Properties

Label 441.2.o.e.293.24
Level $441$
Weight $2$
Character 441.293
Analytic conductor $3.521$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(146,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.146"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 293.24
Character \(\chi\) \(=\) 441.293
Dual form 441.2.o.e.146.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.23278 - 1.28910i) q^{2} +(1.71146 - 0.266270i) q^{3} +(2.32354 - 4.02449i) q^{4} +(-1.16595 + 2.01948i) q^{5} +(3.47807 - 2.80076i) q^{6} -6.82470i q^{8} +(2.85820 - 0.911422i) q^{9} +6.01207i q^{10} +(-3.78114 + 2.18304i) q^{11} +(2.90505 - 7.50646i) q^{12} +(1.14392 + 0.660445i) q^{13} +(-1.45774 + 3.76671i) q^{15} +(-4.15061 - 7.18908i) q^{16} -5.78655 q^{17} +(5.20683 - 5.71950i) q^{18} +0.675357i q^{19} +(5.41825 + 9.38468i) q^{20} +(-5.62830 + 9.74851i) q^{22} +(-4.81799 - 2.78167i) q^{23} +(-1.81721 - 11.6802i) q^{24} +(-0.218858 - 0.379074i) q^{25} +3.40551 q^{26} +(4.64902 - 2.32092i) q^{27} +(3.86926 - 2.23392i) q^{29} +(1.60083 + 10.2894i) q^{30} +(-3.47965 - 2.00898i) q^{31} +(-6.71411 - 3.87639i) q^{32} +(-5.88999 + 4.74299i) q^{33} +(-12.9201 + 7.45942i) q^{34} +(2.97314 - 13.6205i) q^{36} +3.01658 q^{37} +(0.870601 + 1.50792i) q^{38} +(2.13364 + 0.825733i) q^{39} +(13.7823 + 7.95723i) q^{40} +(3.29501 - 5.70713i) q^{41} +(3.89217 + 6.74143i) q^{43} +20.2896i q^{44} +(-1.49191 + 6.83474i) q^{45} -14.3434 q^{46} +(-0.246705 - 0.427306i) q^{47} +(-9.01785 - 11.1986i) q^{48} +(-0.977326 - 0.564259i) q^{50} +(-9.90345 + 1.54078i) q^{51} +(5.31591 - 3.06914i) q^{52} +4.14566i q^{53} +(7.38835 - 11.1751i) q^{54} -10.1812i q^{55} +(0.179827 + 1.15585i) q^{57} +(5.75947 - 9.97570i) q^{58} +(-2.15699 + 3.73602i) q^{59} +(11.7720 + 14.6188i) q^{60} +(-1.77661 + 1.02572i) q^{61} -10.3591 q^{62} -3.38572 q^{64} +(-2.66751 + 1.54009i) q^{65} +(-7.03689 + 18.1828i) q^{66} +(2.41218 - 4.17802i) q^{67} +(-13.4453 + 23.2879i) q^{68} +(-8.98648 - 3.47783i) q^{69} +1.17135i q^{71} +(-6.22018 - 19.5064i) q^{72} -15.1153i q^{73} +(6.73536 - 3.88866i) q^{74} +(-0.475504 - 0.590495i) q^{75} +(2.71797 + 1.56922i) q^{76} +(5.82840 - 0.906785i) q^{78} +(5.30428 + 9.18728i) q^{79} +19.3576 q^{80} +(7.33862 - 5.21005i) q^{81} -16.9904i q^{82} +(5.32432 + 9.22199i) q^{83} +(6.74680 - 11.6858i) q^{85} +(17.3807 + 10.0348i) q^{86} +(6.02726 - 4.85353i) q^{87} +(14.8986 + 25.8051i) q^{88} -3.32535 q^{89} +(5.47953 + 17.1837i) q^{90} +(-22.3896 + 12.9266i) q^{92} +(-6.49022 - 2.51176i) q^{93} +(-1.10168 - 0.636053i) q^{94} +(-1.36387 - 0.787429i) q^{95} +(-12.5231 - 4.84653i) q^{96} +(12.7531 - 7.36299i) q^{97} +(-8.81758 + 9.68578i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 24 q^{4} + 16 q^{9} - 24 q^{11} - 40 q^{15} - 24 q^{16} - 16 q^{18} - 48 q^{23} - 24 q^{25} - 24 q^{30} + 120 q^{32} - 8 q^{36} + 88 q^{39} + 48 q^{50} + 24 q^{51} + 80 q^{57} - 96 q^{60} - 48 q^{64}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23278 1.28910i 1.57882 0.911529i 0.583790 0.811905i \(-0.301569\pi\)
0.995025 0.0996245i \(-0.0317642\pi\)
\(3\) 1.71146 0.266270i 0.988113 0.153731i
\(4\) 2.32354 4.02449i 1.16177 2.01225i
\(5\) −1.16595 + 2.01948i −0.521427 + 0.903138i 0.478263 + 0.878217i \(0.341267\pi\)
−0.999689 + 0.0249208i \(0.992067\pi\)
\(6\) 3.47807 2.80076i 1.41992 1.14341i
\(7\) 0 0
\(8\) 6.82470i 2.41290i
\(9\) 2.85820 0.911422i 0.952734 0.303807i
\(10\) 6.01207i 1.90118i
\(11\) −3.78114 + 2.18304i −1.14006 + 0.658212i −0.946444 0.322867i \(-0.895353\pi\)
−0.193612 + 0.981078i \(0.562020\pi\)
\(12\) 2.90505 7.50646i 0.838616 2.16693i
\(13\) 1.14392 + 0.660445i 0.317267 + 0.183174i 0.650174 0.759785i \(-0.274696\pi\)
−0.332906 + 0.942960i \(0.608029\pi\)
\(14\) 0 0
\(15\) −1.45774 + 3.76671i −0.376388 + 0.972561i
\(16\) −4.15061 7.18908i −1.03765 1.79727i
\(17\) −5.78655 −1.40344 −0.701722 0.712451i \(-0.747585\pi\)
−0.701722 + 0.712451i \(0.747585\pi\)
\(18\) 5.20683 5.71950i 1.22726 1.34810i
\(19\) 0.675357i 0.154937i 0.996995 + 0.0774687i \(0.0246838\pi\)
−0.996995 + 0.0774687i \(0.975316\pi\)
\(20\) 5.41825 + 9.38468i 1.21156 + 2.09848i
\(21\) 0 0
\(22\) −5.62830 + 9.74851i −1.19996 + 2.07839i
\(23\) −4.81799 2.78167i −1.00462 0.580018i −0.0950080 0.995477i \(-0.530288\pi\)
−0.909612 + 0.415459i \(0.863621\pi\)
\(24\) −1.81721 11.6802i −0.370937 2.38421i
\(25\) −0.218858 0.379074i −0.0437717 0.0758147i
\(26\) 3.40551 0.667875
\(27\) 4.64902 2.32092i 0.894704 0.446661i
\(28\) 0 0
\(29\) 3.86926 2.23392i 0.718503 0.414828i −0.0956983 0.995410i \(-0.530508\pi\)
0.814202 + 0.580582i \(0.197175\pi\)
\(30\) 1.60083 + 10.2894i 0.292271 + 1.87858i
\(31\) −3.47965 2.00898i −0.624964 0.360823i 0.153835 0.988097i \(-0.450838\pi\)
−0.778799 + 0.627273i \(0.784171\pi\)
\(32\) −6.71411 3.87639i −1.18690 0.685256i
\(33\) −5.88999 + 4.74299i −1.02532 + 0.825649i
\(34\) −12.9201 + 7.45942i −2.21578 + 1.27928i
\(35\) 0 0
\(36\) 2.97314 13.6205i 0.495523 2.27009i
\(37\) 3.01658 0.495923 0.247961 0.968770i \(-0.420239\pi\)
0.247961 + 0.968770i \(0.420239\pi\)
\(38\) 0.870601 + 1.50792i 0.141230 + 0.244618i
\(39\) 2.13364 + 0.825733i 0.341656 + 0.132223i
\(40\) 13.7823 + 7.95723i 2.17918 + 1.25815i
\(41\) 3.29501 5.70713i 0.514594 0.891303i −0.485262 0.874369i \(-0.661276\pi\)
0.999857 0.0169348i \(-0.00539076\pi\)
\(42\) 0 0
\(43\) 3.89217 + 6.74143i 0.593550 + 1.02806i 0.993750 + 0.111631i \(0.0356074\pi\)
−0.400200 + 0.916428i \(0.631059\pi\)
\(44\) 20.2896i 3.05877i
\(45\) −1.49191 + 6.83474i −0.222401 + 1.01886i
\(46\) −14.3434 −2.11481
\(47\) −0.246705 0.427306i −0.0359856 0.0623289i 0.847472 0.530841i \(-0.178124\pi\)
−0.883457 + 0.468512i \(0.844790\pi\)
\(48\) −9.01785 11.1986i −1.30161 1.61638i
\(49\) 0 0
\(50\) −0.977326 0.564259i −0.138215 0.0797983i
\(51\) −9.90345 + 1.54078i −1.38676 + 0.215753i
\(52\) 5.31591 3.06914i 0.737184 0.425614i
\(53\) 4.14566i 0.569451i 0.958609 + 0.284725i \(0.0919024\pi\)
−0.958609 + 0.284725i \(0.908098\pi\)
\(54\) 7.38835 11.1751i 1.00543 1.52074i
\(55\) 10.1812i 1.37284i
\(56\) 0 0
\(57\) 0.179827 + 1.15585i 0.0238187 + 0.153096i
\(58\) 5.75947 9.97570i 0.756256 1.30987i
\(59\) −2.15699 + 3.73602i −0.280816 + 0.486388i −0.971586 0.236687i \(-0.923939\pi\)
0.690770 + 0.723075i \(0.257272\pi\)
\(60\) 11.7720 + 14.6188i 1.51976 + 1.88728i
\(61\) −1.77661 + 1.02572i −0.227471 + 0.131330i −0.609405 0.792859i \(-0.708592\pi\)
0.381934 + 0.924190i \(0.375258\pi\)
\(62\) −10.3591 −1.31560
\(63\) 0 0
\(64\) −3.38572 −0.423215
\(65\) −2.66751 + 1.54009i −0.330863 + 0.191024i
\(66\) −7.03689 + 18.1828i −0.866181 + 2.23815i
\(67\) 2.41218 4.17802i 0.294695 0.510427i −0.680219 0.733009i \(-0.738115\pi\)
0.974914 + 0.222582i \(0.0714486\pi\)
\(68\) −13.4453 + 23.2879i −1.63048 + 2.82408i
\(69\) −8.98648 3.47783i −1.08184 0.418681i
\(70\) 0 0
\(71\) 1.17135i 0.139014i 0.997581 + 0.0695068i \(0.0221426\pi\)
