Properties

Label 1323.2.s.d.656.23
Level $1323$
Weight $2$
Character 1323.656
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,2,Mod(656,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.656"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 656.23
Character \(\chi\) \(=\) 1323.656
Dual form 1323.2.s.d.962.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.23278 - 1.28910i) q^{2} +(2.32354 - 4.02449i) q^{4} +2.33189 q^{5} -6.82470i q^{8} +(5.20660 - 3.00603i) q^{10} -4.36608i q^{11} +(-1.14392 + 0.660445i) q^{13} +(-4.15061 - 7.18908i) q^{16} +(2.89327 + 5.01130i) q^{17} +(-0.584876 - 0.337678i) q^{19} +(5.41825 - 9.38468i) q^{20} +(-5.62830 - 9.74851i) q^{22} +5.56333i q^{23} +0.437717 q^{25} +(-1.70276 + 2.94926i) q^{26} +(-3.86926 - 2.23392i) q^{29} +(-3.47965 - 2.00898i) q^{31} +(-6.71411 - 3.87639i) q^{32} +(12.9201 + 7.45942i) q^{34} +(-1.50829 + 2.61243i) q^{37} -1.74120 q^{38} -15.9145i q^{40} +(3.29501 + 5.70713i) q^{41} +(3.89217 - 6.74143i) q^{43} +(-17.5713 - 10.1448i) q^{44} +(7.17168 + 12.4217i) q^{46} +(-0.246705 - 0.427306i) q^{47} +(0.977326 - 0.564259i) q^{50} +6.13829i q^{52} +(3.59025 - 2.07283i) q^{53} -10.1812i q^{55} -11.5189 q^{58} +(-2.15699 + 3.73602i) q^{59} +(-1.77661 + 1.02572i) q^{61} -10.3591 q^{62} -3.38572 q^{64} +(-2.66751 + 1.54009i) q^{65} +(2.41218 - 4.17802i) q^{67} +26.8906 q^{68} +1.17135i q^{71} +(-13.0902 + 7.55766i) q^{73} +7.77733i q^{74} +(-2.71797 + 1.56922i) q^{76} +(5.30428 + 9.18728i) q^{79} +(-9.67878 - 16.7641i) q^{80} +(14.7141 + 8.49518i) q^{82} +(5.32432 - 9.22199i) q^{83} +(6.74680 + 11.6858i) q^{85} -20.0695i q^{86} -29.7972 q^{88} +(1.66268 - 2.87984i) q^{89} +(22.3896 + 12.9266i) q^{92} +(-1.10168 - 0.636053i) q^{94} +(-1.36387 - 0.787429i) q^{95} +(-12.7531 - 7.36299i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} - 24 q^{16} + 48 q^{25} + 120 q^{32} - 96 q^{44} - 48 q^{50} - 48 q^{53} - 48 q^{64} + 120 q^{65} - 24 q^{79} - 24 q^{85} + 144 q^{92} + 96 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23278 1.28910i 1.57882 0.911529i 0.583790 0.811905i \(-0.301569\pi\)
0.995025 0.0996245i \(-0.0317642\pi\)
\(3\) 0 0
\(4\) 2.32354 4.02449i 1.16177 2.01225i
\(5\) 2.33189 1.04285 0.521427 0.853296i \(-0.325400\pi\)
0.521427 + 0.853296i \(0.325400\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 6.82470i 2.41290i
\(9\) 0 0
\(10\) 5.20660 3.00603i 1.64647 0.950591i
\(11\) 4.36608i 1.31642i −0.752833 0.658212i \(-0.771313\pi\)
0.752833 0.658212i \(-0.228687\pi\)
\(12\) 0 0
\(13\) −1.14392 + 0.660445i −0.317267 + 0.183174i −0.650174 0.759785i \(-0.725304\pi\)
0.332906 + 0.942960i \(0.391971\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.15061 7.18908i −1.03765 1.79727i
\(17\) 2.89327 + 5.01130i 0.701722 + 1.21542i 0.967862 + 0.251484i \(0.0809185\pi\)
−0.266140 + 0.963935i \(0.585748\pi\)
\(18\) 0 0
\(19\) −0.584876 0.337678i −0.134180 0.0774687i 0.431407 0.902157i \(-0.358017\pi\)
−0.565587 + 0.824688i \(0.691350\pi\)
\(20\) 5.41825 9.38468i 1.21156 2.09848i
\(21\) 0 0
\(22\) −5.62830 9.74851i −1.19996 2.07839i
\(23\) 5.56333i 1.16004i 0.814604 + 0.580018i \(0.196954\pi\)
−0.814604 + 0.580018i \(0.803046\pi\)
\(24\) 0 0
\(25\) 0.437717 0.0875433
\(26\) −1.70276 + 2.94926i −0.333938 + 0.578397i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.86926 2.23392i −0.718503 0.414828i 0.0956983 0.995410i \(-0.469492\pi\)
−0.814202 + 0.580582i \(0.802825\pi\)
\(30\) 0 0
\(31\) −3.47965 2.00898i −0.624964 0.360823i 0.153835 0.988097i \(-0.450838\pi\)
−0.778799 + 0.627273i \(0.784171\pi\)
\(32\) −6.71411 3.87639i −1.18690 0.685256i
\(33\) 0 0
\(34\) 12.9201 + 7.45942i 2.21578 + 1.27928i
\(35\) 0 0
\(36\) 0 0
\(37\) −1.50829 + 2.61243i −0.247961 + 0.429482i −0.962960 0.269644i \(-0.913094\pi\)
0.714999 + 0.699126i \(0.246427\pi\)
\(38\) −1.74120 −0.282460
\(39\) 0 0
\(40\) 15.9145i 2.51630i
\(41\) 3.29501 + 5.70713i 0.514594 + 0.891303i 0.999857 + 0.0169348i \(0.00539076\pi\)
−0.485262 + 0.874369i \(0.661276\pi\)
\(42\) 0 0
\(43\) 3.89217 6.74143i 0.593550 1.02806i −0.400200 0.916428i \(-0.631059\pi\)
0.993750 0.111631i \(-0.0356074\pi\)
\(44\) −17.5713 10.1448i −2.64897 1.52938i
\(45\) 0 0
\(46\) 7.17168 + 12.4217i 1.05741 + 1.83148i
\(47\) −0.246705 0.427306i −0.0359856 0.0623289i 0.847472 0.530841i \(-0.178124\pi\)
−0.883457 + 0.468512i \(0.844790\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.977326 0.564259i 0.138215 0.0797983i
\(51\) 0 0
\(52\) 6.13829i 0.851227i
\(53\) 3.59025 2.07283i 0.493159 0.284725i −0.232725 0.972543i \(-0.574764\pi\)
0.725884 + 0.687817i \(0.241431\pi\)
\(54\) 0 0
\(55\) 10.1812i 1.37284i
\(56\) 0 0
\(57\) 0 0
\(58\) −11.5189 −1.51251
\(59\) −2.15699 + 3.73602i −0.280816 + 0.486388i −0.971586 0.236687i \(-0.923939\pi\)
0.690770 + 0.723075i \(0.257272\pi\)
\(60\) 0 0
\(61\) −1.77661 + 1.02572i −0.227471 + 0.131330i −0.609405 0.792859i \(-0.708592\pi\)
0.381934 + 0.924190i \(0.375258\pi\)
\(62\) −10.3591 −1.31560
\(63\) 0 0
\(64\) −3.38572 −0.423215
\(65\) −2.66751 + 1.54009i −0.330863 + 0.191024i
\(66\) 0 0
\(67\) 2.41218 4.17802i 0.294695 0.510427i −0.680219 0.733009i \(-0.738115\pi\)
0.974914 + 0.222582i \(0.0714486\pi\)
\(68\) 26.8906 3.26096
\(69\) 0 0
\(70\) 0 0
\(71\) 1.17135i 0.139014i 0.997581 + 0.0695068i \(0.0221426\pi\)
−0.997581 + 0.0695068i \(0.977857\pi\)
\(72\) 0 0
\(73\) −13.0902 + 7.55766i −1.53210 + 0.884557i −0.532833 + 0.846221i \(0.678872\pi\)
−0.999265 + 0.0383363i \(0.987794\pi\)
\(74\) 7.77733i 0.904096i
\(75\) 0 0
\(76\) −2.71797 + 1.56922i −0.311772 + 0.180002i
\(77\) 0 0
\(78\) 0 0
