(870\) −45.9714 + 7.15226i −1.55858 + 0.242484i
\(871\) 5.51871 + 3.18623i 0.186994 + 0.107961i
\(872\) 94.4096 54.5074i 3.19711 1.84585i
\(873\) −13.4216 42.0898i −0.454251 1.42452i
\(874\) 9.68688i 0.327664i
\(875\) 0 0
\(876\) −113.462 43.9108i −3.83354 1.48361i
\(877\) 2.87432 + 4.97846i 0.0970587 + 0.168111i 0.910466 0.413584i \(-0.135723\pi\)
−0.813407 + 0.581695i \(0.802390\pi\)
\(878\) −97.6457 −3.29538
\(879\) 32.6893 5.08582i 1.10258 0.171540i
\(880\) 84.5167i 2.84906i
\(881\) −9.98120 −0.336275 −0.168138 0.985764i \(-0.553775\pi\)
−0.168138 + 0.985764i \(0.553775\pi\)
\(882\) 0 0
\(883\) −32.0942 −1.08006 −0.540028 0.841647i \(-0.681586\pi\)
−0.540028 + 0.841647i \(0.681586\pi\)
\(884\) 35.5195i 1.19465i
\(885\) 6.28869 16.2495i 0.211392 0.546222i
\(886\) −52.7561 −1.77238
\(887\) −4.26812 7.39260i −0.143309 0.248219i 0.785432 0.618949i \(-0.212441\pi\)
−0.928741 + 0.370729i \(0.879108\pi\)
\(888\) 5.48177 + 35.2343i 0.183956 + 1.18239i
\(889\) 0 0
\(890\) 19.9922i 0.670141i
\(891\) −22.7475 32.0410i −0.762070 1.07341i
\(892\) −83.6498 + 48.2952i −2.80080 + 1.61704i
\(893\) −0.288584 0.166614i −0.00965709 0.00557552i
\(894\) −17.6226 + 45.5356i −0.589387 + 1.52294i
\(895\) 34.7140 + 20.0422i 1.16036 + 0.669935i
\(896\) 0 0
\(897\) −7.98293 9.91344i −0.266542 0.331000i
\(898\) −92.0554 −3.07193
\(899\) −8.97579 15.5465i −0.299359 0.518505i
\(900\) 4.51249 + 4.10801i 0.150416 + 0.136934i
\(901\) −20.7752 11.9945i −0.692121 0.399596i
\(902\) −37.0906 64.2429i −1.23498 2.13905i
\(903\) 0 0
\(904\) −20.0011 + 34.6430i −0.665228 + 1.15221i
\(905\) −33.6166 + 19.4085i −1.11745 + 0.645162i
\(906\) 9.57355 + 61.5344i 0.318060 + 2.04434i
\(907\) −16.0272 + 27.7599i −0.532175 + 0.921754i 0.467120 + 0.884194i \(0.345292\pi\)
−0.999294 + 0.0375597i \(0.988042\pi\)
\(908\) −65.7932 + 113.957i −2.18342 + 3.78180i
\(909\) −3.69185 3.36093i −0.122451 0.111475i
\(910\) 0 0
\(911\) 26.3261 15.1994i 0.872221 0.503577i 0.00413539 0.999991i \(-0.498684\pi\)
0.868086 + 0.496414i \(0.165350\pi\)
\(912\) 1.49279 + 9.59495i 0.0494311 + 0.317721i
\(913\) 46.4928i 1.53869i
\(914\) 0.655324i 0.0216762i
\(915\) −7.72721 2.99049i −0.255454 0.0988624i
\(916\) 87.6765 50.6201i 2.89691 1.67253i
\(917\) 0 0
\(918\) −42.7530 + 64.6654i −1.41106 + 2.13428i
\(919\) 8.72153 15.1061i 0.287697 0.498305i −0.685563 0.728013i \(-0.740444\pi\)
0.973260 + 0.229708i \(0.0737772\pi\)
\(920\) 44.2687 76.6757i 1.45950 2.52792i
\(921\) −3.17681 + 2.55817i −0.104680 + 0.0842946i
\(922\) 54.5580 31.4991i 1.79677 1.03737i
\(923\) 0.773612 1.33994i 0.0254637 0.0441045i
\(924\) 0 0
\(925\) −0.660203 1.14351i −0.0217074 0.0375982i