−0.997581 + 0.0695068i \(0.977857\pi\)
\(72\) −6.22018 19.5064i −0.733055 2.29885i
\(73\) 15.1153i 1.76911i −0.466432 0.884557i \(-0.654461\pi\)
0.466432 0.884557i \(-0.345539\pi\)
\(74\) 6.73536 3.88866i 0.782970 0.452048i
\(75\) −0.475504 0.590495i −0.0549064 0.0681844i
\(76\) 2.71797 + 1.56922i 0.311772 + 0.180002i
\(77\) 0 0
\(78\) 5.82840 0.906785i 0.659936 0.102673i
\(79\) 5.30428 + 9.18728i 0.596778 + 1.03365i 0.993293 + 0.115622i \(0.0368861\pi\)
−0.396515 + 0.918028i \(0.629781\pi\)
\(80\) 19.3576 2.16424
\(81\) 7.33862 5.21005i 0.815402 0.578895i
\(82\) 16.9904i 1.87627i
\(83\) 5.32432 + 9.22199i 0.584420 + 1.01225i 0.994947 + 0.100397i \(0.0320113\pi\)
−0.410527 + 0.911848i \(0.634655\pi\)
\(84\) 0 0
\(85\) 6.74680 11.6858i 0.731793 1.26750i
\(86\) 17.3807 + 10.0348i 1.87421 + 1.08208i
\(87\) 6.02726 4.85353i 0.646190 0.520353i
\(88\) 14.8986 + 25.8051i 1.58820 + 2.75084i
\(89\) −3.32535 −0.352486 −0.176243 0.984347i \(-0.556395\pi\)
−0.176243 + 0.984347i \(0.556395\pi\)
\(90\) 5.47953 + 17.1837i 0.577593 + 1.81132i
\(91\) 0 0
\(92\) −22.3896 + 12.9266i −2.33428 + 1.34770i
\(93\) −6.49022 2.51176i −0.673005 0.260458i
\(94\) −1.10168 0.636053i −0.113629 0.0656039i
\(95\) −1.36387 0.787429i −0.139930 0.0807886i
\(96\) −12.5231 4.84653i −1.27813 0.494647i
\(97\) 12.7531 7.36299i 1.29488 0.747598i 0.315363 0.948971i \(-0.397874\pi\)
0.979515 + 0.201373i \(0.0645403\pi\)
\(98\) 0 0
\(99\) −8.81758 + 9.68578i −0.886200 + 0.973458i
\(100\) −2.03411 −0.203411
\(101\) 0.832092 + 1.44123i 0.0827963 + 0.143407i 0.904450 0.426580i \(-0.140282\pi\)
−0.821654 + 0.569987i \(0.806948\pi\)
\(102\) −20.1260 + 16.2067i −1.99277 + 1.60471i
\(103\) −1.40783 0.812812i −0.138718 0.0800887i 0.429035 0.903288i \(-0.358854\pi\)
−0.567753 + 0.823199i \(0.692187\pi\)
\(104\) 4.50734 7.80694i 0.441981 0.765533i
\(105\) 0 0
\(106\) 5.34416 + 9.25636i 0.519071 + 0.899057i
\(107\) 18.3130i 1.77039i −0.465221 0.885194i \(-0.654025\pi\)
0.465221 0.885194i \(-0.345975\pi\)
\(108\) 1.46167 24.1027i 0.140650 2.31928i
\(109\) −15.9736 −1.52999 −0.764995 0.644036i \(-0.777259\pi\)
−0.764995 + 0.644036i \(0.777259\pi\)
\(110\) −13.1246 22.7325i −1.25138 2.16746i
\(111\) 5.16276 0.803225i 0.490027 0.0762387i
\(112\) 0 0
\(113\) −5.07612 2.93070i −0.477521 0.275697i 0.241862 0.970311i \(-0.422242\pi\)
−0.719383 + 0.694614i \(0.755575\pi\)
\(114\) 1.89151 + 2.34894i 0.177157 + 0.219998i
\(115\) 11.2350 6.48654i 1.04767 0.604873i
\(116\) 20.7624i 1.92774i
\(117\) 3.87151 + 0.845087i 0.357921 + 0.0781283i
\(118\) 11.1223i 1.02389i
\(119\) 0 0
\(120\) 25.7067 + 9.94867i 2.34669 + 0.908185i
\(121\) 4.03134 6.98248i 0.366485 0.634771i
\(122\) −2.64451 + 4.58043i −0.239423 + 0.414693i
\(123\) 4.11965 10.6449i 0.371456 0.959817i
\(124\) −16.1702 + 9.33589i −1.45213 + 0.838388i
\(125\) −10.6387 −0.951559
\(126\) 0 0
\(127\) −16.5710 −1.47044 −0.735218 0.677831i \(-0.762920\pi\)
−0.735218 + 0.677831i \(0.762920\pi\)
\(128\) 5.86864 3.38826i 0.518719 0.299483i
\(129\) 8.45633 + 10.5013i 0.744539 + 0.924591i
\(130\) −3.97064 + 6.87735i −0.348248 + 0.603183i
\(131\) 3.55989 6.16591i 0.311029 0.538718i −0.667556 0.744559i \(-0.732660\pi\)
0.978585 + 0.205841i \(0.0659930\pi\)
\(132\) 5.40250 + 34.7248i 0.470227 + 3.02241i
\(133\) 0 0
\(134\) 12.4382i 1.07449i
\(135\) −0.733463 + 12.0946i −0.0631264 + 1.04094i
\(136\) 39.4914i 3.38636i
\(137\) −0.716584 + 0.413720i −0.0612219 + 0.0353465i −0.530298 0.847811i \(-0.677920\pi\)
0.469077 + 0.883157i \(0.344587\pi\)
\(138\) −24.5481 + 3.81920i −2.08967 + 0.325112i
\(139\) 12.0735 + 6.97062i 1.02406 + 0.591241i 0.915277 0.402825i \(-0.131972\pi\)
0.108782 + 0.994066i \(0.465305\pi\)
\(140\) 0 0
\(141\) −0.536005 0.665627i −0.0451397 0.0560559i
\(142\) 1.50998 + 2.61537i 0.126715 + 0.219477i
\(143\) −5.76711 −0.482270
\(144\) −18.4156 16.7649i −1.53463 1.39707i
\(145\) 10.4185i 0.865210i
\(146\) −19.4851 33.7492i −1.61260 2.79310i
\(147\) 0 0
\(148\) 7.00915 12.1402i 0.576149 0.997919i
\(149\) −9.46916 5.46702i −0.775744 0.447876i 0.0591761 0.998248i \(-0.481153\pi\)
−0.834920 + 0.550372i \(0.814486\pi\)
\(150\) −1.82290 0.705475i −0.148839 0.0576018i
\(151\) 6.97277 + 12.0772i 0.567436 + 0.982828i 0.996818 + 0.0797050i \(0.0253978\pi\)
−0.429383 + 0.903123i \(0.641269\pi\)
\(152\) 4.60911 0.373848
\(153\) −16.5391 + 5.27399i −1.33711 + 0.426376i
\(154\) 0 0
\(155\) 8.11417 4.68472i 0.651746 0.376286i
\(156\) 8.28076 6.66819i 0.662991 0.533882i
\(157\) 13.6641 + 7.88894i 1.09051 + 0.629606i 0.933712 0.358024i \(-0.116550\pi\)
0.156798 + 0.987631i \(0.449883\pi\)
\(158\) 23.6866 + 13.6755i 1.88440 + 1.08796i
\(159\) 1.10387 + 7.09514i 0.0875423 + 0.562681i
\(160\) 15.6566 9.03932i 1.23776 0.714621i
\(161\) 0 0
\(162\) 9.66928 21.0931i 0.759690 1.65723i
\(163\) −6.76552 −0.529916 −0.264958 0.964260i \(-0.585358\pi\)
−0.264958 + 0.964260i \(0.585358\pi\)
\(164\) −15.3122 26.5215i −1.19568 2.07098i
\(165\) −2.71096 17.4248i −0.211048 1.35652i
\(166\) 23.7761 + 13.7271i 1.84538 + 1.06543i
\(167\) −9.54631 + 16.5347i −0.738716 + 1.27949i 0.214358 + 0.976755i \(0.431234\pi\)
−0.953074 + 0.302738i \(0.902099\pi\)
\(168\) 0 0
\(169\) −5.62763 9.74733i −0.432894 0.749795i
\(170\) 34.7891i 2.66820i
\(171\) 0.615535 + 1.93031i 0.0470711 + 0.147614i
\(172\) 36.1745 2.75828
\(173\) 10.9246 + 18.9219i 0.830579 + 1.43860i 0.897580 + 0.440851i \(0.145323\pi\)
−0.0670016 + 0.997753i \(0.521343\pi\)
\(174\) 7.20089 18.6066i 0.545898 1.41056i
\(175\) 0 0
\(176\) 31.3881 + 18.1219i 2.36597 + 1.36599i
\(177\) −2.69682 + 6.96840i −0.202705 + 0.523777i
\(178\) −7.42478 + 4.28670i −0.556511 + 0.321302i
\(179\) 17.1896i 1.28481i 0.766364 + 0.642406i \(0.222064\pi\)
−0.766364 + 0.642406i \(0.777936\pi\)
\(180\) 24.0398 + 21.8850i 1.79182 + 1.63121i
\(181\) 16.6462i 1.23730i −0.785666 0.618650i \(-0.787680\pi\)
0.785666 0.618650i \(-0.212320\pi\)
\(182\) 0 0
\(183\) −2.76747 + 2.22854i −0.204577 + 0.164739i
\(184\) −18.9840 + 32.8813i −1.39952 + 2.42404i
\(185\) −3.51717 + 6.09191i −0.258587 + 0.447886i
\(186\) −17.7292 + 2.75831i −1.29996 + 0.202249i
\(187\) 21.8797 12.6323i 1.60000 0.923763i
\(188\) −2.29292 −0.167228
\(189\) 0 0
\(190\) −4.06029 −0.294565
\(191\) 0.826254 0.477038i 0.0597857 0.0345173i −0.469809 0.882768i \(-0.655677\pi\)
0.529595 + 0.848251i \(0.322344\pi\)
\(192\) −5.79453 + 0.901516i −0.418184 + 0.0650613i
\(193\) 0.847203 1.46740i 0.0609830 0.105626i −0.833922 0.551882i \(-0.813910\pi\)
0.894905 + 0.446257i \(0.147243\pi\)
\(194\) 18.9832 32.8799i 1.36292 2.36064i
\(195\) −4.15526 + 3.34607i −0.297564 + 0.239617i
\(196\) 0 0
\(197\) 12.7486i 0.908301i −0.890925 0.454150i \(-0.849943\pi\)
0.890925 0.454150i \(-0.150057\pi\)
\(198\) −7.20182 + 32.9929i −0.511811 + 2.34471i
\(199\) 4.35807i 0.308935i −0.987998 0.154468i \(-0.950634\pi\)
0.987998 0.154468i \(-0.0493662\pi\)
\(200\) −2.58706 + 1.49364i −0.182933 + 0.105616i