\(79\) 5.30428 + 9.18728i 0.596778 + 1.03365i 0.993293 + 0.115622i \(0.0368861\pi\)
−0.396515 + 0.918028i \(0.629781\pi\)
\(80\) −9.67878 16.7641i −1.08212 1.87429i
\(81\) 0 0
\(82\) 14.7141 + 8.49518i 1.62490 + 0.938135i
\(83\) 5.32432 9.22199i 0.584420 1.01225i −0.410527 0.911848i \(-0.634655\pi\)
0.994947 0.100397i \(-0.0320113\pi\)
\(84\) 0 0
\(85\) 6.74680 + 11.6858i 0.731793 + 1.26750i
\(86\) 20.0695i 2.16415i
\(87\) 0 0
\(88\) −29.7972 −3.17639
\(89\) 1.66268 2.87984i 0.176243 0.305262i −0.764348 0.644804i \(-0.776939\pi\)
0.940591 + 0.339542i \(0.110272\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 22.3896 + 12.9266i 2.33428 + 1.34770i
\(93\) 0 0
\(94\) −1.10168 0.636053i −0.113629 0.0656039i
\(95\) −1.36387 0.787429i −0.139930 0.0807886i
\(96\) 0 0
\(97\) −12.7531 7.36299i −1.29488 0.747598i −0.315363 0.948971i \(-0.602126\pi\)
−0.979515 + 0.201373i \(0.935460\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.01705 1.76159i 0.101705 0.176159i
\(101\) −1.66418 −0.165593 −0.0827963 0.996566i \(-0.526385\pi\)
−0.0827963 + 0.996566i \(0.526385\pi\)
\(102\) 0 0
\(103\) 1.62562i 0.160177i 0.996788 + 0.0800887i \(0.0255204\pi\)
−0.996788 + 0.0800887i \(0.974480\pi\)
\(104\) 4.50734 + 7.80694i 0.441981 + 0.765533i
\(105\) 0 0
\(106\) 5.34416 9.25636i 0.519071 0.899057i
\(107\) 15.8596 + 9.15652i 1.53320 + 0.885194i 0.999212 + 0.0397036i \(0.0126414\pi\)
0.533990 + 0.845491i \(0.320692\pi\)
\(108\) 0 0
\(109\) 7.98678 + 13.8335i 0.764995 + 1.32501i 0.940249 + 0.340487i \(0.110592\pi\)
−0.175254 + 0.984523i \(0.556075\pi\)
\(110\) −13.1246 22.7325i −1.25138 2.16746i
\(111\) 0 0
\(112\) 0 0
\(113\) 5.07612 2.93070i 0.477521 0.275697i −0.241862 0.970311i \(-0.577758\pi\)
0.719383 + 0.694614i \(0.244425\pi\)
\(114\) 0 0
\(115\) 12.9731i 1.20975i
\(116\) −17.9808 + 10.3812i −1.66947 + 0.963871i
\(117\) 0 0
\(118\) 11.1223i 1.02389i
\(119\) 0 0
\(120\) 0 0
\(121\) −8.06267 −0.732970
\(122\) −2.64451 + 4.58043i −0.239423 + 0.414693i
\(123\) 0 0
\(124\) −16.1702 + 9.33589i −1.45213 + 0.838388i
\(125\) −10.6387 −0.951559
\(126\) 0 0
\(127\) −16.5710 −1.47044 −0.735218 0.677831i \(-0.762920\pi\)
−0.735218 + 0.677831i \(0.762920\pi\)
\(128\) 5.86864 3.38826i 0.518719 0.299483i
\(129\) 0 0
\(130\) −3.97064 + 6.87735i −0.348248 + 0.603183i
\(131\) −7.11978 −0.622058 −0.311029 0.950400i \(-0.600674\pi\)
−0.311029 + 0.950400i \(0.600674\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.4382i 1.07449i
\(135\) 0 0
\(136\) 34.2006 19.7457i 2.93268 1.69318i
\(137\) 0.827439i 0.0706929i −0.999375 0.0353465i \(-0.988747\pi\)
0.999375 0.0353465i \(-0.0112535\pi\)
\(138\) 0 0
\(139\) −12.0735 + 6.97062i −1.02406 + 0.591241i −0.915277 0.402825i \(-0.868028\pi\)
−0.108782 + 0.994066i \(0.534695\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.50998 + 2.61537i 0.126715 + 0.219477i
\(143\) 2.88356 + 4.99447i 0.241135 + 0.417658i
\(144\) 0 0
\(145\) −9.02269 5.20925i −0.749294 0.432605i
\(146\) −19.4851 + 33.7492i −1.61260 + 2.79310i
\(147\) 0 0
\(148\) 7.00915 + 12.1402i 0.576149 + 0.997919i
\(149\) 10.9340i 0.895752i 0.894096 + 0.447876i \(0.147819\pi\)
−0.894096 + 0.447876i \(0.852181\pi\)
\(150\) 0 0
\(151\) −13.9455 −1.13487 −0.567436 0.823418i \(-0.692065\pi\)
−0.567436 + 0.823418i \(0.692065\pi\)
\(152\) −2.30455 + 3.99160i −0.186924 + 0.323762i
\(153\) 0 0
\(154\) 0 0
\(155\) −8.11417 4.68472i −0.651746 0.376286i
\(156\) 0 0
\(157\) 13.6641 + 7.88894i 1.09051 + 0.629606i 0.933712 0.358024i \(-0.116550\pi\)
0.156798 + 0.987631i \(0.449883\pi\)
\(158\) 23.6866 + 13.6755i 1.88440 + 1.08796i
\(159\) 0 0
\(160\) −15.6566 9.03932i −1.23776 0.714621i
\(161\) 0 0
\(162\) 0 0
\(163\) 3.38276 5.85911i 0.264958 0.458921i −0.702594 0.711590i \(-0.747975\pi\)
0.967553 + 0.252669i \(0.0813085\pi\)
\(164\) 30.6244 2.39136
\(165\) 0 0
\(166\) 27.4543i 2.13086i
\(167\) −9.54631 16.5347i −0.738716 1.27949i −0.953074 0.302738i \(-0.902099\pi\)
0.214358 0.976755i \(-0.431234\pi\)
\(168\) 0 0
\(169\) −5.62763 + 9.74733i −0.432894 + 0.749795i
\(170\) 30.1283 + 17.3946i 2.31073 + 1.33410i
\(171\) 0 0
\(172\) −18.0872 31.3280i −1.37914 2.38874i
\(173\) 10.9246 + 18.9219i 0.830579 + 1.43860i 0.897580 + 0.440851i \(0.145323\pi\)
−0.0670016 + 0.997753i \(0.521343\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −31.3881 + 18.1219i −2.36597 + 1.36599i
\(177\) 0 0
\(178\) 8.57340i 0.642603i
\(179\) 14.8866 8.59481i 1.11268 0.642406i 0.173158 0.984894i \(-0.444603\pi\)
0.939522 + 0.342488i \(0.111270\pi\)
\(180\) 0 0
\(181\) 16.6462i 1.23730i −0.785666 0.618650i \(-0.787680\pi\)
0.785666 0.618650i \(-0.212320\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 37.9681 2.79904
\(185\) −3.51717 + 6.09191i −0.258587 + 0.447886i
\(186\) 0 0
\(187\) 21.8797 12.6323i 1.60000 0.923763i
\(188\) −2.29292 −0.167228
\(189\) 0 0
\(190\) −4.06029 −0.294565
\(191\) 0.826254 0.477038i 0.0597857 0.0345173i −0.469809 0.882768i \(-0.655677\pi\)
0.529595 + 0.848251i \(0.322344\pi\)
\(192\) 0 0
\(193\) 0.847203 1.46740i 0.0609830 0.105626i −0.833922 0.551882i \(-0.813910\pi\)
0.894905 + 0.446257i \(0.147243\pi\)
\(194\) −37.9664 −2.72583
\(195\) 0 0
\(196\) 0 0
\(197\) 12.7486i 0.908301i −0.890925 0.454150i \(-0.849943\pi\)
0.890925 0.454150i \(-0.150057\pi\)
\(198\) 0 0
\(199\) −3.77420 + 2.17903i −0.267546 + 0.154468i −0.627772 0.778397i \(-0.716033\pi\)
0.360226 + 0.932865i \(0.382700\pi\)
\(200\) 2.98728i 0.211233i
\(201\) 0 0
\(202\) −3.71576 + 2.14530i −0.261440 + 0.150942i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.68361 + 13.3084i 0.536646 + 0.929499i
\(206\) 2.09559 + 3.62966i 0.146006 + 0.252891i
