Defining parameters
Level: | \( N \) | = | \( 12 = 2^{2} \cdot 3 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 2 \) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(32\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(12))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17 | 9 | 8 |
Cusp forms | 7 | 5 | 2 |
Eisenstein series | 10 | 4 | 6 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
12.4.a | \(\chi_{12}(1, \cdot)\) | 12.4.a.a | 1 | 1 |
12.4.b | \(\chi_{12}(11, \cdot)\) | 12.4.b.a | 4 | 1 |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(12))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(12)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 1}\)