\(201\) 3.01588 7.79282i 0.212724 0.549663i
\(202\) 3.71576 + 2.14530i 0.261440 + 0.150942i
\(203\) 0 0
\(204\) −16.8102 + 43.4365i −1.17695 + 3.04116i
\(205\) 7.68361 + 13.3084i 0.536646 + 0.929499i
\(206\) −4.19117 −0.292013
\(207\) −16.3060 3.55934i −1.13335 0.247391i
\(208\) 10.9650i 0.760287i
\(209\) −1.47433 2.55362i −0.101982 0.176637i
\(210\) 0 0
\(211\) −2.24368 + 3.88617i −0.154461 + 0.267535i −0.932863 0.360232i \(-0.882698\pi\)
0.778401 + 0.627767i \(0.216031\pi\)
\(212\) 16.6842 + 9.63263i 1.14588 + 0.661571i
\(213\) 0.311895 + 2.00472i 0.0213707 + 0.137361i
\(214\) −23.6073 40.8890i −1.61376 2.79512i
\(215\) −18.1522 −1.23797
\(216\) −15.8396 31.7281i −1.07775 2.15883i
\(217\) 0 0
\(218\) −35.6655 + 20.5915i −2.41557 + 1.39463i
\(219\) −4.02476 25.8693i −0.271968 1.74808i
\(220\) −40.9743 23.6565i −2.76249 1.59492i
\(221\) −6.61937 3.82170i −0.445267 0.257075i
\(222\) 10.4919 8.44872i 0.704169 0.567041i
\(223\) −18.0005 + 10.3926i −1.20540 + 0.695939i −0.961751 0.273924i \(-0.911678\pi\)
−0.243650 + 0.969863i \(0.578345\pi\)
\(224\) 0 0
\(225\) −0.971037 0.883997i −0.0647358 0.0589331i
\(226\) −15.1118 −1.00522
\(227\) −14.1579 24.5223i −0.939696 1.62760i −0.766039 0.642795i \(-0.777775\pi\)
−0.173657 0.984806i \(-0.555558\pi\)
\(228\) 5.06954 + 1.96195i 0.335738 + 0.129933i
\(229\) −18.8670 10.8929i −1.24677 0.719821i −0.276303 0.961071i \(-0.589109\pi\)
−0.970463 + 0.241250i \(0.922443\pi\)
\(230\) 16.7236 28.9661i 1.10272 1.90997i
\(231\) 0 0
\(232\) −15.2458 26.4065i −1.00094 1.73367i
\(233\) 15.2335i 0.997978i 0.866608 + 0.498989i \(0.166295\pi\)
−0.866608 + 0.498989i \(0.833705\pi\)
\(234\) 9.73363 3.10386i 0.636307 0.202905i
\(235\) 1.15058 0.0750554
\(236\) 10.0237 + 17.3616i 0.652489 + 1.13014i
\(237\) 11.5244 + 14.3113i 0.748588 + 0.929619i
\(238\) 0 0
\(239\) −4.95125 2.85861i −0.320270 0.184908i 0.331243 0.943545i \(-0.392532\pi\)
−0.651513 + 0.758638i \(0.725865\pi\)
\(240\) 33.1297 5.15434i 2.13851 0.332711i
\(241\) 3.87212 2.23557i 0.249425 0.144006i −0.370076 0.929002i \(-0.620668\pi\)
0.619501 + 0.784996i \(0.287335\pi\)
\(242\) 20.7871i 1.33625i
\(243\) 11.1725 10.8709i 0.716715 0.697366i
\(244\) 9.53325i 0.610304i
\(245\) 0 0
\(246\) −4.52402 29.0783i −0.288441 1.85397i
\(247\) −0.446036 + 0.772557i −0.0283806 + 0.0491566i
\(248\) −13.7107 + 23.7476i −0.870629 + 1.50797i
\(249\) 11.5679 + 14.3654i 0.733086 + 0.910369i
\(250\) −23.7540 + 13.7144i −1.50234 + 0.867374i
\(251\) 11.6265 0.733861 0.366931 0.930248i \(-0.380409\pi\)
0.366931 + 0.930248i \(0.380409\pi\)
\(252\) 0 0
\(253\) 24.2900 1.52710
\(254\) −36.9993 + 21.3616i −2.32155 + 1.34034i
\(255\) 8.43531 21.7963i 0.528240 1.36494i
\(256\) 12.1213 20.9947i 0.757582 1.31217i
\(257\) −1.05140 + 1.82108i −0.0655846 + 0.113596i −0.896953 0.442126i \(-0.854225\pi\)
0.831369 + 0.555721i \(0.187558\pi\)
\(258\) 32.4184 + 12.5461i 2.01828 + 0.781089i
\(259\) 0 0
\(260\) 14.3138i 0.887705i
\(261\) 9.02308 9.91151i 0.558514 0.613507i
\(262\) 18.3562i 1.13405i
\(263\) −1.90773 + 1.10143i −0.117636 + 0.0679170i −0.557663 0.830067i \(-0.688302\pi\)
0.440028 + 0.897984i \(0.354969\pi\)
\(264\) 32.3695 + 40.1974i 1.99221 + 2.47398i
\(265\) −8.37207 4.83362i −0.514292 0.296927i
\(266\) 0 0
\(267\) −5.69121 + 0.885441i −0.348296 + 0.0541881i
\(268\) −11.2096 19.4156i −0.684737 1.18600i
\(269\) 27.8623 1.69880 0.849398 0.527753i \(-0.176965\pi\)
0.849398 + 0.527753i \(0.176965\pi\)
\(270\) 13.9535 + 27.9502i 0.849183 + 1.70100i
\(271\) 11.4804i 0.697382i −0.937238 0.348691i \(-0.886626\pi\)
0.937238 0.348691i \(-0.113374\pi\)
\(272\) 24.0177 + 41.5999i 1.45629 + 2.52237i
\(273\) 0 0
\(274\) −1.06665 + 1.84749i −0.0644387 + 0.111611i
\(275\) 1.65507 + 0.955553i 0.0998043 + 0.0576220i
\(276\) −34.8770 + 28.0851i −2.09935 + 1.69053i
\(277\) 5.10000 + 8.83346i 0.306429 + 0.530751i 0.977579 0.210571i \(-0.0675323\pi\)
−0.671149 + 0.741322i \(0.734199\pi\)
\(278\) 35.9432 2.15573
\(279\) −11.7766 2.57063i −0.705045 0.153900i
\(280\) 0 0
\(281\) 9.45116 5.45663i 0.563809 0.325515i −0.190864 0.981617i \(-0.561129\pi\)
0.754673 + 0.656101i \(0.227796\pi\)
\(282\) −2.05484 0.795237i −0.122364 0.0473557i
\(283\) −10.2766 5.93322i −0.610882 0.352693i 0.162428 0.986720i \(-0.448067\pi\)
−0.773311 + 0.634027i \(0.781401\pi\)
\(284\) 4.71409 + 2.72168i 0.279730 + 0.161502i
\(285\) −2.54388 0.984498i −0.150686 0.0583166i
\(286\) −12.8767 + 7.43437i −0.761415 + 0.439603i
\(287\) 0 0
\(288\) −22.7233 4.96012i −1.33898 0.292278i
\(289\) 16.4841 0.969655
\(290\) 13.4305 + 23.2622i 0.788664 + 1.36601i
\(291\) 19.8658 15.9972i 1.16456 0.937774i
\(292\) −60.8315 35.1211i −3.55989 2.05531i
\(293\) −9.55012 + 16.5413i −0.557924 + 0.966353i 0.439746 + 0.898122i \(0.355069\pi\)
−0.997670 + 0.0682302i \(0.978265\pi\)
\(294\) 0 0
\(295\) −5.02987 8.71199i −0.292850 0.507232i
\(296\) 20.5872i 1.19661i
\(297\) −12.5119 + 18.9247i −0.726015 + 1.09812i
\(298\) −28.1901 −1.63301
\(299\) −3.67427 6.36403i −0.212489 0.368041i
\(300\) −3.48129 + 0.541622i −0.200993 + 0.0312705i
\(301\) 0 0
\(302\) 31.1373 + 17.9772i 1.79175 + 1.03447i
\(303\) 1.80785 + 2.24504i 0.103858 + 0.128974i
\(304\) 4.85519 2.80315i 0.278464 0.160771i
\(305\) 4.78375i 0.273917i
\(306\) −30.1296 + 33.0962i −1.72239 + 1.89198i
\(307\) 2.35488i 0.134400i −0.997740 0.0672001i \(-0.978593\pi\)
0.997740 0.0672001i \(-0.0214066\pi\)
\(308\) 0 0
\(309\) −2.62588 1.01623i −0.149381 0.0578114i
\(310\) 12.0781 20.9199i 0.685991 1.18817i
\(311\) −3.92483 + 6.79801i −0.222557 + 0.385480i −0.955584 0.294720i \(-0.904774\pi\)
0.733027 + 0.680200i \(0.238107\pi\)
\(312\) 5.63538 14.5614i 0.319041 0.824379i
\(313\) 26.0268 15.0266i 1.47112 0.849352i 0.471647 0.881787i \(-0.343660\pi\)
0.999474 + 0.0324349i \(0.0103262\pi\)
\(314\) 40.6785 2.29562
\(315\) 0 0
\(316\) 49.2989 2.77328
\(317\) −9.61906 + 5.55356i −0.540260 + 0.311919i −0.745184 0.666859i \(-0.767639\pi\)
0.204924 + 0.978778i \(0.434305\pi\)
\(318\) 11.6110 + 14.4189i 0.651114 + 0.808573i
\(319\) −9.75347 + 16.8935i −0.546089 + 0.945854i
\(320\) 3.94757 6.83739i 0.220676 0.382222i
\(321\) −4.87621 31.3421i −0.272164 1.74934i
\(322\) 0 0
\(323\) 3.90798i 0.217446i
\(324\) −3.91622 41.6400i −0.217568 2.31333i
\(325\) 0.578175i 0.0320714i
\(326\) −15.1059 + 8.72141i −0.836640 + 0.483034i
\(327\) −27.3381 + 4.25328i −1.51180 + 0.235207i
\(328\) −38.9494 22.4875i −2.15062 1.24166i
\(329\) 0 0
\(330\) −28.5152 35.4110i −1.56971 1.94931i
\(331\) 8.63362 + 14.9539i 0.474547 + 0.821939i 0.999575 0.0291457i \(-0.00927866\pi\)
−0.525028 + 0.851085i \(0.675945\pi\)
\(332\) 49.4851 2.71585
\(333\) 8.62199 2.74938i 0.472482 0.150665i
\(334\) 49.2245i 2.69345i
\(335\) 5.62495 + 9.74270i 0.307324 + 0.532300i
\(336\) 0 0
\(337\) −3.82962 + 6.63309i −0.208612 + 0.361327i −0.951278 0.308336i \(-0.900228\pi\)
0.742665 + 0.669663i \(0.233561\pi\)
\(338\) −25.1305 14.5091i −1.36692 0.789192i