\(207\) 0 0
\(208\) 9.49598 + 5.48250i 0.658427 + 0.380143i
\(209\) −1.47433 + 2.55362i −0.101982 + 0.176637i
\(210\) 0 0
\(211\) −2.24368 3.88617i −0.154461 0.267535i 0.778401 0.627767i \(-0.216031\pi\)
−0.932863 + 0.360232i \(0.882698\pi\)
\(212\) 19.2653i 1.32314i
\(213\) 0 0
\(214\) 47.2146 3.22752
\(215\) 9.07611 15.7203i 0.618986 1.07211i
\(216\) 0 0
\(217\) 0 0
\(218\) 35.6655 + 20.5915i 2.41557 + 1.39463i
\(219\) 0 0
\(220\) −40.9743 23.6565i −2.76249 1.59492i
\(221\) −6.61937 3.82170i −0.445267 0.257075i
\(222\) 0 0
\(223\) 18.0005 + 10.3926i 1.20540 + 0.695939i 0.961751 0.273924i \(-0.0883218\pi\)
0.243650 + 0.969863i \(0.421655\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 7.55591 13.0872i 0.502612 0.870549i
\(227\) 28.3159 1.87939 0.939696 0.342012i \(-0.111108\pi\)
0.939696 + 0.342012i \(0.111108\pi\)
\(228\) 0 0
\(229\) 21.7857i 1.43964i 0.694160 + 0.719821i \(0.255776\pi\)
−0.694160 + 0.719821i \(0.744224\pi\)
\(230\) 16.7236 + 28.9661i 1.10272 + 1.90997i
\(231\) 0 0
\(232\) −15.2458 + 26.4065i −1.00094 + 1.73367i
\(233\) −13.1926 7.61674i −0.864275 0.498989i 0.00116682 0.999999i \(-0.499629\pi\)
−0.865441 + 0.501010i \(0.832962\pi\)
\(234\) 0 0
\(235\) −0.575289 0.996430i −0.0375277 0.0649999i
\(236\) 10.0237 + 17.3616i 0.652489 + 1.13014i
\(237\) 0 0
\(238\) 0 0
\(239\) 4.95125 2.85861i 0.320270 0.184908i −0.331243 0.943545i \(-0.607468\pi\)
0.651513 + 0.758638i \(0.274135\pi\)
\(240\) 0 0
\(241\) 4.47114i 0.288011i 0.989577 + 0.144006i \(0.0459984\pi\)
−0.989577 + 0.144006i \(0.954002\pi\)
\(242\) −18.0022 + 10.3936i −1.15722 + 0.668124i
\(243\) 0 0
\(244\) 9.53325i 0.610304i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.892072 0.0567612
\(248\) −13.7107 + 23.7476i −0.870629 + 1.50797i
\(249\) 0 0
\(250\) −23.7540 + 13.7144i −1.50234 + 0.867374i
\(251\) 11.6265 0.733861 0.366931 0.930248i \(-0.380409\pi\)
0.366931 + 0.930248i \(0.380409\pi\)
\(252\) 0 0
\(253\) 24.2900 1.52710
\(254\) −36.9993 + 21.3616i −2.32155 + 1.34034i
\(255\) 0 0
\(256\) 12.1213 20.9947i 0.757582 1.31217i
\(257\) 2.10280 0.131169 0.0655846 0.997847i \(-0.479109\pi\)
0.0655846 + 0.997847i \(0.479109\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 14.3138i 0.887705i
\(261\) 0 0
\(262\) −15.8969 + 9.17809i −0.982114 + 0.567024i
\(263\) 2.20286i 0.135834i −0.997691 0.0679170i \(-0.978365\pi\)
0.997691 0.0679170i \(-0.0216353\pi\)
\(264\) 0 0
\(265\) 8.37207 4.83362i 0.514292 0.296927i
\(266\) 0 0
\(267\) 0 0
\(268\) −11.2096 19.4156i −0.684737 1.18600i
\(269\) −13.9312 24.1295i −0.849398 1.47120i −0.881746 0.471724i \(-0.843632\pi\)
0.0323483 0.999477i \(-0.489701\pi\)
\(270\) 0 0
\(271\) 9.94228 + 5.74018i 0.603950 + 0.348691i 0.770594 0.637326i \(-0.219960\pi\)
−0.166644 + 0.986017i \(0.553293\pi\)
\(272\) 24.0177 41.5999i 1.45629 2.52237i
\(273\) 0 0
\(274\) −1.06665 1.84749i −0.0644387 0.111611i
\(275\) 1.91111i 0.115244i
\(276\) 0 0
\(277\) −10.2000 −0.612859 −0.306429 0.951893i \(-0.599134\pi\)
−0.306429 + 0.951893i \(0.599134\pi\)
\(278\) −17.9716 + 31.1278i −1.07787 + 1.86692i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.45116 5.45663i −0.563809 0.325515i 0.190864 0.981617i \(-0.438871\pi\)
−0.754673 + 0.656101i \(0.772204\pi\)
\(282\) 0 0
\(283\) −10.2766 5.93322i −0.610882 0.352693i 0.162428 0.986720i \(-0.448067\pi\)
−0.773311 + 0.634027i \(0.781401\pi\)
\(284\) 4.71409 + 2.72168i 0.279730 + 0.161502i
\(285\) 0 0
\(286\) 12.8767 + 7.43437i 0.761415 + 0.439603i
\(287\) 0 0
\(288\) 0 0
\(289\) −8.24207 + 14.2757i −0.484828 + 0.839746i
\(290\) −26.8609 −1.57733
\(291\) 0 0
\(292\) 70.2422i 4.11061i
\(293\) −9.55012 16.5413i −0.557924 0.966353i −0.997670 0.0682302i \(-0.978265\pi\)
0.439746 0.898122i \(-0.355069\pi\)
\(294\) 0 0
\(295\) −5.02987 + 8.71199i −0.292850 + 0.507232i
\(296\) 17.8291 + 10.2936i 1.03629 + 0.598305i
\(297\) 0 0
\(298\) 14.0950 + 24.4133i 0.816504 + 1.41423i
\(299\) −3.67427 6.36403i −0.212489 0.368041i
\(300\) 0 0
\(301\) 0 0
\(302\) −31.1373 + 17.9772i −1.79175 + 1.03447i
\(303\) 0 0
\(304\) 5.60629i 0.321543i
\(305\) −4.14285 + 2.39188i −0.237219 + 0.136958i
\(306\) 0 0
\(307\) 2.35488i 0.134400i −0.997740 0.0672001i \(-0.978593\pi\)
0.997740 0.0672001i \(-0.0214066\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −24.1562 −1.37198
\(311\) −3.92483 + 6.79801i −0.222557 + 0.385480i −0.955584 0.294720i \(-0.904774\pi\)
0.733027 + 0.680200i \(0.238107\pi\)
\(312\) 0 0
\(313\) 26.0268 15.0266i 1.47112 0.849352i 0.471647 0.881787i \(-0.343660\pi\)
0.999474 + 0.0324349i \(0.0103262\pi\)
\(314\) 40.6785 2.29562
\(315\) 0 0
\(316\) 49.2989 2.77328
\(317\) −9.61906 + 5.55356i −0.540260 + 0.311919i −0.745184 0.666859i \(-0.767639\pi\)
0.204924 + 0.978778i \(0.434305\pi\)
\(318\) 0 0
\(319\) −9.75347 + 16.8935i −0.546089 + 0.945854i
\(320\) −7.89513 −0.441351
\(321\) 0 0
\(322\) 0 0
\(323\) 3.90798i 0.217446i
\(324\) 0 0
\(325\) −0.500715 + 0.289088i −0.0277746 + 0.0160357i
\(326\) 17.4428i 0.966069i
\(327\) 0 0
\(328\) 38.9494 22.4875i 2.15062 1.24166i
\(329\) 0 0
\(330\) 0 0
\(331\) 8.63362 + 14.9539i 0.474547 + 0.821939i 0.999575 0.0291457i \(-0.00927866\pi\)
−0.525028 + 0.851085i \(0.675945\pi\)
\(332\) −24.7426 42.8554i −1.35792 2.35199i
\(333\) 0 0
\(334\) −42.6297 24.6123i −2.33259 1.34672i
\(335\) 5.62495 9.74270i 0.307324 0.532300i
\(336\) 0 0
\(337\) −3.82962 6.63309i −0.208612 0.361327i 0.742665 0.669663i \(-0.233561\pi\)
−0.951278 + 0.308336i \(0.900228\pi\)
\(338\) 29.0182i 1.57838i
\(339\) 0 0
\(340\) 62.7059 3.40071
\(341\) −8.77137 + 15.1925i −0.474996 + 0.822717i
\(342\) 0 0
