Properties

Label 12.4
Level 12
Weight 4
Dimension 5
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 32
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 12 = 2^{2} \cdot 3 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(32\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(12))\).

Total New Old
Modular forms 17 9 8
Cusp forms 7 5 2
Eisenstein series 10 4 6

Trace form

\( 5 q + 3 q^{3} - 8 q^{4} - 18 q^{5} - 24 q^{6} + 8 q^{7} - 3 q^{9} + 80 q^{10} + 36 q^{11} + 120 q^{12} - 50 q^{13} - 54 q^{15} - 224 q^{16} + 18 q^{17} - 240 q^{18} - 100 q^{19} + 144 q^{21} + 240 q^{22}+ \cdots + 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
12.4.a \(\chi_{12}(1, \cdot)\) 12.4.a.a 1 1
12.4.b \(\chi_{12}(11, \cdot)\) 12.4.b.a 4 1

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)