Properties

Label 576.4.a.a
Level 576576
Weight 44
Character orbit 576.a
Self dual yes
Analytic conductor 33.98533.985
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,4,Mod(1,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 576=2632 576 = 2^{6} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 576.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,0,0,-18,0,-8,0,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.985100163333.9851001633
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 12)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q18q58q736q11+10q1318q17100q19+72q23+199q25234q29+16q31+144q35+226q3790q41+452q43+432q47279q49+414q53+1054q97+O(q100) q - 18 q^{5} - 8 q^{7} - 36 q^{11} + 10 q^{13} - 18 q^{17} - 100 q^{19} + 72 q^{23} + 199 q^{25} - 234 q^{29} + 16 q^{31} + 144 q^{35} + 226 q^{37} - 90 q^{41} + 452 q^{43} + 432 q^{47} - 279 q^{49} + 414 q^{53}+ \cdots - 1054 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 −18.0000 0 −8.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 576.4.a.a 1
3.b odd 2 1 192.4.a.l 1
4.b odd 2 1 576.4.a.b 1
8.b even 2 1 144.4.a.g 1
8.d odd 2 1 36.4.a.a 1
12.b even 2 1 192.4.a.f 1
24.f even 2 1 12.4.a.a 1
24.h odd 2 1 48.4.a.a 1
40.e odd 2 1 900.4.a.g 1
40.k even 4 2 900.4.d.c 2
48.i odd 4 2 768.4.d.j 2
48.k even 4 2 768.4.d.g 2
56.e even 2 1 1764.4.a.b 1
56.k odd 6 2 1764.4.k.b 2
56.m even 6 2 1764.4.k.o 2
72.l even 6 2 324.4.e.h 2
72.p odd 6 2 324.4.e.a 2
120.i odd 2 1 1200.4.a.be 1
120.m even 2 1 300.4.a.b 1
120.q odd 4 2 300.4.d.e 2
120.w even 4 2 1200.4.f.d 2
168.e odd 2 1 588.4.a.c 1
168.i even 2 1 2352.4.a.bk 1
168.v even 6 2 588.4.i.d 2
168.be odd 6 2 588.4.i.e 2
264.p odd 2 1 1452.4.a.d 1
312.h even 2 1 2028.4.a.c 1
312.w odd 4 2 2028.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.4.a.a 1 24.f even 2 1
36.4.a.a 1 8.d odd 2 1
48.4.a.a 1 24.h odd 2 1
144.4.a.g 1 8.b even 2 1
192.4.a.f 1 12.b even 2 1
192.4.a.l 1 3.b odd 2 1
300.4.a.b 1 120.m even 2 1
300.4.d.e 2 120.q odd 4 2
324.4.e.a 2 72.p odd 6 2
324.4.e.h 2 72.l even 6 2
576.4.a.a 1 1.a even 1 1 trivial
576.4.a.b 1 4.b odd 2 1
588.4.a.c 1 168.e odd 2 1
588.4.i.d 2 168.v even 6 2
588.4.i.e 2 168.be odd 6 2
768.4.d.g 2 48.k even 4 2
768.4.d.j 2 48.i odd 4 2
900.4.a.g 1 40.e odd 2 1
900.4.d.c 2 40.k even 4 2
1200.4.a.be 1 120.i odd 2 1
1200.4.f.d 2 120.w even 4 2
1452.4.a.d 1 264.p odd 2 1
1764.4.a.b 1 56.e even 2 1
1764.4.k.b 2 56.k odd 6 2
1764.4.k.o 2 56.m even 6 2
2028.4.a.c 1 312.h even 2 1
2028.4.b.c 2 312.w odd 4 2
2352.4.a.bk 1 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(576))S_{4}^{\mathrm{new}}(\Gamma_0(576)):

T5+18 T_{5} + 18 Copy content Toggle raw display
T7+8 T_{7} + 8 Copy content Toggle raw display
T11+36 T_{11} + 36 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T+18 T + 18 Copy content Toggle raw display
77 T+8 T + 8 Copy content Toggle raw display
1111 T+36 T + 36 Copy content Toggle raw display
1313 T10 T - 10 Copy content Toggle raw display
1717 T+18 T + 18 Copy content Toggle raw display
1919 T+100 T + 100 Copy content Toggle raw display
2323 T72 T - 72 Copy content Toggle raw display
2929 T+234 T + 234 Copy content Toggle raw display
3131 T16 T - 16 Copy content Toggle raw display
3737 T226 T - 226 Copy content Toggle raw display
4141 T+90 T + 90 Copy content Toggle raw display
4343 T452 T - 452 Copy content Toggle raw display
4747 T432 T - 432 Copy content Toggle raw display
5353 T414 T - 414 Copy content Toggle raw display
5959 T684 T - 684 Copy content Toggle raw display
6161 T+422 T + 422 Copy content Toggle raw display
6767 T332 T - 332 Copy content Toggle raw display
7171 T+360 T + 360 Copy content Toggle raw display
7373 T26 T - 26 Copy content Toggle raw display
7979 T+512 T + 512 Copy content Toggle raw display
8383 T1188 T - 1188 Copy content Toggle raw display
8989 T630 T - 630 Copy content Toggle raw display
9797 T+1054 T + 1054 Copy content Toggle raw display
show more
show less