\(343\) 0 0
\(344\) −46.0082 26.5629i −2.48060 1.43217i
\(345\) 0 0
\(346\) 48.7843 + 28.1656i 2.62266 + 1.51419i
\(347\) −11.4014 6.58262i −0.612061 0.353374i 0.161711 0.986838i \(-0.448299\pi\)
−0.773772 + 0.633465i \(0.781632\pi\)
\(348\) 0 0
\(349\) −1.05185 0.607283i −0.0563040 0.0325071i 0.471584 0.881821i \(-0.343682\pi\)
−0.527888 + 0.849314i \(0.677016\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.9246 + 29.3143i −0.902087 + 1.56246i
\(353\) −26.8228 −1.42763 −0.713816 0.700333i \(-0.753035\pi\)
−0.713816 + 0.700333i \(0.753035\pi\)
\(354\) 0 0
\(355\) 2.73146i 0.144971i
\(356\) −7.72659 13.3829i −0.409509 0.709290i
\(357\) 0 0
\(358\) 22.1591 38.3807i 1.17114 2.02848i
\(359\) −6.45209 3.72512i −0.340529 0.196604i 0.319977 0.947425i \(-0.396325\pi\)
−0.660506 + 0.750821i \(0.729658\pi\)
\(360\) 0 0
\(361\) −9.27195 16.0595i −0.487997 0.845236i
\(362\) −21.4585 37.1673i −1.12784 1.95347i
\(363\) 0 0
\(364\) 0 0
\(365\) −30.5250 + 17.6236i −1.59775 + 0.922463i
\(366\) 0 0
\(367\) 34.9875i 1.82633i −0.407588 0.913166i \(-0.633630\pi\)
0.407588 0.913166i \(-0.366370\pi\)
\(368\) 39.9952 23.0913i 2.08490 1.20371i
\(369\) 0 0
\(370\) 18.1359i 0.942840i
\(371\) 0 0
\(372\) 0 0
\(373\) −30.0990 −1.55847 −0.779233 0.626734i \(-0.784391\pi\)
−0.779233 + 0.626734i \(0.784391\pi\)
\(374\) 32.5684 56.4102i 1.68407 2.91690i
\(375\) 0 0
\(376\) −2.91623 + 1.68369i −0.150393 + 0.0868295i
\(377\) 5.90152 0.303944
\(378\) 0 0
\(379\) −27.0996 −1.39201 −0.696006 0.718036i \(-0.745041\pi\)
−0.696006 + 0.718036i \(0.745041\pi\)
\(380\) −6.33801 + 3.65925i −0.325133 + 0.187716i
\(381\) 0 0
\(382\) 1.22990 2.13024i 0.0629270 0.108993i
\(383\) 3.66030 0.187033 0.0935164 0.995618i \(-0.470189\pi\)
0.0935164 + 0.995618i \(0.470189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.36851i 0.222351i
\(387\) 0 0
\(388\) −59.2646 + 34.2164i −3.00870 + 1.73708i
\(389\) 12.1690i 0.616992i 0.951226 + 0.308496i \(0.0998257\pi\)
−0.951226 + 0.308496i \(0.900174\pi\)
\(390\) 0 0
\(391\) −27.8795 + 16.0962i −1.40993 + 0.814022i
\(392\) 0 0
\(393\) 0 0
\(394\) −16.4342 28.4649i −0.827943 1.43404i
\(395\) 12.3690 + 21.4237i 0.622352 + 1.07795i
\(396\) 0 0
\(397\) −23.1870 13.3870i −1.16372 0.671876i −0.211530 0.977371i \(-0.567845\pi\)
−0.952194 + 0.305495i \(0.901178\pi\)
\(398\) −5.61797 + 9.73061i −0.281603 + 0.487752i
\(399\) 0 0
\(400\) −1.81679 3.14678i −0.0908397 0.157339i
\(401\) 7.72989i 0.386012i −0.981198 0.193006i \(-0.938176\pi\)
0.981198 0.193006i \(-0.0618237\pi\)
\(402\) 0 0
\(403\) 5.30728 0.264374
\(404\) −3.86680 + 6.69750i −0.192381 + 0.333213i
\(405\) 0 0
\(406\) 0 0
\(407\) 11.4061 + 6.58532i 0.565380 + 0.326422i
\(408\) 0 0
\(409\) 7.84660 + 4.53024i 0.387989 + 0.224006i 0.681289 0.732015i \(-0.261420\pi\)
−0.293299 + 0.956021i \(0.594753\pi\)
\(410\) 34.3116 + 19.8098i 1.69453 + 0.978338i
\(411\) 0 0
\(412\) 6.54231 + 3.77720i 0.322316 + 0.186090i
\(413\) 0 0
\(414\) 0 0
\(415\) 12.4157 21.5047i 0.609464 1.05562i
\(416\) 10.2406 0.502085
\(417\) 0 0
\(418\) 7.60223i 0.371837i
\(419\) 3.30466 + 5.72384i 0.161443 + 0.279628i 0.935386 0.353627i \(-0.115052\pi\)
−0.773943 + 0.633255i \(0.781718\pi\)
\(420\) 0 0
\(421\) 6.39209 11.0714i 0.311531 0.539588i −0.667163 0.744912i \(-0.732491\pi\)
0.978694 + 0.205324i \(0.0658248\pi\)
\(422\) −10.0193 5.78464i −0.487732 0.281592i
\(423\) 0 0
\(424\) −14.1465 24.5024i −0.687013 1.18994i
\(425\) 1.26643 + 2.19353i 0.0614311 + 0.106402i
\(426\) 0 0
\(427\) 0 0
\(428\) 73.7007 42.5511i 3.56246 2.05679i
\(429\) 0 0
\(430\) 46.7999i 2.25689i
\(431\) 18.9756 10.9556i 0.914023 0.527712i 0.0322998 0.999478i \(-0.489717\pi\)
0.881723 + 0.471767i \(0.156384\pi\)
\(432\) 0 0
\(433\) 8.21181i 0.394635i −0.980340 0.197317i \(-0.936777\pi\)
0.980340 0.197317i \(-0.0632229\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 74.2305 3.55500
\(437\) 1.87862 3.25386i 0.0898665 0.155653i
\(438\) 0 0
\(439\) −32.7996 + 18.9368i −1.56544 + 0.903806i −0.568749 + 0.822511i \(0.692572\pi\)
−0.996690 + 0.0812949i \(0.974094\pi\)
\(440\) −69.4838 −3.31251
\(441\) 0 0
\(442\) −19.7061 −0.937326
\(443\) 17.7210 10.2312i 0.841950 0.486100i −0.0159769 0.999872i \(-0.505086\pi\)
0.857926 + 0.513773i \(0.171752\pi\)
\(444\) 0 0
\(445\) 3.87718 6.71547i 0.183796 0.318344i
\(446\) 53.5882 2.53747
\(447\) 0 0
\(448\) 0 0
\(449\) 35.7054i 1.68504i 0.538665 + 0.842520i \(0.318929\pi\)
−0.538665 + 0.842520i \(0.681071\pi\)
\(450\) 0 0
\(451\) 24.9178 14.3863i 1.17333 0.677424i
\(452\) 27.2384i 1.28119i
\(453\) 0 0
\(454\) 63.2232 36.5019i 2.96721 1.71312i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.127090 + 0.220126i 0.00594501 + 0.0102971i 0.868983 0.494843i \(-0.164774\pi\)
−0.863038 + 0.505140i \(0.831441\pi\)
\(458\) 28.0839 + 48.6428i 1.31228 + 2.27293i
\(459\) 0 0
\(460\) 52.2101 + 30.1435i 2.43431 + 1.40545i
\(461\) 12.2175 21.1613i 0.569025 0.985581i −0.427637 0.903950i \(-0.640654\pi\)
0.996663 0.0816304i \(-0.0260127\pi\)
\(462\) 0 0
\(463\) 0.409986 + 0.710116i 0.0190536 + 0.0330019i 0.875395 0.483408i \(-0.160601\pi\)
−0.856341 + 0.516410i \(0.827268\pi\)
\(464\) 37.0885i 1.72179i
\(465\) 0 0
\(466\) −39.2749 −1.81937
\(467\) −0.909625 + 1.57552i −0.0420924 + 0.0729062i −0.886304 0.463104i \(-0.846736\pi\)
0.844212 + 0.536010i \(0.180069\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.56899 1.48321i −0.118499 0.0684152i
\(471\) 0 0
\(472\) 25.4972 + 14.7208i 1.17360 + 0.677581i
\(473\) −29.4336 16.9935i −1.35336 0.781363i
\(474\) 0 0
\(475\) −0.256010 0.147807i −0.0117465 0.00678187i
\(476\) 0 0
\(477\) 0 0