\(926\) 1.83082 + 1.05702i 0.0601644 + 0.0347359i
\(927\) −1.48163 4.64636i −0.0486631 0.152606i
\(928\) 17.3191 + 29.9975i 0.568527 + 0.984717i
\(929\) 10.4278 0.342126 0.171063 0.985260i \(-0.445280\pi\)
0.171063 + 0.985260i \(0.445280\pi\)
\(930\) −15.1009 + 39.0197i −0.495178 + 1.27951i
\(931\) 0 0
\(932\) 61.3070 + 35.3956i 2.00818 + 1.15942i
\(933\) −8.52731 10.5895i −0.279172 0.346684i
\(934\) 4.06199 + 2.34519i 0.132912 + 0.0767369i
\(935\) 51.0212 29.4571i 1.66857 0.963350i
\(936\) −19.9983 18.2057i −0.653664 0.595072i
\(937\) 51.3201i 1.67655i −0.545245 0.838277i \(-0.683563\pi\)
0.545245 0.838277i \(-0.316437\pi\)
\(938\) 0 0
\(939\) 40.5427 32.6476i 1.32306 1.06541i
\(940\) 2.67342 + 4.63049i 0.0871973 + 0.151030i
\(941\) 49.3347 1.60827 0.804133 0.594450i \(-0.202630\pi\)
0.804133 + 0.594450i \(0.202630\pi\)
\(942\) −44.1901 54.8766i −1.43979 1.78798i
\(943\) 36.6625i 1.19389i
\(944\) −35.8114 −1.16556
\(945\) 0 0
\(946\) −87.6252 −2.84894
\(947\) 43.9327i 1.42762i −0.700339 0.713810i \(-0.746968\pi\)
0.700339 0.713810i \(-0.253032\pi\)
\(948\) 53.5547 + 66.5059i 1.73938 + 2.16001i
\(949\) −19.9657 −0.648113
\(950\) −0.381076 0.660044i −0.0123637 0.0214146i
\(951\) 14.9839 12.0660i 0.485886 0.391266i
\(952\) 0 0
\(953\) 21.0833i 0.682956i −0.939890 0.341478i \(-0.889072\pi\)
0.939890 0.341478i \(-0.110928\pi\)
\(954\) −30.5494 + 9.74157i −0.989073 + 0.315395i
\(955\) −1.92673 + 1.11240i −0.0623477 + 0.0359964i
\(956\) 23.0089 + 13.2842i 0.744161 + 0.429641i
\(957\) 21.1909 + 26.3155i 0.685005 + 0.850660i
\(958\) −3.04138 1.75594i −0.0982625 0.0567319i
\(959\) 0 0
\(960\) 4.93552 12.7530i 0.159293 0.411603i
\(961\) 14.8560 0.479226
\(962\) 5.13650 + 8.89667i 0.165607 + 0.286840i
\(963\) −36.9844 + 40.6259i −1.19180 + 1.30915i
\(964\) −17.9941 10.3889i −0.579550 0.334603i
\(965\) −1.97558 3.42181i −0.0635963 0.110152i
\(966\) 0 0
\(967\) −27.6671 + 47.9209i −0.889716 + 1.54103i −0.0495039 + 0.998774i \(0.515764\pi\)
−0.840212 + 0.542259i \(0.817569\pi\)
\(968\) 47.6533 27.5127i 1.53164 0.884290i
\(969\) 5.27200 4.24535i 0.169361 0.136380i
\(970\) 44.2668 76.6723i 1.42132 2.46180i
\(971\) −3.41733 + 5.91898i −0.109667 + 0.189949i −0.915635 0.402010i \(-0.868312\pi\)
0.805968 + 0.591959i \(0.201645\pi\)
\(972\) 17.7900 + 70.2225i 0.570613 + 2.25239i
\(973\) 0 0
\(974\) 70.5830 40.7511i 2.26162 1.30575i
\(975\) 0.933929 + 0.361437i 0.0299097 + 0.0115753i
\(976\) 17.0295i 0.545102i
\(977\) 36.0246i 1.15253i −0.817264 0.576264i \(-0.804510\pi\)
0.817264 0.576264i \(-0.195490\pi\)
\(978\) 4.64450 + 29.8527i 0.148515 + 0.954585i
\(979\) −12.5736 + 7.25938i −0.401854 + 0.232011i
\(980\) 0 0