\(339\) −9.46794 3.66416i −0.514228 0.199010i
\(340\) −31.3530 54.3049i −1.70035 2.94510i
\(341\) 17.5427 0.949992
\(342\) 3.86271 + 3.51647i 0.208871 + 0.190149i
\(343\) 0 0
\(344\) 46.0082 26.5629i 2.48060 1.43217i
\(345\) 17.5011 14.0930i 0.942230 0.758743i
\(346\) 48.7843 + 28.1656i 2.62266 + 1.51419i
\(347\) −11.4014 6.58262i −0.612061 0.353374i 0.161711 0.986838i \(-0.448299\pi\)
−0.773772 + 0.633465i \(0.781632\pi\)
\(348\) −5.52841 35.5341i −0.296354 1.90483i
\(349\) 1.05185 0.607283i 0.0563040 0.0325071i −0.471584 0.881821i \(-0.656318\pi\)
0.527888 + 0.849314i \(0.322984\pi\)
\(350\) 0 0
\(351\) 6.85096 + 0.415467i 0.365677 + 0.0221760i
\(352\) 33.8493 1.80417
\(353\) 13.4114 + 23.2292i 0.713816 + 1.23637i 0.963414 + 0.268016i \(0.0863681\pi\)
−0.249598 + 0.968349i \(0.580299\pi\)
\(354\) 2.96153 + 19.0354i 0.157404 + 1.01172i
\(355\) −2.36551 1.36573i −0.125548 0.0724854i
\(356\) −7.72659 + 13.3829i −0.409509 + 0.709290i
\(357\) 0 0
\(358\) 22.1591 + 38.3807i 1.17114 + 2.02848i
\(359\) 7.45024i 0.393208i 0.980483 + 0.196604i \(0.0629914\pi\)
−0.980483 + 0.196604i \(0.937009\pi\)
\(360\) 46.6450 + 10.1818i 2.45841 + 0.536630i
\(361\) 18.5439 0.975994
\(362\) −21.4585 37.1673i −1.12784 1.95347i
\(363\) 5.04025 13.0237i 0.264545 0.683565i
\(364\) 0 0
\(365\) 30.5250 + 17.6236i 1.59775 + 0.922463i
\(366\) −3.30635 + 8.54339i −0.172826 + 0.446570i
\(367\) −30.3000 + 17.4937i −1.58165 + 0.913166i −0.587031 + 0.809565i \(0.699703\pi\)
−0.994619 + 0.103601i \(0.966963\pi\)
\(368\) 46.1825i 2.40743i
\(369\) 4.21620 19.3153i 0.219487 1.00551i
\(370\) 18.1359i 0.942840i
\(371\) 0 0
\(372\) −25.1889 + 20.2837i −1.30598 + 1.05166i
\(373\) 15.0495 26.0665i 0.779233 1.34967i −0.153151 0.988203i \(-0.548942\pi\)
0.932384 0.361469i \(-0.117725\pi\)
\(374\) 32.5684 56.4102i 1.68407 2.91690i
\(375\) −18.2078 + 2.83278i −0.940247 + 0.146284i
\(376\) −2.91623 + 1.68369i −0.150393 + 0.0868295i
\(377\) 5.90152 0.303944
\(378\) 0 0
\(379\) −27.0996 −1.39201 −0.696006 0.718036i \(-0.745041\pi\)
−0.696006 + 0.718036i \(0.745041\pi\)
\(380\) −6.33801 + 3.65925i −0.325133 + 0.187716i
\(381\) −28.3606 + 4.41235i −1.45296 + 0.226052i
\(382\) 1.22990 2.13024i 0.0629270 0.108993i
\(383\) −1.83015 + 3.16992i −0.0935164 + 0.161975i −0.908988 0.416821i \(-0.863144\pi\)
0.815472 + 0.578796i \(0.196477\pi\)
\(384\) 9.14176 7.36152i 0.466513 0.375666i
\(385\) 0 0
\(386\) 4.36851i 0.222351i
\(387\) 17.2689 + 15.7210i 0.877827 + 0.799141i
\(388\) 68.4329i 3.47415i
\(389\) 10.5387 6.08449i 0.534331 0.308496i −0.208447 0.978034i \(-0.566841\pi\)
0.742778 + 0.669537i \(0.233508\pi\)
\(390\) −4.96436 + 12.8276i −0.251380 + 0.649550i
\(391\) 27.8795 + 16.0962i 1.40993 + 0.814022i
\(392\) 0 0
\(393\) 4.45082 11.5006i 0.224514 0.580129i
\(394\) −16.4342 28.4649i −0.827943 1.43404i
\(395\) −24.7380 −1.24470
\(396\) 18.4923 + 57.9916i 0.929275 + 2.91419i
\(397\) 26.7741i 1.34375i 0.740663 + 0.671876i \(0.234511\pi\)
−0.740663 + 0.671876i \(0.765489\pi\)
\(398\) −5.61797 9.73061i −0.281603 0.487752i
\(399\) 0 0
\(400\) −1.81679 + 3.14678i −0.0908397 + 0.157339i
\(401\) 6.69428 + 3.86494i 0.334296 + 0.193006i 0.657747 0.753239i \(-0.271510\pi\)
−0.323451 + 0.946245i \(0.604843\pi\)
\(402\) −3.31191 21.2874i −0.165183 1.06172i
\(403\) −2.65364 4.59624i −0.132187 0.228955i
\(404\) 7.73361 0.384761
\(405\) 1.96515 + 20.8948i 0.0976490 + 1.03827i
\(406\) 0 0
\(407\) −11.4061 + 6.58532i −0.565380 + 0.326422i
\(408\) 10.5154 + 67.5881i 0.520589 + 3.34611i
\(409\) 7.84660 + 4.53024i 0.387989 + 0.224006i 0.681289 0.732015i \(-0.261420\pi\)
−0.293299 + 0.956021i \(0.594753\pi\)
\(410\) 34.3116 + 19.8098i 1.69453 + 0.978338i
\(411\) −1.11624 + 0.898870i −0.0550603 + 0.0443380i
\(412\) −6.54231 + 3.77720i −0.322316 + 0.186090i
\(413\) 0 0
\(414\) −40.9962 + 13.0728i −2.01485 + 0.642495i
\(415\) −24.8315 −1.21893
\(416\) −5.12029 8.86860i −0.251043 0.434819i
\(417\) 22.5194 + 8.71515i 1.10278 + 0.426783i
\(418\) −6.58372 3.80111i −0.322020 0.185919i
\(419\) 3.30466 5.72384i 0.161443 0.279628i −0.773943 0.633255i \(-0.781718\pi\)
0.935386 + 0.353627i \(0.115052\pi\)
\(420\) 0 0
\(421\) 6.39209 + 11.0714i 0.311531 + 0.539588i 0.978694 0.205324i \(-0.0658248\pi\)
−0.667163 + 0.744912i \(0.732491\pi\)
\(422\) 11.5693i 0.563184i
\(423\) −1.09459 0.996473i −0.0532207 0.0484502i
\(424\) 28.2929 1.37403
\(425\) 1.26643 + 2.19353i 0.0614311 + 0.106402i
\(426\) 3.28067 + 4.07404i 0.158949 + 0.197388i
\(427\) 0 0
\(428\) −73.7007 42.5511i −3.56246 2.05679i
\(429\) −9.87019 + 1.53561i −0.476537 + 0.0741399i
\(430\) −40.5299 + 23.4000i −1.95453 + 1.12845i
\(431\) 21.9112i 1.05542i 0.849424 + 0.527712i \(0.176950\pi\)
−0.849424 + 0.527712i \(0.823050\pi\)
\(432\) −35.9815 23.7889i −1.73116 1.14454i
\(433\) 8.21181i 0.394635i −0.980340 0.197317i \(-0.936777\pi\)
0.980340 0.197317i \(-0.0632229\pi\)
\(434\) 0 0
\(435\) 2.77414 + 17.8309i 0.133010 + 0.854925i
\(436\) −37.1153 + 64.2855i −1.77750 + 3.07872i
\(437\) 1.87862 3.25386i 0.0898665 0.155653i
\(438\) −42.3344 52.5722i −2.02282 2.51199i
\(439\) −32.7996 + 18.9368i −1.56544 + 0.903806i −0.568749 + 0.822511i \(0.692572\pi\)
−0.996690 + 0.0812949i \(0.974094\pi\)
\(440\) −69.4838 −3.31251
\(441\) 0 0
\(442\) −19.7061 −0.937326
\(443\) 17.7210 10.2312i 0.841950 0.486100i −0.0159769 0.999872i \(-0.505086\pi\)
0.857926 + 0.513773i \(0.171752\pi\)
\(444\) 8.76332 22.6438i 0.415889 1.07463i
\(445\) 3.87718 6.71547i 0.183796 0.318344i
\(446\) −26.7941 + 46.4087i −1.26874 + 2.19752i
\(447\) −17.6618 6.83524i −0.835375 0.323296i
\(448\) 0 0
\(449\) 35.7054i 1.68504i 0.538665 + 0.842520i \(0.318929\pi\)
−0.538665 + 0.842520i \(0.681071\pi\)
\(450\) −3.30767 0.722010i −0.155925 0.0340359i
\(451\) 28.7726i 1.35485i
\(452\) −23.5892 + 13.6192i −1.10954 + 0.640594i
\(453\) 15.1494 + 18.8130i 0.711782 + 0.883912i
\(454\) −63.2232 36.5019i −2.96721 1.71312i
\(455\) 0 0
\(456\) 7.88831 1.22727i 0.369404 0.0574720i
\(457\) 0.127090 + 0.220126i 0.00594501 + 0.0102971i 0.868983 0.494843i \(-0.164774\pi\)
−0.863038 + 0.505140i \(0.831441\pi\)
\(458\) −56.1678 −2.62455
\(459\) −26.9018 + 13.4301i −1.25567 + 0.626863i
\(460\) 60.2870i 2.81090i
\(461\) 12.2175 + 21.1613i 0.569025 + 0.985581i 0.996663 + 0.0816304i \(0.0260127\pi\)
−0.427637 + 0.903950i \(0.640654\pi\)
\(462\) 0 0
\(463\) 0.409986 0.710116i 0.0190536 0.0330019i −0.856341 0.516410i \(-0.827268\pi\)
0.875395 + 0.483408i \(0.160601\pi\)
\(464\) −32.1196 18.5443i −1.49112 0.860896i
\(465\) 12.6397 10.1783i 0.586152 0.472006i
\(466\) 19.6374 + 34.0130i 0.909686 + 1.57562i
\(467\) 1.81925 0.0841848 0.0420924 0.999114i \(-0.486598\pi\)
0.0420924 + 0.999114i \(0.486598\pi\)
\(468\) 12.3967 13.6173i 0.573036 0.629458i
\(469\) 0 0
\(470\) 2.56899 1.48321i 0.118499 0.0684152i
\(471\) 25.4861 + 9.86330i 1.17434 + 0.454477i
\(472\) 25.4972 + 14.7208i 1.17360 + 0.677581i