\(478\) 7.37004 12.7653i 0.337098 0.583871i
\(479\) −1.36215 −0.0622381 −0.0311191 0.999516i \(-0.509907\pi\)
−0.0311191 + 0.999516i \(0.509907\pi\)
\(480\) 0 0
\(481\) 3.98457i 0.181681i
\(482\) 5.76373 + 9.98308i 0.262531 + 0.454717i
\(483\) 0 0
\(484\) −18.7340 + 32.4482i −0.851544 + 1.47492i
\(485\) −29.7388 17.1697i −1.35037 0.779635i
\(486\) 0 0
\(487\) −15.8061 27.3769i −0.716241 1.24057i −0.962479 0.271357i \(-0.912528\pi\)
0.246238 0.969209i \(-0.420806\pi\)
\(488\) 7.00026 + 12.1248i 0.316887 + 0.548864i
\(489\) 0 0
\(490\) 0 0
\(491\) 1.97415 1.13977i 0.0890919 0.0514373i −0.454792 0.890598i \(-0.650286\pi\)
0.543884 + 0.839160i \(0.316953\pi\)
\(492\) 0 0
\(493\) 25.8533i 1.16438i
\(494\) 1.99180 1.14997i 0.0896154 0.0517395i
\(495\) 0 0
\(496\) 33.3540i 1.49764i
\(497\) 0 0
\(498\) 0 0
\(499\) 27.0390 1.21043 0.605215 0.796062i \(-0.293087\pi\)
0.605215 + 0.796062i \(0.293087\pi\)
\(500\) −24.7196 + 42.8156i −1.10549 + 1.91477i
\(501\) 0 0
\(502\) 25.9595 14.9877i 1.15863 0.668936i
\(503\) 0.276948 0.0123485 0.00617426 0.999981i \(-0.498035\pi\)
0.00617426 + 0.999981i \(0.498035\pi\)
\(504\) 0 0
\(505\) −3.88070 −0.172689
\(506\) 54.2342 31.3121i 2.41100 1.39199i
\(507\) 0 0
\(508\) −38.5033 + 66.6897i −1.70831 + 2.95888i
\(509\) −18.4295 −0.816874 −0.408437 0.912786i \(-0.633926\pi\)
−0.408437 + 0.912786i \(0.633926\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 48.9492i 2.16327i
\(513\) 0 0
\(514\) 4.69510 2.71072i 0.207092 0.119565i
\(515\) 3.79078i 0.167042i
\(516\) 0 0
\(517\) −1.86565 + 1.07713i −0.0820512 + 0.0473723i
\(518\) 0 0
\(519\) 0 0
\(520\) 10.5106 + 18.2049i 0.460921 + 0.798339i
\(521\) −11.6264 20.1374i −0.509360 0.882237i −0.999941 0.0108420i \(-0.996549\pi\)
0.490581 0.871395i \(-0.336785\pi\)
\(522\) 0 0
\(523\) −11.5227 6.65262i −0.503852 0.290899i 0.226451 0.974023i \(-0.427288\pi\)
−0.730303 + 0.683124i \(0.760621\pi\)
\(524\) −16.5431 + 28.6535i −0.722689 + 1.25173i
\(525\) 0 0
\(526\) −2.83970 4.91850i −0.123817 0.214457i
\(527\) 23.2501i 1.01279i
\(528\) 0 0
\(529\) −7.95068 −0.345682
\(530\) 12.4620 21.5848i 0.541315 0.937585i
\(531\) 0 0
\(532\) 0 0
\(533\) −7.53848 4.35235i −0.326528 0.188521i
\(534\) 0 0
\(535\) 36.9828 + 21.3520i 1.59890 + 0.923128i
\(536\) −28.5138 16.4624i −1.23161 0.711069i
\(537\) 0 0
\(538\) −62.2105 35.9172i −2.68208 1.54850i
\(539\) 0 0
\(540\) 0 0
\(541\) 15.0846 26.1273i 0.648537 1.12330i −0.334935 0.942241i \(-0.608714\pi\)
0.983472 0.181059i \(-0.0579524\pi\)
\(542\) 29.5986 1.27137
\(543\) 0 0
\(544\) 44.8619i 1.92344i
\(545\) 18.6243 + 32.2582i 0.797778 + 1.38179i
\(546\) 0 0
\(547\) −0.572061 + 0.990840i −0.0244596 + 0.0423652i −0.877996 0.478668i \(-0.841120\pi\)
0.853537 + 0.521033i \(0.174453\pi\)
\(548\) −3.33002 1.92259i −0.142252 0.0821290i
\(549\) 0 0
\(550\) −2.46360 4.26708i −0.105048 0.181949i
\(551\) 1.50869 + 2.61313i 0.0642724 + 0.111323i
\(552\) 0 0
\(553\) 0 0
\(554\) −22.7744 + 13.1488i −0.967591 + 0.558639i
\(555\) 0 0
\(556\) 64.7862i 2.74755i
\(557\) −8.35388 + 4.82312i −0.353965 + 0.204362i −0.666430 0.745567i \(-0.732179\pi\)
0.312465 + 0.949929i \(0.398845\pi\)
\(558\) 0 0
\(559\) 10.2822i 0.434893i
\(560\) 0 0
\(561\) 0 0
\(562\) −28.1365 −1.18687
\(563\) −1.54395 + 2.67420i −0.0650698 + 0.112704i −0.896725 0.442588i \(-0.854060\pi\)
0.831655 + 0.555292i \(0.187394\pi\)
\(564\) 0 0
\(565\) 11.8370 6.83407i 0.497985 0.287512i
\(566\) −30.5940 −1.28596
\(567\) 0 0
\(568\) 7.99411 0.335425
\(569\) 7.30588 4.21805i 0.306278 0.176830i −0.338982 0.940793i \(-0.610082\pi\)
0.645260 + 0.763963i \(0.276749\pi\)
\(570\) 0 0
\(571\) 17.0208 29.4808i 0.712297 1.23373i −0.251696 0.967806i \(-0.580988\pi\)
0.963993 0.265928i \(-0.0856782\pi\)
\(572\) 26.8003 1.12058
\(573\) 0 0
\(574\) 0 0
\(575\) 2.43516i 0.101553i
\(576\) 0 0
\(577\) −15.6796 + 9.05260i −0.652749 + 0.376865i −0.789509 0.613739i \(-0.789665\pi\)
0.136760 + 0.990604i \(0.456331\pi\)
\(578\) 42.4993i 1.76774i
\(579\) 0 0
\(580\) −41.9292 + 24.2078i −1.74102 + 1.00518i
\(581\) 0 0
\(582\) 0 0
\(583\) −9.05015 15.6753i −0.374819 0.649206i
\(584\) 51.5787 + 89.3370i 2.13434 + 3.69679i
\(585\) 0 0
\(586\) −42.6467 24.6221i −1.76172 1.01713i
\(587\) −4.04900 + 7.01308i −0.167120 + 0.289461i −0.937406 0.348238i \(-0.886780\pi\)
0.770286 + 0.637699i \(0.220113\pi\)
\(588\) 0 0
\(589\) 1.35678 + 2.35001i 0.0559050 + 0.0968304i
\(590\) 25.9360i 1.06777i
\(591\) 0 0
\(592\) 25.0413 1.02919
\(593\) 3.33216 5.77148i 0.136836 0.237006i −0.789462 0.613800i \(-0.789640\pi\)
0.926297 + 0.376794i \(0.122973\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 44.0040 + 25.4057i 1.80247 + 1.04066i
\(597\) 0 0
\(598\) −16.4077 9.47299i −0.670961 0.387380i
\(599\) −3.10562 1.79303i −0.126892 0.0732614i 0.435210 0.900329i \(-0.356674\pi\)
−0.562103 + 0.827068i \(0.690007\pi\)
\(600\) 0 0
\(601\) 4.86949 + 2.81140i 0.198631 + 0.114679i 0.596017 0.802972i \(-0.296749\pi\)
−0.397386 + 0.917652i \(0.630083\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −32.4030 + 56.1237i −1.31846 + 2.28364i
\(605\) −18.8013 −0.764381
\(606\) 0 0
\(607\) 2.23133i 0.0905669i −0.998974 0.0452834i \(-0.985581\pi\)
0.998974 0.0452834i \(-0.0144191\pi\)
\(608\) 2.61795 + 4.53442i 0.106172 + 0.183895i
\(609\) 0 0
\(610\) −6.16672 + 10.6811i −0.249683 + 0.432464i
\(611\) 0.564423 + 0.325870i 0.0228341 + 0.0131833i
\(612\) 0 0
\(613\) 3.41019 + 5.90662i 0.137736 + 0.238566i 0.926639 0.375951i \(-0.122684\pi\)
−0.788903 + 0.614518i \(0.789351\pi\)
\(614\) −3.03567 5.25793i −0.122510 0.212193i
\(615\) 0 0
\(616\) 0 0
