L(s) = 1 | + 3·3-s − 18·5-s + 8·7-s + 9·9-s + 36·11-s − 10·13-s − 54·15-s + 18·17-s − 100·19-s + 24·21-s + 72·23-s + 199·25-s + 27·27-s − 234·29-s − 16·31-s + 108·33-s − 144·35-s − 226·37-s − 30·39-s + 90·41-s + 452·43-s − 162·45-s + 432·47-s − 279·49-s + 54·51-s + 414·53-s − 648·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.60·5-s + 0.431·7-s + 1/3·9-s + 0.986·11-s − 0.213·13-s − 0.929·15-s + 0.256·17-s − 1.20·19-s + 0.249·21-s + 0.652·23-s + 1.59·25-s + 0.192·27-s − 1.49·29-s − 0.0926·31-s + 0.569·33-s − 0.695·35-s − 1.00·37-s − 0.123·39-s + 0.342·41-s + 1.60·43-s − 0.536·45-s + 1.34·47-s − 0.813·49-s + 0.148·51-s + 1.07·53-s − 1.58·55-s + ⋯ |
Λ(s)=(=(12s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(12s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.9344401381 |
L(21) |
≈ |
0.9344401381 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
good | 5 | 1+18T+p3T2 |
| 7 | 1−8T+p3T2 |
| 11 | 1−36T+p3T2 |
| 13 | 1+10T+p3T2 |
| 17 | 1−18T+p3T2 |
| 19 | 1+100T+p3T2 |
| 23 | 1−72T+p3T2 |
| 29 | 1+234T+p3T2 |
| 31 | 1+16T+p3T2 |
| 37 | 1+226T+p3T2 |
| 41 | 1−90T+p3T2 |
| 43 | 1−452T+p3T2 |
| 47 | 1−432T+p3T2 |
| 53 | 1−414T+p3T2 |
| 59 | 1+684T+p3T2 |
| 61 | 1−422T+p3T2 |
| 67 | 1−332T+p3T2 |
| 71 | 1+360T+p3T2 |
| 73 | 1−26T+p3T2 |
| 79 | 1−512T+p3T2 |
| 83 | 1+1188T+p3T2 |
| 89 | 1+630T+p3T2 |
| 97 | 1+1054T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.65697221873960303781526402990, −18.91719553273081271326643124779, −16.94656258097691856593765242257, −15.42632448273370742373967743432, −14.49301964336732569099039232284, −12.46785072595897989496432329095, −11.13009747514994459636212243893, −8.800395059796186281786333535307, −7.38784077424888441275854326091, −4.02436353376270990090525228298,
4.02436353376270990090525228298, 7.38784077424888441275854326091, 8.800395059796186281786333535307, 11.13009747514994459636212243893, 12.46785072595897989496432329095, 14.49301964336732569099039232284, 15.42632448273370742373967743432, 16.94656258097691856593765242257, 18.91719553273081271326643124779, 19.65697221873960303781526402990