\(473\) −29.4336 16.9935i −1.35336 0.781363i
\(474\) 44.1801 + 17.0980i 2.02926 + 0.785337i
\(475\) 0.256010 0.147807i 0.0117465 0.00678187i
\(476\) 0 0
\(477\) 3.77845 + 11.8491i 0.173003 + 0.542535i
\(478\) −14.7401 −0.674196
\(479\) 0.681074 + 1.17965i 0.0311191 + 0.0538998i 0.881166 0.472808i \(-0.156760\pi\)
−0.850046 + 0.526708i \(0.823426\pi\)
\(480\) 24.3887 19.6393i 1.11319 0.896409i
\(481\) 3.45074 + 1.99228i 0.157340 + 0.0908403i
\(482\) 5.76373 9.98308i 0.262531 0.454717i
\(483\) 0 0
\(484\) −18.7340 32.4482i −0.851544 1.47492i
\(485\) 34.3394i 1.55927i
\(486\) 10.9321 38.6747i 0.495892 1.75432i
\(487\) 31.6121 1.43248 0.716241 0.697853i \(-0.245861\pi\)
0.716241 + 0.697853i \(0.245861\pi\)
\(488\) 7.00026 + 12.1248i 0.316887 + 0.548864i
\(489\) −11.5789 + 1.80145i −0.523617 + 0.0814646i
\(490\) 0 0
\(491\) −1.97415 1.13977i −0.0890919 0.0514373i 0.454792 0.890598i \(-0.349714\pi\)
−0.543884 + 0.839160i \(0.683047\pi\)
\(492\) −33.2681 41.3133i −1.49984 1.86255i
\(493\) −22.3897 + 12.9267i −1.00838 + 0.582188i
\(494\) 2.29993i 0.103479i
\(495\) −9.27939 29.1000i −0.417078 1.30795i
\(496\) 33.3540i 1.49764i
\(497\) 0 0
\(498\) 44.3470 + 17.1626i 1.98724 + 0.769074i
\(499\) −13.5195 + 23.4164i −0.605215 + 1.04826i 0.386802 + 0.922163i \(0.373580\pi\)
−0.992017 + 0.126101i \(0.959754\pi\)
\(500\) −24.7196 + 42.8156i −1.10549 + 1.91477i
\(501\) −11.9355 + 30.8404i −0.533237 + 1.37785i
\(502\) 25.9595 14.9877i 1.15863 0.668936i
\(503\) 0.276948 0.0123485 0.00617426 0.999981i \(-0.498035\pi\)
0.00617426 + 0.999981i \(0.498035\pi\)
\(504\) 0 0
\(505\) −3.88070 −0.172689
\(506\) 54.2342 31.3121i 2.41100 1.39199i
\(507\) −12.2269 15.1837i −0.543015 0.674333i
\(508\) −38.5033 + 66.6897i −1.70831 + 2.95888i
\(509\) 9.21476 15.9604i 0.408437 0.707434i −0.586278 0.810110i \(-0.699407\pi\)
0.994715 + 0.102676i \(0.0327406\pi\)
\(510\) −9.26330 59.5402i −0.410186 2.63649i
\(511\) 0 0
\(512\) 48.9492i 2.16327i
\(513\) 1.56745 + 3.13974i 0.0692045 + 0.138623i
\(514\) 5.42143i 0.239129i
\(515\) 3.28291 1.89539i 0.144662 0.0835208i
\(516\) 61.9112 9.63217i 2.72549 0.424033i
\(517\) 1.86565 + 1.07713i 0.0820512 + 0.0473723i
\(518\) 0 0
\(519\) 23.7353 + 29.4752i 1.04186 + 1.29382i
\(520\) 10.5106 + 18.2049i 0.460921 + 0.798339i
\(521\) 23.2527 1.01872 0.509360 0.860554i \(-0.329882\pi\)
0.509360 + 0.860554i \(0.329882\pi\)
\(522\) 7.36966 33.7619i 0.322561 1.47772i
\(523\) 13.3052i 0.581798i 0.956754 + 0.290899i \(0.0939543\pi\)
−0.956754 + 0.290899i \(0.906046\pi\)
\(524\) −16.5431 28.6535i −0.722689 1.25173i
\(525\) 0 0
\(526\) −2.83970 + 4.91850i −0.123817 + 0.214457i
\(527\) 20.1352 + 11.6251i 0.877102 + 0.506395i
\(528\) 58.5448 + 22.6573i 2.54784 + 0.986031i
\(529\) 3.97534 + 6.88549i 0.172841 + 0.299369i
\(530\) −24.9240 −1.08263
\(531\) −2.76003 + 12.6442i −0.119775 + 0.548712i
\(532\) 0 0
\(533\) 7.53848 4.35235i 0.326528 0.188521i
\(534\) −11.5658 + 9.31352i −0.500501 + 0.403035i
\(535\) 36.9828 + 21.3520i 1.59890 + 0.923128i
\(536\) −28.5138 16.4624i −1.23161 0.711069i
\(537\) 4.57708 + 29.4194i 0.197516 + 1.26954i
\(538\) 62.2105 35.9172i 2.68208 1.54850i
\(539\) 0 0
\(540\) 46.9706 + 31.0542i 2.02129 + 1.33636i
\(541\) −30.1692 −1.29707 −0.648537 0.761183i \(-0.724619\pi\)
−0.648537 + 0.761183i \(0.724619\pi\)
\(542\) −14.7993 25.6331i −0.635684 1.10104i
\(543\) −4.43238 28.4893i −0.190212 1.22259i
\(544\) 38.8515 + 22.4309i 1.66574 + 0.961718i
\(545\) 18.6243 32.2582i 0.797778 1.38179i
\(546\) 0 0
\(547\) −0.572061 0.990840i −0.0244596 0.0423652i 0.853537 0.521033i \(-0.174453\pi\)
−0.877996 + 0.478668i \(0.841120\pi\)
\(548\) 3.84518i 0.164258i
\(549\) −4.14303 + 4.55096i −0.176820 + 0.194230i
\(550\) 4.92720 0.210097
\(551\) 1.50869 + 2.61313i 0.0642724 + 0.111323i
\(552\) −23.7351 + 61.3300i −1.01023 + 2.61038i
\(553\) 0 0
\(554\) 22.7744 + 13.1488i 0.967591 + 0.558639i
\(555\) −4.39740 + 11.3626i −0.186659 + 0.482315i
\(556\) 56.1065 32.3931i 2.37944 1.37377i
\(557\) 9.64623i 0.408724i −0.978895 0.204362i \(-0.934488\pi\)
0.978895 0.204362i \(-0.0655120\pi\)
\(558\) −29.6083 + 9.44148i −1.25342 + 0.399690i
\(559\) 10.2822i 0.434893i
\(560\) 0 0
\(561\) 34.0827 27.4456i 1.43897 1.15875i
\(562\) 14.0683 24.3669i 0.593434 1.02786i
\(563\) −1.54395 + 2.67420i −0.0650698 + 0.112704i −0.896725 0.442588i \(-0.854060\pi\)
0.831655 + 0.555292i \(0.187394\pi\)
\(564\) −3.92424 + 0.610535i −0.165240 + 0.0257082i
\(565\) 11.8370 6.83407i 0.497985 0.287512i
\(566\) −30.5940 −1.28596
\(567\) 0 0
\(568\) 7.99411 0.335425
\(569\) 7.30588 4.21805i 0.306278 0.176830i −0.338982 0.940793i \(-0.610082\pi\)
0.645260 + 0.763963i \(0.276749\pi\)
\(570\) −6.94903 + 1.08113i −0.291063 + 0.0452837i
\(571\) 17.0208 29.4808i 0.712297 1.23373i −0.251696 0.967806i \(-0.580988\pi\)
0.963993 0.265928i \(-0.0856782\pi\)
\(572\) −13.4001 + 23.2097i −0.560288 + 0.970447i
\(573\) 1.28708 1.03644i 0.0537686 0.0432979i
\(574\) 0 0
\(575\) 2.43516i 0.101553i
\(576\) −9.67707 + 3.08582i −0.403211 + 0.128576i
\(577\) 18.1052i 0.753730i −0.926268 0.376865i \(-0.877002\pi\)
0.926268 0.376865i \(-0.122998\pi\)
\(578\) 36.8055 21.2497i 1.53091 0.883869i
\(579\) 1.05923 2.73698i 0.0440201 0.113745i
\(580\) 41.9292 + 24.2078i 1.74102 + 1.00518i
\(581\) 0 0
\(582\) 23.7341 61.3273i 0.983810 2.54210i
\(583\) −9.05015 15.6753i −0.374819 0.649206i
\(584\) −103.157 −4.26869
\(585\) −6.22060 + 6.83310i −0.257190 + 0.282514i
\(586\) 49.2441i 2.03426i
\(587\) −4.04900 7.01308i −0.167120 0.289461i 0.770286 0.637699i \(-0.220113\pi\)
−0.937406 + 0.348238i \(0.886780\pi\)
\(588\) 0 0
\(589\) 1.35678 2.35001i 0.0559050 0.0968304i
\(590\) −22.4612 12.9680i −0.924713 0.533883i
\(591\) −3.39457 21.8188i −0.139634 0.897504i
\(592\) −12.5207 21.6864i −0.514596 0.891306i
\(593\) −6.66433 −0.273671 −0.136836 0.990594i \(-0.543693\pi\)
−0.136836 + 0.990594i \(0.543693\pi\)
\(594\) −3.54060 + 58.3838i −0.145273 + 2.39552i
\(595\) 0 0
\(596\) −44.0040 + 25.4057i −1.80247 + 1.04066i
\(597\) −1.16042 7.45866i −0.0474929 0.305263i
\(598\) −16.4077 9.47299i −0.670961 0.387380i
\(599\) −3.10562 1.79303i −0.126892 0.0732614i 0.435210 0.900329i \(-0.356674\pi\)
−0.562103 + 0.827068i \(0.690007\pi\)
\(600\) −4.02995 + 3.24517i −0.164522 + 0.132483i
\(601\) −4.86949 + 2.81140i −0.198631 + 0.114679i −0.596017 0.802972i \(-0.703251\pi\)
0.397386 + 0.917652i \(0.369917\pi\)
\(602\) 0 0
\(603\) 3.08656 14.1401i 0.125695 0.575831i
\(604\) 64.8061 2.63692
\(605\) 9.40064 + 16.2824i 0.382190 + 0.661973i
\(606\) 6.93061 + 2.68220i 0.281537 + 0.108957i
\(607\) 1.93239 + 1.11566i 0.0784332 + 0.0452834i 0.538704 0.842495i \(-0.318914\pi\)
−0.460270 + 0.887779i \(0.652248\pi\)
\(608\) 2.61795 4.53442i 0.106172 0.183895i
\(609\) 0 0
\(610\) −6.16672 10.6811i −0.249683 0.432464i
\(611\) 0.651740i 0.0263666i
\(612\) −17.2042 + 78.8159i −0.695439 + 3.18594i