\(617\) 2.35139 1.35757i 0.0946632 0.0546538i −0.451921 0.892058i \(-0.649261\pi\)
0.546584 + 0.837404i \(0.315928\pi\)
\(618\) 0 0
\(619\) 26.7759i 1.07621i −0.842876 0.538107i \(-0.819140\pi\)
0.842876 0.538107i \(-0.180860\pi\)
\(620\) −37.7072 + 21.7703i −1.51436 + 0.874316i
\(621\) 0 0
\(622\) 20.2380i 0.811469i
\(623\) 0 0
\(624\) 0 0
\(625\) −26.9970 −1.07988
\(626\) 38.7414 67.1021i 1.54842 2.68194i
\(627\) 0 0
\(628\) 63.4980 36.6606i 2.53385 1.46292i
\(629\) −17.4556 −0.696000
\(630\) 0 0
\(631\) −11.1620 −0.444354 −0.222177 0.975006i \(-0.571316\pi\)
−0.222177 + 0.975006i \(0.571316\pi\)
\(632\) 62.7004 36.2001i 2.49409 1.43996i
\(633\) 0 0
\(634\) −14.3182 + 24.7998i −0.568647 + 0.984926i
\(635\) −38.6417 −1.53345
\(636\) 0 0
\(637\) 0 0
\(638\) 50.2927i 1.99111i
\(639\) 0 0
\(640\) 13.6850 7.90105i 0.540948 0.312317i
\(641\) 44.6004i 1.76161i 0.473480 + 0.880805i \(0.342998\pi\)
−0.473480 + 0.880805i \(0.657002\pi\)
\(642\) 0 0
\(643\) −23.6268 + 13.6410i −0.931751 + 0.537947i −0.887365 0.461068i \(-0.847466\pi\)
−0.0443860 + 0.999014i \(0.514133\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −5.03777 8.72568i −0.198208 0.343307i
\(647\) −22.4675 38.9148i −0.883288 1.52990i −0.847663 0.530534i \(-0.821991\pi\)
−0.0356246 0.999365i \(-0.511342\pi\)
\(648\) 0 0
\(649\) 16.3118 + 9.41760i 0.640293 + 0.369673i
\(650\) −0.745324 + 1.29094i −0.0292340 + 0.0506348i
\(651\) 0 0
\(652\) −15.7200 27.2278i −0.615642 1.06632i
\(653\) 27.7763i 1.08697i 0.839419 + 0.543484i \(0.182895\pi\)
−0.839419 + 0.543484i \(0.817105\pi\)
\(654\) 0 0
\(655\) −16.6026 −0.648715
\(656\) 27.3526 47.3762i 1.06794 1.84973i
\(657\) 0 0
\(658\) 0 0
\(659\) −0.801975 0.463021i −0.0312405 0.0180367i 0.484298 0.874903i \(-0.339075\pi\)
−0.515539 + 0.856866i \(0.672408\pi\)
\(660\) 0 0
\(661\) −28.3028 16.3406i −1.10085 0.635577i −0.164408 0.986392i \(-0.552571\pi\)
−0.936445 + 0.350815i \(0.885905\pi\)
\(662\) 38.5540 + 22.2592i 1.49844 + 0.865126i
\(663\) 0 0
\(664\) −62.9373 36.3369i −2.44244 1.41014i
\(665\) 0 0
\(666\) 0 0
\(667\) 12.4280 21.5260i 0.481215 0.833489i
\(668\) −88.7251 −3.43288
\(669\) 0 0
\(670\) 29.0044i 1.12054i
\(671\) 4.47839 + 7.75681i 0.172886 + 0.299448i
\(672\) 0 0
\(673\) −15.6947 + 27.1840i −0.604987 + 1.04787i 0.387067 + 0.922052i \(0.373488\pi\)
−0.992054 + 0.125816i \(0.959845\pi\)
\(674\) −17.1014 9.87349i −0.658721 0.380313i
\(675\) 0 0
\(676\) 26.1521 + 45.2967i 1.00585 + 1.74218i
\(677\) −10.7882 18.6858i −0.414626 0.718153i 0.580763 0.814072i \(-0.302754\pi\)
−0.995389 + 0.0959196i \(0.969421\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 79.7521 46.0449i 3.05835 1.76574i
\(681\) 0 0
\(682\) 45.2286i 1.73189i
\(683\) −31.4015 + 18.1296i −1.20154 + 0.693711i −0.960898 0.276902i \(-0.910692\pi\)
−0.240645 + 0.970613i \(0.577359\pi\)
\(684\) 0 0
\(685\) 1.92950i 0.0737224i
\(686\) 0 0
\(687\) 0 0
\(688\) −64.6195 −2.46360
\(689\) −2.73798 + 4.74232i −0.104309 + 0.180668i
\(690\) 0 0
\(691\) 6.16389 3.55872i 0.234485 0.135380i −0.378154 0.925743i \(-0.623441\pi\)
0.612640 + 0.790362i \(0.290108\pi\)
\(692\) 101.535 3.85977
\(693\) 0 0
\(694\) −33.9426 −1.28844
\(695\) −28.1540 + 16.2547i −1.06794 + 0.616577i
\(696\) 0 0
\(697\) −19.0667 + 33.0246i −0.722204 + 1.25089i
\(698\) −3.13139 −0.118525
\(699\) 0 0
\(700\) 0 0
\(701\) 29.4609i 1.11272i 0.830940 + 0.556362i \(0.187803\pi\)
−0.830940 + 0.556362i \(0.812197\pi\)
\(702\) 0 0
\(703\) 1.76433 1.01863i 0.0665428 0.0384185i
\(704\) 14.7823i 0.557130i
\(705\) 0 0
\(706\) −59.8894 + 34.5772i −2.25397 + 1.30133i
\(707\) 0 0
\(708\) 0 0
\(709\) 19.0361 + 32.9715i 0.714916 + 1.23827i 0.962992 + 0.269530i \(0.0868683\pi\)
−0.248076 + 0.968740i \(0.579798\pi\)
\(710\) 3.52112 + 6.09875i 0.132145 + 0.228882i
\(711\) 0 0
\(712\) −19.6540 11.3473i −0.736566 0.425257i
\(713\) 11.1766 19.3585i 0.418568 0.724980i
\(714\) 0 0
\(715\) 6.72414 + 11.6466i 0.251469 + 0.435556i
\(716\) 79.8816i 2.98532i
\(717\) 0 0
\(718\) −19.2082 −0.716842
\(719\) 19.1057 33.0921i 0.712523 1.23413i −0.251385 0.967887i \(-0.580886\pi\)
0.963907 0.266238i \(-0.0857807\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −41.4045 23.9049i −1.54091 0.889647i
\(723\) 0 0
\(724\) −66.9924 38.6781i −2.48975 1.43746i
\(725\) −1.69364 0.977823i −0.0629002 0.0363154i
\(726\) 0 0
\(727\) 17.7563 + 10.2516i 0.658546 + 0.380212i 0.791723 0.610881i \(-0.209184\pi\)
−0.133177 + 0.991092i \(0.542518\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −45.4372 + 78.6995i −1.68170 + 2.91280i
\(731\) 45.0444 1.66603
\(732\) 0 0
\(733\) 1.03995i 0.0384116i 0.999816 + 0.0192058i \(0.00611377\pi\)
−0.999816 + 0.0192058i \(0.993886\pi\)
\(734\) −45.1023 78.1194i −1.66475 2.88344i
\(735\) 0 0
\(736\) 21.5657 37.3528i 0.794921 1.37684i
\(737\) −18.2416 10.5318i −0.671938 0.387944i
\(738\) 0 0
\(739\) −12.0805 20.9240i −0.444387 0.769701i 0.553622 0.832768i \(-0.313245\pi\)
−0.998009 + 0.0630670i \(0.979912\pi\)
\(740\) 16.3446 + 28.3096i 0.600839 + 1.04068i
\(741\) 0 0
\(742\) 0 0
\(743\) 13.1637 7.60008i 0.482930 0.278820i −0.238707 0.971092i \(-0.576723\pi\)
0.721637 + 0.692272i \(0.243390\pi\)
\(744\) 0 0
\(745\) 25.4970i 0.934138i
\(746\) −67.2045 + 38.8005i −2.46053 + 1.42059i
\(747\) 0 0
\(748\) 117.406i 4.29281i
\(749\) 0 0
\(750\) 0 0
\(751\) 3.04074 0.110958 0.0554791 0.998460i \(-0.482331\pi\)
0.0554791 + 0.998460i \(0.482331\pi\)
\(752\) −2.04795 + 3.54716i −0.0746812 + 0.129352i
\(753\) 0 0
\(754\) 13.1768 7.60763i 0.479871 0.277053i
\(755\) −32.5195 −1.18350
\(756\) 0 0
\(757\) 43.3700 1.57631 0.788155 0.615477i \(-0.211036\pi\)
