Properties

Label 1170.2.bp.h.289.3
Level $1170$
Weight $2$
Character 1170.289
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,6,0,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.3
Root \(-0.147520 - 0.550552i\) of defining polynomial
Character \(\chi\) \(=\) 1170.289
Dual form 1170.2.bp.h.919.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.67513 - 1.48119i) q^{5} +(1.56410 + 0.903032i) q^{7} +1.00000i q^{8} +(-0.710109 + 2.12032i) q^{10} +(3.22179 + 5.58031i) q^{11} +(-1.98082 + 3.01270i) q^{13} -1.80606 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.416726 - 0.240597i) q^{17} +(-3.14363 + 5.44492i) q^{19} +(-0.445186 - 2.19130i) q^{20} +(-5.58031 - 3.22179i) q^{22} +(-6.16499 + 3.55936i) q^{23} +(0.612127 - 4.96239i) q^{25} +(0.209095 - 3.59948i) q^{26} +(1.56410 - 0.903032i) q^{28} +(-1.15633 - 2.00281i) q^{29} +3.25694 q^{31} +(0.866025 + 0.500000i) q^{32} +0.481194 q^{34} +(3.95763 - 0.804035i) q^{35} +(-2.65264 + 1.53150i) q^{37} -6.28726i q^{38} +(1.48119 + 1.67513i) q^{40} +(3.75329 + 6.50089i) q^{41} +(1.73205 + 1.00000i) q^{43} +6.44358 q^{44} +(3.55936 - 6.16499i) q^{46} +2.19394i q^{47} +(-1.86907 - 3.23732i) q^{49} +(1.95108 + 4.60362i) q^{50} +(1.61866 + 3.22179i) q^{52} +0.906679i q^{53} +(13.6624 + 4.57564i) q^{55} +(-0.903032 + 1.56410i) q^{56} +(2.00281 + 1.15633i) q^{58} +(-3.28726 + 5.69370i) q^{59} +(5.47508 - 9.48313i) q^{61} +(-2.82059 + 1.62847i) q^{62} -1.00000 q^{64} +(1.14425 + 7.98064i) q^{65} +(-0.562690 + 0.324869i) q^{67} +(-0.416726 + 0.240597i) q^{68} +(-3.02539 + 2.67513i) q^{70} +(1.83146 - 3.17217i) q^{71} -2.60720i q^{73} +(1.53150 - 2.65264i) q^{74} +(3.14363 + 5.44492i) q^{76} +11.6375i q^{77} +2.29455 q^{79} +(-2.12032 - 0.710109i) q^{80} +(-6.50089 - 3.75329i) q^{82} -13.3380i q^{83} +(-1.05444 + 0.214221i) q^{85} -2.00000 q^{86} +(-5.58031 + 3.22179i) q^{88} +(0.578163 + 1.00141i) q^{89} +(-5.81876 + 2.92340i) q^{91} +7.11871i q^{92} +(-1.09697 - 1.90000i) q^{94} +(2.79900 + 13.7773i) q^{95} +(11.9784 + 6.91573i) q^{97} +(3.23732 + 1.86907i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{10} + 6 q^{11} - 20 q^{14} - 6 q^{16} - 26 q^{19} + 4 q^{25} + 28 q^{29} + 24 q^{31} - 16 q^{34} + 6 q^{35} - 4 q^{40} + 4 q^{41} + 12 q^{44} - 4 q^{49} + 8 q^{50} + 12 q^{55} - 10 q^{56}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.67513 1.48119i 0.749141 0.662410i
\(6\) 0 0
\(7\) 1.56410 + 0.903032i 0.591173 + 0.341314i 0.765561 0.643363i \(-0.222461\pi\)
−0.174388 + 0.984677i \(0.555795\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −0.710109 + 2.12032i −0.224556 + 0.670503i
