gp: [N,k,chi] = [12,4,Mod(1,12)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(12, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("12.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
3 3 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace is the entire newspace S 4 n e w ( Γ 0 ( 12 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(12)) S 4 n e w ( Γ 0 ( 1 2 ) ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T T T
T
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T + 18 T + 18 T + 1 8
T + 18
7 7 7
T − 8 T - 8 T − 8
T - 8
11 11 1 1
T − 36 T - 36 T − 3 6
T - 36
13 13 1 3
T + 10 T + 10 T + 1 0
T + 10
17 17 1 7
T − 18 T - 18 T − 1 8
T - 18
19 19 1 9
T + 100 T + 100 T + 1 0 0
T + 100
23 23 2 3
T − 72 T - 72 T − 7 2
T - 72
29 29 2 9
T + 234 T + 234 T + 2 3 4
T + 234
31 31 3 1
T + 16 T + 16 T + 1 6
T + 16
37 37 3 7
T + 226 T + 226 T + 2 2 6
T + 226
41 41 4 1
T − 90 T - 90 T − 9 0
T - 90
43 43 4 3
T − 452 T - 452 T − 4 5 2
T - 452
47 47 4 7
T − 432 T - 432 T − 4 3 2
T - 432
53 53 5 3
T − 414 T - 414 T − 4 1 4
T - 414
59 59 5 9
T + 684 T + 684 T + 6 8 4
T + 684
61 61 6 1
T − 422 T - 422 T − 4 2 2
T - 422
67 67 6 7
T − 332 T - 332 T − 3 3 2
T - 332
71 71 7 1
T + 360 T + 360 T + 3 6 0
T + 360
73 73 7 3
T − 26 T - 26 T − 2 6
T - 26
79 79 7 9
T − 512 T - 512 T − 5 1 2
T - 512
83 83 8 3
T + 1188 T + 1188 T + 1 1 8 8
T + 1188
89 89 8 9
T + 630 T + 630 T + 6 3 0
T + 630
97 97 9 7
T + 1054 T + 1054 T + 1 0 5 4
T + 1054
show more
show less