\(613\) −6.82038 −0.275473 −0.137736 0.990469i \(-0.543983\pi\)
−0.137736 + 0.990469i \(0.543983\pi\)
\(614\) −3.03567 5.25793i −0.122510 0.212193i
\(615\) 16.6938 + 20.7309i 0.673160 + 0.835950i
\(616\) 0 0
\(617\) −2.35139 1.35757i −0.0946632 0.0546538i 0.451921 0.892058i \(-0.350739\pi\)
−0.546584 + 0.837404i \(0.684072\pi\)
\(618\) −7.17303 + 1.11598i −0.288542 + 0.0448914i
\(619\) −23.1886 + 13.3880i −0.932029 + 0.538107i −0.887453 0.460899i \(-0.847527\pi\)
−0.0445762 + 0.999006i \(0.514194\pi\)
\(620\) 43.5406i 1.74863i
\(621\) −28.8549 1.74987i −1.15791 0.0702197i
\(622\) 20.2380i 0.811469i
\(623\) 0 0
\(624\) −2.91965 18.7662i −0.116880 0.751249i
\(625\) 13.4985 23.3801i 0.539940 0.935203i
\(626\) 38.7414 67.1021i 1.54842 2.68194i
\(627\) −3.20321 3.97785i −0.127924 0.158860i
\(628\) 63.4980 36.6606i 2.53385 1.46292i
\(629\) −17.4556 −0.696000
\(630\) 0 0
\(631\) −11.1620 −0.444354 −0.222177 0.975006i \(-0.571316\pi\)
−0.222177 + 0.975006i \(0.571316\pi\)
\(632\) 62.7004 36.2001i 2.49409 1.43996i
\(633\) −2.80520 + 7.24845i −0.111497 + 0.288100i
\(634\) −14.3182 + 24.7998i −0.568647 + 0.984926i
\(635\) 19.3208 33.4647i 0.766724 1.32801i
\(636\) 31.1192 + 12.0434i 1.23396 + 0.477551i
\(637\) 0 0
\(638\) 50.2927i 1.99111i
\(639\) 1.06759 + 3.34795i 0.0422334 + 0.132443i
\(640\) 15.8021i 0.624633i
\(641\) 38.6251 22.3002i 1.52560 0.880805i 0.526059 0.850448i \(-0.323669\pi\)
0.999539 0.0303565i \(-0.00966427\pi\)
\(642\) −51.2905 63.6941i −2.02427 2.51380i
\(643\) 23.6268 + 13.6410i 0.931751 + 0.537947i 0.887365 0.461068i \(-0.152534\pi\)
0.0443860 + 0.999014i \(0.485867\pi\)
\(644\) 0 0
\(645\) −31.0668 + 4.83339i −1.22326 + 0.190315i
\(646\) −5.03777 8.72568i −0.198208 0.343307i
\(647\) 44.9350 1.76658 0.883288 0.468831i \(-0.155325\pi\)
0.883288 + 0.468831i \(0.155325\pi\)
\(648\) −35.5570 50.0839i −1.39681 1.96748i
\(649\) 18.8352i 0.739347i
\(650\) −0.745324 1.29094i −0.0292340 0.0506348i
\(651\) 0 0
\(652\) −15.7200 + 27.2278i −0.615642 + 1.06632i
\(653\) −24.0549 13.8881i −0.941343 0.543484i −0.0509617 0.998701i \(-0.516229\pi\)
−0.890381 + 0.455216i \(0.849562\pi\)
\(654\) −55.5572 + 44.7382i −2.17246 + 1.74940i
\(655\) 8.30128 + 14.3782i 0.324358 + 0.561804i
\(656\) −54.7053 −2.13588
\(657\) −13.7764 43.2026i −0.537470 1.68549i
\(658\) 0 0
\(659\) 0.801975 0.463021i 0.0312405 0.0180367i −0.484298 0.874903i \(-0.660925\pi\)
0.515539 + 0.856866i \(0.327592\pi\)
\(660\) −76.4249 29.5770i −2.97484 1.15128i
\(661\) −28.3028 16.3406i −1.10085 0.635577i −0.164408 0.986392i \(-0.552571\pi\)
−0.936445 + 0.350815i \(0.885905\pi\)
\(662\) 38.5540 + 22.2592i 1.49844 + 0.865126i
\(663\) −12.3464 4.77814i −0.479495 0.185568i
\(664\) 62.9373 36.3369i 2.44244 1.41014i
\(665\) 0 0
\(666\) 15.7068 17.2533i 0.608626 0.668553i
\(667\) −24.8561 −0.962430
\(668\) 44.3625 + 76.8382i 1.71644 + 2.97296i
\(669\) −28.0399 + 22.5795i −1.08409 + 0.872974i
\(670\) 25.1186 + 14.5022i 0.970415 + 0.560269i
\(671\) 4.47839 7.75681i 0.172886 0.299448i
\(672\) 0 0
\(673\) −15.6947 27.1840i −0.604987 1.04787i −0.992054 0.125816i \(-0.959845\pi\)
0.387067 0.922052i \(-0.373488\pi\)
\(674\) 19.7470i 0.760625i
\(675\) −1.89727 1.25437i −0.0730261 0.0482806i
\(676\) −52.3041 −2.01170
\(677\) −10.7882 18.6858i −0.414626 0.718153i 0.580763 0.814072i \(-0.302754\pi\)
−0.995389 + 0.0959196i \(0.969421\pi\)
\(678\) −25.8633 + 4.02383i −0.993274 + 0.154534i
\(679\) 0 0
\(680\) −79.7521 46.0449i −3.05835 1.76574i
\(681\) −30.7603 38.1991i −1.17874 1.46379i
\(682\) 39.1691 22.6143i 1.49986 0.865946i
\(683\) 36.2593i 1.38742i −0.720253 0.693711i \(-0.755974\pi\)
0.720253 0.693711i \(-0.244026\pi\)
\(684\) 9.19872 + 2.00793i 0.351722 + 0.0767751i
\(685\) 1.92950i 0.0737224i
\(686\) 0 0
\(687\) −35.1906 13.6190i −1.34260 0.519597i
\(688\) 32.3098 55.9622i 1.23180 2.13354i
\(689\) −2.73798 + 4.74232i −0.104309 + 0.180668i
\(690\) 20.9089 54.0273i 0.795990 2.05678i
\(691\) 6.16389 3.55872i 0.234485 0.135380i −0.378154 0.925743i \(-0.623441\pi\)
0.612640 + 0.790362i \(0.290108\pi\)
\(692\) 101.535 3.85977
\(693\) 0 0
\(694\) −33.9426 −1.28844
\(695\) −28.1540 + 16.2547i −1.06794 + 0.616577i
\(696\) −33.1239 41.1342i −1.25556 1.55919i
\(697\) −19.0667 + 33.0246i −0.722204 + 1.25089i
\(698\) 1.56569 2.71186i 0.0592624 0.102645i
\(699\) 4.05622 + 26.0715i 0.153420 + 0.986115i
\(700\) 0 0
\(701\) 29.4609i 1.11272i 0.830940 + 0.556362i \(0.187803\pi\)
−0.830940 + 0.556362i \(0.812197\pi\)
\(702\) 15.8323 7.90390i 0.597551 0.298314i
\(703\) 2.03727i 0.0768370i
\(704\) 12.8019 7.39117i 0.482489 0.278565i
\(705\) 1.96917 0.306364i 0.0741632 0.0115384i
\(706\) 59.8894 + 34.5772i 2.25397 + 1.30133i
\(707\) 0 0
\(708\) 21.7781 + 27.0447i 0.818471 + 1.01640i
\(709\) 19.0361 + 32.9715i 0.714916 + 1.23827i 0.962992 + 0.269530i \(0.0868683\pi\)
−0.248076 + 0.968740i \(0.579798\pi\)
\(710\) −7.04224 −0.264290
\(711\) 23.5342 + 21.4247i 0.882601 + 0.803488i
\(712\) 22.6945i 0.850513i
\(713\) 11.1766 + 19.3585i 0.418568 + 0.724980i
\(714\) 0 0
\(715\) 6.72414 11.6466i 0.251469 0.435556i
\(716\) 69.1795 + 39.9408i 2.58536 + 1.49266i
\(717\) −9.23504 3.57403i −0.344889 0.133474i
\(718\) 9.60408 + 16.6348i 0.358421 + 0.620803i
\(719\) −38.2114 −1.42505 −0.712523 0.701649i \(-0.752447\pi\)
−0.712523 + 0.701649i \(0.752447\pi\)
\(720\) 55.3278 17.6429i 2.06195 0.657512i
\(721\) 0 0
\(722\) 41.4045 23.9049i 1.54091 0.889647i
\(723\) 6.03172 4.85712i 0.224322 0.180638i
\(724\) −66.9924 38.6781i −2.48975 1.43746i
\(725\) −1.69364 0.977823i −0.0629002 0.0363154i
\(726\) −5.53499 35.5764i −0.205423 1.32036i
\(727\) −17.7563 + 10.2516i −0.658546 + 0.380212i −0.791723 0.610881i \(-0.790816\pi\)
0.133177 + 0.991092i \(0.457482\pi\)
\(728\) 0 0
\(729\) 16.2267 21.5800i 0.600989 0.799257i
\(730\) 90.8743 3.36341
\(731\) −22.5222 39.0096i −0.833014 1.44282i
\(732\) 2.53842 + 16.3158i 0.0938227 + 0.603049i
\(733\) −0.900627 0.519977i −0.0332654 0.0192058i 0.483275 0.875469i \(-0.339447\pi\)
−0.516540 + 0.856263i \(0.672780\pi\)
\(734\) −45.1023 + 78.1194i −1.66475 + 2.88344i
\(735\) 0 0
\(736\) 21.5657 + 37.3528i 0.794921 + 1.37684i
\(737\) 21.0636i 0.775887i
\(738\) −15.4854 48.5618i −0.570025 1.78759i
\(739\) 24.1609 0.888774 0.444387 0.895835i \(-0.353422\pi\)
0.444387 + 0.895835i \(0.353422\pi\)
\(740\) 16.3446 + 28.3096i 0.600839 + 1.04068i
\(741\) −0.557665 + 1.44097i −0.0204863 + 0.0529353i
\(742\) 0 0
\(743\) −13.1637 7.60008i −0.482930 0.278820i 0.238707 0.971092i \(-0.423277\pi\)
−0.721637 + 0.692272i \(0.756610\pi\)
\(744\) −17.1420 + 44.2938i −0.628457 + 1.62389i
\(745\) 22.0810 12.7485i 0.808987 0.467069i
\(746\) 77.6010i 2.84118i
\(747\) 23.6231 + 21.5056i 0.864324 + 0.786849i
\(748\) 117.406i 4.29281i
\(749\) 0 0
\(750\) −37.0023 + 29.7966i −1.35113 + 1.08802i
\(751\) −1.52037 + 2.63336i −0.0554791 + 0.0960926i −0.892431 0.451184i \(-0.851002\pi\)
0.836952 + 0.547276i \(0.184335\pi\)