0.788155 + 0.615477i \(0.211036\pi\)
\(758\) −60.5075 + 34.9340i −2.19773 + 1.26886i
\(759\) 0 0
\(760\) −5.37397 + 9.30799i −0.194934 + 0.337636i
\(761\) 29.2638 1.06081 0.530406 0.847744i \(-0.322040\pi\)
0.530406 + 0.847744i \(0.322040\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.43367i 0.160405i
\(765\) 0 0
\(766\) 8.17266 4.71849i 0.295290 0.170486i
\(767\) 5.69830i 0.205754i
\(768\) 0 0
\(769\) 29.6496 17.1182i 1.06919 0.617299i 0.141232 0.989977i \(-0.454894\pi\)
0.927961 + 0.372678i \(0.121560\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −3.93702 6.81912i −0.141697 0.245426i
\(773\) −16.9927 29.4322i −0.611185 1.05860i −0.991041 0.133558i \(-0.957360\pi\)
0.379856 0.925046i \(-0.375974\pi\)
\(774\) 0 0
\(775\) −1.52310 0.879363i −0.0547114 0.0315877i
\(776\) −50.2502 + 87.0359i −1.80388 + 3.12441i
\(777\) 0 0
\(778\) 15.6870 + 27.1707i 0.562406 + 0.974117i
\(779\) 4.45062i 0.159460i
\(780\) 0 0
\(781\) 5.11421 0.183001
\(782\) −41.4993 + 71.8788i −1.48401 + 2.57038i
\(783\) 0 0
\(784\) 0 0
\(785\) 31.8631 + 18.3962i 1.13724 + 0.656587i
\(786\) 0 0
\(787\) 23.8225 + 13.7539i 0.849180 + 0.490274i 0.860374 0.509663i \(-0.170230\pi\)
−0.0111939 + 0.999937i \(0.503563\pi\)
\(788\) −51.3067 29.6219i −1.82773 1.05524i
\(789\) 0 0
\(790\) 55.2346 + 31.8897i 1.96516 + 1.13458i
\(791\) 0 0
\(792\) 0 0
\(793\) 1.35487 2.34670i 0.0481128 0.0833338i
\(794\) −69.0288 −2.44974
\(795\) 0 0
\(796\) 20.2523i 0.717824i
\(797\) 21.0873 + 36.5243i 0.746952 + 1.29376i 0.949277 + 0.314440i \(0.101817\pi\)
−0.202326 + 0.979318i \(0.564850\pi\)
\(798\) 0 0
\(799\) 1.42757 2.47262i 0.0505038 0.0874751i
\(800\) −2.93888 1.69676i −0.103905 0.0599896i
\(801\) 0 0
\(802\) −9.96458 17.2592i −0.351861 0.609442i
\(803\) 32.9974 + 57.1531i 1.16445 + 2.01689i
\(804\) 0 0
\(805\) 0 0
\(806\) 11.8500 6.84160i 0.417398 0.240985i
\(807\) 0 0
\(808\) 11.3576i 0.399558i
\(809\) 4.18377 2.41550i 0.147094 0.0849245i −0.424647 0.905359i \(-0.639602\pi\)
0.571740 + 0.820435i \(0.306268\pi\)
\(810\) 0 0
\(811\) 6.46035i 0.226853i −0.993546 0.113427i \(-0.963817\pi\)
0.993546 0.113427i \(-0.0361827\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 33.9565 1.19017
\(815\) 7.88823 13.6628i 0.276313 0.478587i
\(816\) 0 0
\(817\) −4.55287 + 2.62860i −0.159285 + 0.0919631i
\(818\) 23.3597 0.816751
\(819\) 0 0
\(820\) 71.4128 2.49384
\(821\) 14.5455 8.39783i 0.507640 0.293086i −0.224223 0.974538i \(-0.571984\pi\)
0.731863 + 0.681452i \(0.238651\pi\)
\(822\) 0 0
\(823\) 7.51749 13.0207i 0.262043 0.453872i −0.704741 0.709464i \(-0.748937\pi\)
0.966785 + 0.255592i \(0.0822703\pi\)
\(824\) 11.0944 0.386491
\(825\) 0 0
\(826\) 0 0
\(827\) 29.2462i 1.01699i −0.861065 0.508495i \(-0.830202\pi\)
0.861065 0.508495i \(-0.169798\pi\)
\(828\) 0 0
\(829\) 1.30270 0.752115i 0.0452447 0.0261220i −0.477207 0.878791i \(-0.658351\pi\)
0.522452 + 0.852669i \(0.325017\pi\)
\(830\) 64.0204i 2.22218i
\(831\) 0 0
\(832\) 3.87301 2.23608i 0.134272 0.0775222i
\(833\) 0 0
\(834\) 0 0
\(835\) −22.2610 38.5571i −0.770373 1.33432i
\(836\) 6.85135 + 11.8669i 0.236959 + 0.410425i
\(837\) 0 0
\(838\) 14.7572 + 8.52005i 0.509778 + 0.294320i
\(839\) −22.9477 + 39.7466i −0.792243 + 1.37221i 0.132331 + 0.991206i \(0.457754\pi\)
−0.924575 + 0.381000i \(0.875580\pi\)
\(840\) 0 0
\(841\) −4.51923 7.82753i −0.155835 0.269915i
\(842\) 32.9601i 1.13588i
\(843\) 0 0
\(844\) −20.8531 −0.717795
\(845\) −13.1230 + 22.7297i −0.451445 + 0.781926i
\(846\) 0 0
\(847\) 0 0
\(848\) −29.8035 17.2071i −1.02346 0.590893i
\(849\) 0 0
\(850\) 5.65534 + 3.26511i 0.193977 + 0.111992i
\(851\) −14.5338 8.39112i −0.498214 0.287644i
\(852\) 0 0
\(853\) 24.3086 + 14.0346i 0.832310 + 0.480534i 0.854643 0.519216i \(-0.173776\pi\)
−0.0223330 + 0.999751i \(0.507109\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 62.4905 108.237i 2.13588 3.69946i
\(857\) 17.1085 0.584416 0.292208 0.956355i \(-0.405610\pi\)
0.292208 + 0.956355i \(0.405610\pi\)
\(858\) 0 0
\(859\) 5.20765i 0.177683i −0.996046 0.0888414i \(-0.971684\pi\)
0.996046 0.0888414i \(-0.0283164\pi\)
\(860\) −42.1775 73.0535i −1.43824 2.49110i
\(861\) 0 0
\(862\) 28.2456 48.9228i 0.962049 1.66632i
\(863\) 38.7134 + 22.3512i 1.31782 + 0.760844i 0.983378 0.181573i \(-0.0581187\pi\)
0.334442 + 0.942416i \(0.391452\pi\)
\(864\) 0 0
\(865\) 25.4749 + 44.1238i 0.866172 + 1.50025i
\(866\) −10.5858 18.3352i −0.359721 0.623055i
\(867\) 0 0
\(868\) 0 0
\(869\) 40.1124 23.1589i 1.36072 0.785613i
\(870\) 0 0
\(871\) 6.37246i 0.215922i
\(872\) 94.4096 54.5074i 3.19711 1.84585i
\(873\) 0 0
\(874\) 9.68688i 0.327664i
\(875\) 0 0
\(876\) 0 0
\(877\) −5.74863 −0.194117 −0.0970587 0.995279i \(-0.530943\pi\)
−0.0970587 + 0.995279i \(0.530943\pi\)
\(878\) −48.8229 + 84.5637i −1.64769 + 2.85389i
\(879\) 0 0
\(880\) −73.1936 + 42.2584i −2.46736 + 1.42453i
\(881\) 9.98120 0.336275 0.168138 0.985764i \(-0.446225\pi\)
0.168138 + 0.985764i \(0.446225\pi\)
\(882\) 0 0
\(883\) −32.0942 −1.08006 −0.540028 0.841647i \(-0.681586\pi\)
−0.540028 + 0.841647i \(0.681586\pi\)
\(884\) −30.7608 + 17.7597i −1.03460 + 0.597325i
\(885\) 0 0
\(886\) 26.3781 45.6881i 0.886188 1.53492i
\(887\) −8.53623 −0.286619 −0.143309 0.989678i \(-0.545774\pi\)
−0.143309 + 0.989678i \(0.545774\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 19.9922i 0.670141i
\(891\) 0 0
\(892\) 83.6498 48.2952i 2.80080 1.61704i
\(893\) 0.333228i 0.0111510i
\(894\) 0 0
\(895\) 34.7140 20.0422i 1.16036 0.669935i
\(896\) 0 0
\(897\) 0 0
\(898\) 46.0277 + 79.7223i 1.53596 + 2.66037i
\(899\) 8.97579 + 15.5465i 0.299359 + 0.518505i
\(900\) 0 0
