Defining parameters
Level: | \( N \) | \(=\) | \( 12 = 2^{2} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 12.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(8\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(12))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 9 | 1 | 8 |
Cusp forms | 3 | 1 | 2 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(1\) | |
Minus space | \(-\) | \(0\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(12))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
12.4.a.a | $1$ | $0.708$ | \(\Q\) | None | \(0\) | \(3\) | \(-18\) | \(8\) | $-$ | $-$ | \(q+3q^{3}-18q^{5}+8q^{7}+9q^{9}+6^{2}q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(12))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(12)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)