\(981\) −45.6557 + 14.5587i −1.45767 + 0.464822i
\(982\) 2.93856 5.08973i 0.0937731 0.162420i
\(983\) 20.6863 35.8298i 0.659791 1.14279i −0.320878 0.947120i \(-0.603978\pi\)
0.980670 0.195671i \(-0.0626886\pi\)
\(984\) 11.9755 + 76.9728i 0.381764 + 2.45380i
\(985\) 25.7455 14.8642i 0.820321 0.473612i
\(986\) 33.3275 57.7249i 1.06136 1.83833i
\(987\) 0 0
\(988\) 2.07277 + 3.59014i 0.0659435 + 0.114218i
\(989\) 37.5048 + 21.6534i 1.19258 + 0.688539i
\(990\) 16.7939 76.9360i 0.533744 2.44519i
\(991\) 10.8367 + 18.7697i 0.344239 + 0.596240i 0.985215 0.171321i \(-0.0548036\pi\)
−0.640976 + 0.767561i \(0.721470\pi\)
\(992\) 31.1504 0.989025
\(993\) −18.7579 23.2941i −0.595263 0.739216i
\(994\) 0 0
\(995\) 8.80102 + 5.08127i 0.279011 + 0.161087i
\(996\) −30.9348 + 79.9335i −0.980208 + 2.53279i
\(997\) 11.8699 + 6.85308i 0.375923 + 0.217039i 0.676043 0.736862i \(-0.263693\pi\)
−0.300120 + 0.953901i \(0.597027\pi\)
\(998\) 60.3721 34.8559i 1.91105 1.10334i
\(999\) 0.948821 15.6459i 0.0300194 0.495013i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.i.d.68.24 48
3.2 odd 2 1323.2.i.d.1097.2 48
7.2 even 3 441.2.o.e.293.23 yes 48
7.3 odd 6 441.2.s.d.374.1 48
7.4 even 3 441.2.s.d.374.2 48
7.5 odd 6 441.2.o.e.293.24 yes 48
7.6 odd 2 inner 441.2.i.d.68.23 48
9.2 odd 6 441.2.s.d.362.1 48
9.7 even 3 1323.2.s.d.656.24 48
21.2 odd 6 1323.2.o.e.881.2 48
21.5 even 6 1323.2.o.e.881.1 48
21.11 odd 6 1323.2.s.d.962.23 48
21.17 even 6 1323.2.s.d.962.24 48
21.20 even 2 1323.2.i.d.1097.14 48
63.2 odd 6 441.2.o.e.146.24 yes 48
63.11 odd 6 inner 441.2.i.d.227.1 48
63.16 even 3 1323.2.o.e.440.1 48
63.20 even 6 441.2.s.d.362.2 48
63.25 even 3 1323.2.i.d.521.14 48
63.34 odd 6 1323.2.s.d.656.23 48
63.38 even 6 inner 441.2.i.d.227.2 48
63.47 even 6 441.2.o.e.146.23 48
63.52 odd 6 1323.2.i.d.521.2 48
63.61 odd 6 1323.2.o.e.440.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.23 48 7.6 odd 2 inner
441.2.i.d.68.24 48 1.1 even 1 trivial
441.2.i.d.227.1 48 63.11 odd 6 inner
441.2.i.d.227.2 48 63.38 even 6 inner
441.2.o.e.146.23 48 63.47 even 6
441.2.o.e.146.24 yes 48 63.2 odd 6
441.2.o.e.293.23 yes 48 7.2 even 3
441.2.o.e.293.24 yes 48 7.5 odd 6
441.2.s.d.362.1 48 9.2 odd 6
441.2.s.d.362.2 48 63.20 even 6
441.2.s.d.374.1 48 7.3 odd 6
441.2.s.d.374.2 48 7.4 even 3
1323.2.i.d.521.2 48 63.52 odd 6
1323.2.i.d.521.14 48 63.25 even 3
1323.2.i.d.1097.2 48 3.2 odd 2
1323.2.i.d.1097.14 48 21.20 even 2
1323.2.o.e.440.1 48 63.16 even 3
1323.2.o.e.440.2 48 63.61 odd 6
1323.2.o.e.881.1 48 21.5 even 6
1323.2.o.e.881.2 48 21.2 odd 6
1323.2.s.d.656.23 48 63.34 odd 6
1323.2.s.d.656.24 48 9.7 even 3
1323.2.s.d.962.23 48 21.11 odd 6
1323.2.s.d.962.24 48 21.17 even 6