\(752\) −2.04795 + 3.54716i −0.0746812 + 0.129352i
\(753\) 19.8984 3.09580i 0.725138 0.112817i
\(754\) 13.1768 7.60763i 0.479871 0.277053i
\(755\) −32.5195 −1.18350
\(756\) 0 0
\(757\) 43.3700 1.57631 0.788155 0.615477i \(-0.211036\pi\)
0.788155 + 0.615477i \(0.211036\pi\)
\(758\) −60.5075 + 34.9340i −2.19773 + 1.26886i
\(759\) 41.5713 6.46769i 1.50894 0.234762i
\(760\) −5.37397 + 9.30799i −0.194934 + 0.337636i
\(761\) −14.6319 + 25.3432i −0.530406 + 0.918690i 0.468965 + 0.883217i \(0.344627\pi\)
−0.999371 + 0.0354731i \(0.988706\pi\)
\(762\) −57.6350 + 46.4113i −2.08790 + 1.68131i
\(763\) 0 0
\(764\) 4.43367i 0.160405i
\(765\) 8.63302 39.5495i 0.312127 1.42992i
\(766\) 9.43698i 0.340972i
\(767\) −4.93487 + 2.84915i −0.178188 + 0.102877i
\(768\) 15.1549 39.1592i 0.546855 1.41304i
\(769\) −29.6496 17.1182i −1.06919 0.617299i −0.141232 0.989977i \(-0.545106\pi\)
−0.927961 + 0.372678i \(0.878440\pi\)
\(770\) 0 0
\(771\) −1.31453 + 3.39666i −0.0473418 + 0.122328i
\(772\) −3.93702 6.81912i −0.141697 0.245426i
\(773\) 33.9854 1.22237 0.611185 0.791488i \(-0.290693\pi\)
0.611185 + 0.791488i \(0.290693\pi\)
\(774\) 58.8235 + 12.8402i 2.11437 + 0.461531i
\(775\) 1.75873i 0.0631753i
\(776\) −50.2502 87.0359i −1.80388 3.12441i
\(777\) 0 0
\(778\) 15.6870 27.1707i 0.562406 0.974117i
\(779\) 3.85435 + 2.22531i 0.138096 + 0.0797299i
\(780\) 3.81134 + 24.4975i 0.136468 + 0.877153i
\(781\) −2.55710 4.42904i −0.0915004 0.158483i
\(782\) 82.9985 2.96802
\(783\) 12.8035 19.3657i 0.457560 0.692075i
\(784\) 0 0
\(785\) −31.8631 + 18.3962i −1.13724 + 0.656587i
\(786\) −4.88770 31.4159i −0.174338 1.12057i
\(787\) 23.8225 + 13.7539i 0.849180 + 0.490274i 0.860374 0.509663i \(-0.170230\pi\)
−0.0111939 + 0.999937i \(0.503563\pi\)
\(788\) −51.3067 29.6219i −1.82773 1.05524i
\(789\) −2.97173 + 2.39303i −0.105796 + 0.0851940i
\(790\) −55.2346 + 31.8897i −1.96516 + 1.13458i
\(791\) 0 0
\(792\) 66.1025 + 60.1773i 2.34885 + 2.13831i
\(793\) −2.70974 −0.0962255
\(794\) 34.5144 + 59.7807i 1.22487 + 2.12154i
\(795\) −15.6155 6.04332i −0.553826 0.214334i
\(796\) −17.5390 10.1262i −0.621654 0.358912i
\(797\) 21.0873 36.5243i 0.746952 1.29376i −0.202326 0.979318i \(-0.564850\pi\)
0.949277 0.314440i \(-0.101817\pi\)
\(798\) 0 0
\(799\) 1.42757 + 2.47262i 0.0505038 + 0.0874751i
\(800\) 3.39352i 0.119979i
\(801\) −9.50452 + 3.03080i −0.335826 + 0.107088i
\(802\) 19.9292 0.703723
\(803\) 32.9974 + 57.1531i 1.16445 + 2.01689i
\(804\) −24.3546 30.2443i −0.858922 1.06664i
\(805\) 0 0
\(806\) −11.8500 6.84160i −0.417398 0.240985i
\(807\) 47.6853 7.41890i 1.67860 0.261158i
\(808\) 9.83594 5.67878i 0.346027 0.199779i
\(809\) 4.83100i 0.169849i 0.996387 + 0.0849245i \(0.0270649\pi\)
−0.996387 + 0.0849245i \(0.972935\pi\)
\(810\) 31.3232 + 44.1203i 1.10058 + 1.55023i
\(811\) 6.46035i 0.226853i −0.993546 0.113427i \(-0.963817\pi\)
0.993546 0.113427i \(-0.0361827\pi\)
\(812\) 0 0
\(813\) −3.05687 19.6482i −0.107209 0.689092i
\(814\) −16.9782 + 29.4071i −0.595086 + 1.03072i
\(815\) 7.88823 13.6628i 0.276313 0.478587i
\(816\) 52.1822 + 64.8015i 1.82674 + 2.26851i
\(817\) −4.55287 + 2.62860i −0.159285 + 0.0919631i
\(818\) 23.3597 0.816751
\(819\) 0 0
\(820\) 71.4128 2.49384
\(821\) 14.5455 8.39783i 0.507640 0.293086i −0.224223 0.974538i \(-0.571984\pi\)
0.731863 + 0.681452i \(0.238651\pi\)
\(822\) −1.33360 + 3.44593i −0.0465146 + 0.120191i
\(823\) 7.51749 13.0207i 0.262043 0.453872i −0.704741 0.709464i \(-0.748937\pi\)
0.966785 + 0.255592i \(0.0822703\pi\)
\(824\) −5.54719 + 9.60802i −0.193246 + 0.334711i
\(825\) 3.08702 + 1.19470i 0.107476 + 0.0415940i
\(826\) 0 0
\(827\) 29.2462i 1.01699i −0.861065 0.508495i \(-0.830202\pi\)
0.861065 0.508495i \(-0.169798\pi\)
\(828\) −52.2123 + 57.3533i −1.81450 + 1.99317i
\(829\) 1.50423i 0.0522440i 0.999659 + 0.0261220i \(0.00831584\pi\)
−0.999659 + 0.0261220i \(0.991684\pi\)
\(830\) −55.4433 + 32.0102i −1.92446 + 1.11109i
\(831\) 11.0805 + 13.7602i 0.384380 + 0.477334i
\(832\) −3.87301 2.23608i −0.134272 0.0775222i
\(833\) 0 0
\(834\) 61.5155 9.57061i 2.13011 0.331403i
\(835\) −22.2610 38.5571i −0.770373 1.33432i
\(836\) −13.7027 −0.473917
\(837\) −20.8396 1.26379i −0.720323 0.0436830i
\(838\) 17.0401i 0.588641i
\(839\) −22.9477 39.7466i −0.792243 1.37221i −0.924575 0.381000i \(-0.875580\pi\)
0.132331 0.991206i \(-0.457754\pi\)
\(840\) 0 0
\(841\) −4.51923 + 7.82753i −0.155835 + 0.269915i
\(842\) 28.5443 + 16.4800i 0.983701 + 0.567940i
\(843\) 14.7224 11.8554i 0.507065 0.408321i
\(844\) 10.4266 + 18.0593i 0.358897 + 0.621628i
\(845\) 26.2460 0.902891
\(846\) −3.72853 0.813876i −0.128189 0.0279816i
\(847\) 0 0
\(848\) 29.8035 17.2071i 1.02346 0.590893i
\(849\) −19.1679 7.41811i −0.657840 0.254589i
\(850\) 5.65534 + 3.26511i 0.193977 + 0.111992i
\(851\) −14.5338 8.39112i −0.498214 0.287644i
\(852\) 8.79269 + 3.40283i 0.301232 + 0.116579i
\(853\) −24.3086 + 14.0346i −0.832310 + 0.480534i −0.854643 0.519216i \(-0.826224\pi\)
0.0223330 + 0.999751i \(0.492891\pi\)
\(854\) 0 0
\(855\) −4.61589 1.00757i −0.157860 0.0344583i
\(856\) −124.981 −4.27176
\(857\) −8.55426 14.8164i −0.292208 0.506119i 0.682123 0.731237i \(-0.261057\pi\)
−0.974332 + 0.225118i \(0.927723\pi\)
\(858\) −20.0584 + 16.1523i −0.684784 + 0.551431i
\(859\) 4.50996 + 2.60383i 0.153878 + 0.0888414i 0.574962 0.818180i \(-0.305017\pi\)
−0.421084 + 0.907022i \(0.638350\pi\)
\(860\) −42.1775 + 73.0535i −1.43824 + 2.49110i
\(861\) 0 0
\(862\) 28.2456 + 48.9228i 0.962049 + 1.66632i
\(863\) 44.7024i 1.52169i −0.648935 0.760844i \(-0.724785\pi\)
0.648935 0.760844i \(-0.275215\pi\)
\(864\) −40.2108 2.43853i −1.36800 0.0829603i
\(865\) −50.9497 −1.73234
\(866\) −10.5858 18.3352i −0.359721 0.623055i
\(867\) 28.2120 4.38923i 0.958129 0.149066i
\(868\) 0 0
\(869\) −40.1124 23.1589i −1.36072 0.785613i
\(870\) 29.1798 + 36.2363i 0.989287 + 1.22853i
\(871\) 5.51871 3.18623i 0.186994 0.107961i
\(872\) 109.015i 3.69171i
\(873\) 29.7400 32.6683i 1.00655 1.10566i
\(874\) 9.68688i 0.327664i
\(875\) 0 0
\(876\) −113.462 43.9108i −3.83354 1.48361i
\(877\) 2.87432 4.97846i 0.0970587 0.168111i −0.813407 0.581695i \(-0.802390\pi\)
0.910466 + 0.413584i \(0.135723\pi\)
\(878\) −48.8229 + 84.5637i −1.64769 + 2.85389i
\(879\) −11.9402 + 30.8527i −0.402733 + 1.04064i
\(880\) −73.1936 + 42.2584i −2.46736 + 1.42453i
\(881\) 9.98120 0.336275 0.168138 0.985764i \(-0.446225\pi\)
0.168138 + 0.985764i \(0.446225\pi\)
\(882\) 0 0
\(883\) −32.0942 −1.08006 −0.540028 0.841647i \(-0.681586\pi\)
−0.540028 + 0.841647i \(0.681586\pi\)
\(884\) −30.7608 + 17.7597i −1.03460 + 0.597325i
\(885\) −10.9282 13.5709i −0.367346 0.456182i
\(886\) 26.3781 45.6881i 0.886188 1.53492i
\(887\) 4.26812 7.39260i 0.143309 0.248219i −0.785432 0.618949i \(-0.787559\pi\)
0.928741 + 0.370729i \(0.120892\pi\)
\(888\) −5.48177 35.2343i −0.183956 1.18239i
\(889\) 0 0
\(890\) 19.9922i 0.670141i
\(891\) −16.3746 + 35.7204i −0.548569 + 1.19668i