\(901\) 20.7752 + 11.9945i 0.692121 + 0.399596i
\(902\) 37.0906 64.2429i 1.23498 2.13905i
\(903\) 0 0
\(904\) −20.0011 34.6430i −0.665228 1.15221i
\(905\) 38.8171i 1.29032i
\(906\) 0 0
\(907\) 32.0544 1.06435 0.532175 0.846634i \(-0.321375\pi\)
0.532175 + 0.846634i \(0.321375\pi\)
\(908\) 65.7932 113.957i 2.18342 3.78180i
\(909\) 0 0
\(910\) 0 0
\(911\) −26.3261 15.1994i −0.872221 0.503577i −0.00413539 0.999991i \(-0.501316\pi\)
−0.868086 + 0.496414i \(0.834650\pi\)
\(912\) 0 0
\(913\) −40.2640 23.2464i −1.33254 0.769344i
\(914\) 0.567527 + 0.327662i 0.0187721 + 0.0108381i
\(915\) 0 0
\(916\) 87.6765 + 50.6201i 2.89691 + 1.67253i
\(917\) 0 0
\(918\) 0 0
\(919\) 8.72153 15.1061i 0.287697 0.498305i −0.685563 0.728013i \(-0.740444\pi\)
0.973260 + 0.229708i \(0.0737772\pi\)
\(920\) 88.5374 2.91899
\(921\) 0 0
\(922\) 62.9981i 2.07473i
\(923\) −0.773612 1.33994i −0.0254637 0.0441045i
\(924\) 0 0
\(925\) −0.660203 + 1.14351i −0.0217074 + 0.0375982i
\(926\) 1.83082 + 1.05702i 0.0601644 + 0.0347359i
\(927\) 0 0
\(928\) 17.3191 + 29.9975i 0.568527 + 0.984717i
\(929\) 5.21392 + 9.03077i 0.171063 + 0.296290i 0.938792 0.344485i \(-0.111946\pi\)
−0.767729 + 0.640775i \(0.778613\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −61.3070 + 35.3956i −2.00818 + 1.15942i
\(933\) 0 0
\(934\) 4.69038i 0.153474i
\(935\) 51.0212 29.4571i 1.66857 0.963350i
\(936\) 0 0
\(937\) 51.3201i 1.67655i 0.545245 + 0.838277i \(0.316437\pi\)
−0.545245 + 0.838277i \(0.683563\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −5.34683 −0.174395
\(941\) 24.6673 42.7251i 0.804133 1.39280i −0.112742 0.993624i \(-0.535963\pi\)
0.916875 0.399174i \(-0.130703\pi\)
\(942\) 0 0
\(943\) −31.7506 + 18.3312i −1.03394 + 0.596947i
\(944\) 35.8114 1.16556
\(945\) 0 0
\(946\) −87.6252 −2.84894
\(947\) −38.0468 + 21.9663i −1.23636 + 0.713810i −0.968347 0.249607i \(-0.919699\pi\)
−0.268008 + 0.963417i \(0.586365\pi\)
\(948\) 0 0
\(949\) 9.98283 17.2908i 0.324056 0.561282i
\(950\) −0.762153 −0.0247275
\(951\) 0 0
\(952\) 0 0
\(953\) 21.0833i 0.682956i −0.939890 0.341478i \(-0.889072\pi\)
0.939890 0.341478i \(-0.110928\pi\)
\(954\) 0 0
\(955\) 1.92673 1.11240i 0.0623477 0.0359964i
\(956\) 26.5684i 0.859283i
\(957\) 0 0
\(958\) −3.04138 + 1.75594i −0.0982625 + 0.0567319i
\(959\) 0 0
\(960\) 0 0
\(961\) −7.42801 12.8657i −0.239613 0.415022i
\(962\) −5.13650 8.89667i −0.165607 0.286840i
\(963\) 0 0
\(964\) 17.9941 + 10.3889i 0.579550 + 0.334603i
\(965\) 1.97558 3.42181i 0.0635963 0.110152i
\(966\) 0 0
\(967\) −27.6671 47.9209i −0.889716 1.54103i −0.840212 0.542259i \(-0.817569\pi\)
−0.0495039 0.998774i \(-0.515764\pi\)
\(968\) 55.0253i 1.76858i
\(969\) 0 0
\(970\) −88.5336 −2.84264
\(971\) 3.41733 5.91898i 0.109667 0.189949i −0.805968 0.591959i \(-0.798355\pi\)
0.915635 + 0.402010i \(0.131688\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −70.5830 40.7511i −2.26162 1.30575i
\(975\) 0 0
\(976\) 14.7480 + 8.51477i 0.472072 + 0.272551i
\(977\) 31.1982 + 18.0123i 0.998118 + 0.576264i 0.907691 0.419639i \(-0.137843\pi\)
0.0904272 + 0.995903i \(0.471177\pi\)
\(978\) 0 0
\(979\) −12.5736 7.25938i −0.401854 0.232011i
\(980\) 0 0
\(981\) 0 0
\(982\) 2.93856 5.08973i 0.0937731 0.162420i
\(983\) 41.3726 1.31958 0.659791 0.751449i \(-0.270645\pi\)
0.659791 + 0.751449i \(0.270645\pi\)
\(984\) 0 0
\(985\) 29.7284i 0.947225i
\(986\) −33.3275 57.7249i −1.06136 1.83833i
\(987\) 0 0
\(988\) 2.07277 3.59014i 0.0659435 0.114218i
\(989\) 37.5048 + 21.6534i 1.19258 + 0.688539i
\(990\) 0 0
\(991\) 10.8367 + 18.7697i 0.344239 + 0.596240i 0.985215 0.171321i \(-0.0548036\pi\)
−0.640976 + 0.767561i \(0.721470\pi\)
\(992\) 15.5752 + 26.9770i 0.494512 + 0.856520i
\(993\) 0 0
\(994\) 0 0
\(995\) −8.80102 + 5.08127i −0.279011 + 0.161087i
\(996\) 0 0
\(997\) 13.7062i 0.434078i 0.976163 + 0.217039i \(0.0696399\pi\)
−0.976163 + 0.217039i \(0.930360\pi\)
\(998\) 60.3721 34.8559i 1.91105 1.10334i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.s.d.656.23 48
3.2 odd 2 441.2.s.d.362.2 48
7.2 even 3 1323.2.o.e.440.2 48
7.3 odd 6 1323.2.i.d.521.14 48
7.4 even 3 1323.2.i.d.521.2 48
7.5 odd 6 1323.2.o.e.440.1 48
7.6 odd 2 inner 1323.2.s.d.656.24 48
9.4 even 3 441.2.i.d.68.23 48
9.5 odd 6 1323.2.i.d.1097.14 48
21.2 odd 6 441.2.o.e.146.23 48
21.5 even 6 441.2.o.e.146.24 yes 48
21.11 odd 6 441.2.i.d.227.2 48
21.17 even 6 441.2.i.d.227.1 48
21.20 even 2 441.2.s.d.362.1 48
63.4 even 3 441.2.s.d.374.1 48
63.5 even 6 1323.2.o.e.881.2 48
63.13 odd 6 441.2.i.d.68.24 48
63.23 odd 6 1323.2.o.e.881.1 48
63.31 odd 6 441.2.s.d.374.2 48
63.32 odd 6 inner 1323.2.s.d.962.24 48
63.40 odd 6 441.2.o.e.293.23 yes 48
63.41 even 6 1323.2.i.d.1097.2 48
63.58 even 3 441.2.o.e.293.24 yes 48
63.59 even 6 inner 1323.2.s.d.962.23 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.23 48 9.4 even 3
441.2.i.d.68.24 48 63.13 odd 6
441.2.i.d.227.1 48 21.17 even 6
441.2.i.d.227.2 48 21.11 odd 6
441.2.o.e.146.23 48 21.2 odd 6
441.2.o.e.146.24 yes 48 21.5 even 6
441.2.o.e.293.23 yes 48 63.40 odd 6
441.2.o.e.293.24 yes 48 63.58 even 3
441.2.s.d.362.1 48 21.20 even 2
441.2.s.d.362.2 48 3.2 odd 2
441.2.s.d.374.1 48 63.4 even 3
441.2.s.d.374.2 48 63.31 odd 6
1323.2.i.d.521.2 48 7.4 even 3
1323.2.i.d.521.14 48 7.3 odd 6
1323.2.i.d.1097.2 48 63.41 even 6
1323.2.i.d.1097.14 48 9.5 odd 6
1323.2.o.e.440.1 48 7.5 odd 6
1323.2.o.e.440.2 48 7.2 even 3
1323.2.o.e.881.1 48 63.23 odd 6
1323.2.o.e.881.2 48 63.5 even 6
1323.2.s.d.656.23 48 1.1 even 1 trivial
1323.2.s.d.656.24 48 7.6 odd 2 inner
1323.2.s.d.962.23 48 63.59 even 6 inner
1323.2.s.d.962.24 48 63.32 odd 6 inner