\(11\) 3.22179 + 5.58031i 0.971407 + 1.68253i 0.691317 + 0.722552i \(0.257031\pi\)
0.280090 + 0.959974i \(0.409636\pi\)
\(12\) 0 0
\(13\) −1.98082 + 3.01270i −0.549382 + 0.835572i
\(14\) −1.80606 −0.482691
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.416726 0.240597i −0.101071 0.0583534i 0.448612 0.893726i \(-0.351918\pi\)
−0.549684 + 0.835373i \(0.685252\pi\)
\(18\) 0 0
\(19\) −3.14363 + 5.44492i −0.721198 + 1.24915i 0.239322 + 0.970940i \(0.423075\pi\)
−0.960520 + 0.278211i \(0.910258\pi\)
\(20\) −0.445186 2.19130i −0.0995467 0.489990i
\(21\) 0 0
\(22\) −5.58031 3.22179i −1.18973 0.686888i
\(23\) −6.16499 + 3.55936i −1.28549 + 0.742177i −0.977846 0.209325i \(-0.932873\pi\)
−0.307642 + 0.951502i \(0.599540\pi\)
\(24\) 0 0
\(25\) 0.612127 4.96239i 0.122425 0.992478i
\(26\) 0.209095 3.59948i 0.0410069 0.705917i
\(27\) 0 0
\(28\) 1.56410 0.903032i 0.295587 0.170657i
\(29\) −1.15633 2.00281i −0.214724 0.371913i 0.738463 0.674294i \(-0.235552\pi\)
−0.953187 + 0.302381i \(0.902219\pi\)
\(30\) 0 0
\(31\) 3.25694 0.584964 0.292482 0.956271i \(-0.405519\pi\)
0.292482 + 0.956271i \(0.405519\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 0.481194 0.0825241
\(35\) 3.95763 0.804035i 0.668962 0.135907i
\(36\) 0 0
\(37\) −2.65264 + 1.53150i −0.436091 + 0.251777i −0.701938 0.712238i \(-0.747682\pi\)
0.265847 + 0.964015i \(0.414348\pi\)
\(38\) 6.28726i 1.01993i
\(39\) 0 0
\(40\) 1.48119 + 1.67513i 0.234197 + 0.264861i
\(41\) 3.75329 + 6.50089i 0.586166 + 1.01527i 0.994729 + 0.102539i \(0.0326967\pi\)
−0.408563 + 0.912730i \(0.633970\pi\)
\(42\) 0 0
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) 6.44358 0.971407
\(45\) 0 0
\(46\) 3.55936 6.16499i 0.524799 0.908978i
\(47\) 2.19394i 0.320019i 0.987116 + 0.160009i \(0.0511524\pi\)
−0.987116 + 0.160009i \(0.948848\pi\)
\(48\) 0 0
\(49\) −1.86907 3.23732i −0.267010 0.462474i
\(50\) 1.95108 + 4.60362i 0.275924 + 0.651050i
\(51\) 0 0
\(52\) 1.61866 + 3.22179i 0.224468 + 0.446782i
\(53\) 0.906679i 0.124542i 0.998059 + 0.0622710i \(0.0198343\pi\)
−0.998059 + 0.0622710i \(0.980166\pi\)
\(54\) 0 0
\(55\) 13.6624 + 4.57564i 1.84224 + 0.616980i
\(56\) −0.903032 + 1.56410i −0.120673 + 0.209011i
\(57\) 0 0
\(58\) 2.00281 + 1.15633i 0.262982 + 0.151833i
\(59\) −3.28726 + 5.69370i −0.427965 + 0.741256i −0.996692 0.0812696i \(-0.974103\pi\)
0.568728 + 0.822526i \(0.307436\pi\)
\(60\) 0 0
\(61\) 5.47508 9.48313i 0.701013 1.21419i −0.267098 0.963669i \(-0.586065\pi\)
0.968111 0.250521i \(-0.0806018\pi\)
\(62\) −2.82059 + 1.62847i −0.358216 + 0.206816i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.14425 + 7.98064i 0.141927 + 0.989877i
\(66\) 0 0