\(892\) 96.5904i 3.23409i
\(893\) 0.288584 0.166614i 0.00965709 0.00557552i
\(894\) −48.2462 + 7.50617i −1.61360 + 0.251044i
\(895\) −34.7140 20.0422i −1.16036 0.669935i
\(896\) 0 0
\(897\) −7.98293 9.91344i −0.266542 0.331000i
\(898\) 46.0277 + 79.7223i 1.53596 + 2.66037i
\(899\) −17.9516 −0.598718
\(900\) −5.81388 + 1.85393i −0.193796 + 0.0617976i
\(901\) 23.9891i 0.799192i
\(902\) 37.0906 + 64.2429i 1.23498 + 2.13905i
\(903\) 0 0
\(904\) −20.0011 + 34.6430i −0.665228 + 1.15221i
\(905\) 33.6166 + 19.4085i 1.11745 + 0.645162i
\(906\) 58.0771 + 22.4763i 1.92948 + 0.746724i
\(907\) −16.0272 27.7599i −0.532175 0.921754i −0.999294 0.0375597i \(-0.988042\pi\)
0.467120 0.884194i \(-0.345292\pi\)
\(908\) −131.586 −4.36685
\(909\) 3.69185 + 3.36093i 0.122451 + 0.111475i
\(910\) 0 0
\(911\) 26.3261 15.1994i 0.872221 0.503577i 0.00413539 0.999991i \(-0.498684\pi\)
0.868086 + 0.496414i \(0.165350\pi\)
\(912\) 7.56308 6.09027i 0.250439 0.201669i
\(913\) −40.2640 23.2464i −1.33254 0.769344i
\(914\) 0.567527 + 0.327662i 0.0187721 + 0.0108381i
\(915\) −1.27377 8.18721i −0.0421095 0.270661i
\(916\) −87.6765 + 50.6201i −2.89691 + 1.67253i
\(917\) 0 0
\(918\) −42.7530 + 64.6654i −1.41106 + 2.13428i
\(919\) −17.4431 −0.575393 −0.287697 0.957722i \(-0.592889\pi\)
−0.287697 + 0.957722i \(0.592889\pi\)
\(920\) −44.2687 76.6757i −1.45950 2.52792i
\(921\) −0.627034 4.03029i −0.0206615 0.132802i
\(922\) 54.5580 + 31.4991i 1.79677 + 1.03737i
\(923\) −0.773612 + 1.33994i −0.0254637 + 0.0441045i
\(924\) 0 0
\(925\) −0.660203 1.14351i −0.0217074 0.0375982i
\(926\) 2.11405i 0.0694718i
\(927\) −4.76468 1.04005i −0.156493 0.0341598i
\(928\) −34.6382 −1.13705
\(929\) 5.21392 + 9.03077i 0.171063 + 0.296290i 0.938792 0.344485i \(-0.111946\pi\)
−0.767729 + 0.640775i \(0.778613\pi\)
\(930\) 15.1009 39.0197i 0.495178 1.27951i
\(931\) 0 0
\(932\) 61.3070 + 35.3956i 2.00818 + 1.15942i
\(933\) −4.90710 + 12.6796i −0.160651 + 0.415111i
\(934\) 4.06199 2.34519i 0.132912 0.0767369i
\(935\) 58.9142i 1.92670i
\(936\) 5.76746 26.4219i 0.188515 0.863626i
\(937\) 51.3201i 1.67655i 0.545245 + 0.838277i \(0.316437\pi\)
−0.545245 + 0.838277i \(0.683563\pi\)
\(938\) 0 0
\(939\) 40.5427 32.6476i 1.32306 1.06541i
\(940\) 2.67342 4.63049i 0.0871973 0.151030i
\(941\) 24.6673 42.7251i 0.804133 1.39280i −0.112742 0.993624i \(-0.535963\pi\)
0.916875 0.399174i \(-0.130703\pi\)
\(942\) 69.6196 10.8315i 2.26833 0.352908i
\(943\) −31.7506 + 18.3312i −1.03394 + 0.596947i
\(944\) 35.8114 1.16556
\(945\) 0 0
\(946\) −87.6252 −2.84894
\(947\) −38.0468 + 21.9663i −1.23636 + 0.713810i −0.968347 0.249607i \(-0.919699\pi\)
−0.268008 + 0.963417i \(0.586365\pi\)
\(948\) 84.3731 13.1268i 2.74031 0.426339i
\(949\) 9.98283 17.2908i 0.324056 0.561282i
\(950\) 0.381076 0.660044i 0.0123637 0.0214146i
\(951\) −14.9839 + 12.0660i −0.485886 + 0.391266i
\(952\) 0 0
\(953\) 21.0833i 0.682956i −0.939890 0.341478i \(-0.889072\pi\)
0.939890 0.341478i \(-0.110928\pi\)
\(954\) 23.7111 + 21.5858i 0.767676 + 0.698865i
\(955\) 2.22480i 0.0719929i
\(956\) −23.0089 + 13.2842i −0.744161 + 0.429641i
\(957\) −12.1945 + 31.5096i −0.394191 + 1.01856i
\(958\) 3.04138 + 1.75594i 0.0982625 + 0.0567319i
\(959\) 0 0
\(960\) 4.93552 12.7530i 0.159293 0.411603i
\(961\) −7.42801 12.8657i −0.239613 0.415022i
\(962\) 10.2730 0.331215
\(963\) −16.6909 52.3423i −0.537857 1.68671i
\(964\) 20.7778i 0.669207i
\(965\) 1.97558 + 3.42181i 0.0635963 + 0.110152i
\(966\) 0 0
\(967\) −27.6671 + 47.9209i −0.889716 + 1.54103i −0.0495039 + 0.998774i \(0.515764\pi\)
−0.840212 + 0.542259i \(0.817569\pi\)
\(968\) −47.6533 27.5127i −1.53164 0.884290i
\(969\) −1.04058 6.68837i −0.0334282 0.214861i
\(970\) 44.2668 + 76.6723i 1.42132 + 2.46180i
\(971\) −6.83465 −0.219334 −0.109667 0.993968i \(-0.534979\pi\)
−0.109667 + 0.993968i \(0.534979\pi\)
\(972\) −17.7900 70.2225i −0.570613 2.25239i
\(973\) 0 0
\(974\) 70.5830 40.7511i 2.26162 1.30575i
\(975\) −0.153951 0.989525i −0.00493037 0.0316902i
\(976\) 14.7480 + 8.51477i 0.472072 + 0.272551i
\(977\) 31.1982 + 18.0123i 0.998118 + 0.576264i 0.907691 0.419639i \(-0.137843\pi\)
0.0904272 + 0.995903i \(0.471177\pi\)
\(978\) −23.5310 + 18.9486i −0.752437 + 0.605910i
\(979\) 12.5736 7.25938i 0.401854 0.232011i
\(980\) 0 0
\(981\) −45.6557 + 14.5587i −1.45767 + 0.464822i
\(982\) −5.87711 −0.187546
\(983\) −20.6863 35.8298i −0.659791 1.14279i −0.980670 0.195671i \(-0.937311\pi\)
0.320878 0.947120i \(-0.396022\pi\)
\(984\) −72.6482 28.1154i −2.31594 0.896285i
\(985\) 25.7455 + 14.8642i 0.820321 + 0.473612i
\(986\) −33.3275 + 57.7249i −1.06136 + 1.83833i
\(987\) 0 0
\(988\) 2.07277 + 3.59014i 0.0659435 + 0.114218i
\(989\) 43.3068i 1.37708i
\(990\) −58.2316 53.0119i −1.85072 1.68483i
\(991\) −21.6734 −0.688478 −0.344239 0.938882i \(-0.611863\pi\)
−0.344239 + 0.938882i \(0.611863\pi\)
\(992\) 15.5752 + 26.9770i 0.494512 + 0.856520i
\(993\) 18.7579 + 23.2941i 0.595263 + 0.739216i
\(994\) 0 0
\(995\) 8.80102 + 5.08127i 0.279011 + 0.161087i
\(996\) 84.6919 13.1764i 2.68357 0.417510i
\(997\) 11.8699 6.85308i 0.375923 0.217039i −0.300120 0.953901i \(-0.597027\pi\)
0.676043 + 0.736862i \(0.263693\pi\)
\(998\) 69.7117i 2.20669i
\(999\) 14.0241 7.00123i 0.443704 0.221509i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.o.e.293.24 yes 48
3.2 odd 2 1323.2.o.e.881.1 48
7.2 even 3 441.2.s.d.374.1 48
7.3 odd 6 441.2.i.d.68.24 48
7.4 even 3 441.2.i.d.68.23 48
7.5 odd 6 441.2.s.d.374.2 48
7.6 odd 2 inner 441.2.o.e.293.23 yes 48
9.2 odd 6 inner 441.2.o.e.146.23 48
9.7 even 3 1323.2.o.e.440.2 48
21.2 odd 6 1323.2.s.d.962.24 48
21.5 even 6 1323.2.s.d.962.23 48
21.11 odd 6 1323.2.i.d.1097.14 48
21.17 even 6 1323.2.i.d.1097.2 48
21.20 even 2 1323.2.o.e.881.2 48
63.2 odd 6 441.2.i.d.227.2 48
63.11 odd 6 441.2.s.d.362.2 48
63.16 even 3 1323.2.i.d.521.2 48
63.20 even 6 inner 441.2.o.e.146.24 yes 48
63.25 even 3 1323.2.s.d.656.23 48
63.34 odd 6 1323.2.o.e.440.1 48
63.38 even 6 441.2.s.d.362.1 48
63.47 even 6 441.2.i.d.227.1 48
63.52 odd 6 1323.2.s.d.656.24 48
63.61 odd 6 1323.2.i.d.521.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.i.d.68.23 48 7.4 even 3
441.2.i.d.68.24 48 7.3 odd 6
441.2.i.d.227.1 48 63.47 even 6
441.2.i.d.227.2 48 63.2 odd 6
441.2.o.e.146.23 48 9.2 odd 6 inner
441.2.o.e.146.24 yes 48 63.20 even 6 inner
441.2.o.e.293.23 yes 48 7.6 odd 2 inner
441.2.o.e.293.24 yes 48 1.1 even 1 trivial
441.2.s.d.362.1 48 63.38 even 6
441.2.s.d.362.2 48 63.11 odd 6
441.2.s.d.374.1 48 7.2 even 3
441.2.s.d.374.2 48 7.5 odd 6
1323.2.i.d.521.2 48 63.16 even 3
1323.2.i.d.521.14 48 63.61 odd 6
1323.2.i.d.1097.2 48 21.17 even 6
1323.2.i.d.1097.14 48 21.11 odd 6
1323.2.o.e.440.1 48 63.34 odd 6
1323.2.o.e.440.2 48 9.7 even 3
1323.2.o.e.881.1 48 3.2 odd 2
1323.2.o.e.881.2 48 21.20 even 2
1323.2.s.d.656.23 48 63.25 even 3
1323.2.s.d.656.24 48 63.52 odd 6
1323.2.s.d.962.23 48 21.5 even 6
1323.2.s.d.962.24 48 21.2 odd 6