\(67\) −0.562690 + 0.324869i −0.0687435 + 0.0396891i −0.533978 0.845499i \(-0.679303\pi\)
0.465234 + 0.885188i \(0.345970\pi\)
\(68\) −0.416726 + 0.240597i −0.0505355 + 0.0291767i
\(69\) 0 0
\(70\) −3.02539 + 2.67513i −0.361604 + 0.319739i
\(71\) 1.83146 3.17217i 0.217354 0.376468i −0.736644 0.676280i \(-0.763591\pi\)
0.953998 + 0.299812i \(0.0969241\pi\)
\(72\) 0 0
\(73\) 2.60720i 0.305150i −0.988292 0.152575i \(-0.951243\pi\)
0.988292 0.152575i \(-0.0487566\pi\)
\(74\) 1.53150 2.65264i 0.178033 0.308363i
\(75\) 0 0
\(76\) 3.14363 + 5.44492i 0.360599 + 0.624576i
\(77\) 11.6375i 1.32622i
\(78\) 0 0
\(79\) 2.29455 0.258157 0.129079 0.991634i \(-0.458798\pi\)
0.129079 + 0.991634i \(0.458798\pi\)
\(80\) −2.12032 0.710109i −0.237059 0.0793926i
\(81\) 0 0
\(82\) −6.50089 3.75329i −0.717904 0.414482i
\(83\) 13.3380i 1.46404i −0.681283 0.732020i \(-0.738578\pi\)
0.681283 0.732020i \(-0.261422\pi\)
\(84\) 0 0
\(85\) −1.05444 + 0.214221i −0.114370 + 0.0232356i
\(86\) −2.00000 −0.215666
\(87\) 0 0
\(88\) −5.58031 + 3.22179i −0.594863 + 0.343444i
\(89\) 0.578163 + 1.00141i 0.0612851 + 0.106149i 0.895040 0.445986i \(-0.147147\pi\)
−0.833755 + 0.552135i \(0.813813\pi\)
\(90\) 0 0
\(91\) −5.81876 + 2.92340i −0.609972 + 0.306456i
\(92\) 7.11871i 0.742177i
\(93\) 0 0
\(94\) −1.09697 1.90000i −0.113144 0.195971i
\(95\) 2.79900 + 13.7773i 0.287172 + 1.41352i
\(96\) 0 0
\(97\) 11.9784 + 6.91573i 1.21622 + 0.702186i 0.964108 0.265512i \(-0.0855409\pi\)
0.252114 + 0.967698i \(0.418874\pi\)
\(98\) 3.23732 + 1.86907i 0.327019 + 0.188804i
\(99\) 0 0
\(100\) −3.99149 3.01131i −0.399149 0.301131i
\(101\) −4.79995 8.31376i −0.477613 0.827250i 0.522057 0.852910i \(-0.325165\pi\)
−0.999671 + 0.0256599i \(0.991831\pi\)
\(102\) 0 0
\(103\) 3.07522i 0.303011i 0.988456 + 0.151505i \(0.0484121\pi\)
−0.988456 + 0.151505i \(0.951588\pi\)
\(104\) −3.01270 1.98082i −0.295419 0.194236i
\(105\) 0 0
\(106\) −0.453339 0.785207i −0.0440322 0.0762660i
\(107\) −1.45071 + 0.837565i −0.140245 + 0.0809705i −0.568481 0.822697i \(-0.692469\pi\)
0.428236 + 0.903667i \(0.359135\pi\)
\(108\) 0 0
\(109\) −10.8872 −1.04280 −0.521401 0.853312i \(-0.674590\pi\)
−0.521401 + 0.853312i \(0.674590\pi\)
\(110\) −14.1198 + 2.86860i −1.34627 + 0.273510i
\(111\) 0 0
\(112\) 1.80606i 0.170657i
\(113\) 12.1244 + 7.00000i 1.14056 + 0.658505i 0.946570 0.322498i \(-0.104523\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(114\) 0 0
\(115\) −5.05506 + 15.0939i −0.471387 + 1.40752i
\(116\) −2.31265 −0.214724
\(117\) 0 0
\(118\) 6.57452i 0.605233i
\(119\) −0.434534 0.752634i −0.0398336 0.0689939i
\(120\) 0 0
\(121\) −15.2599 + 26.4309i −1.38726 + 2.40281i
\(122\) 10.9502i 0.991382i
\(123\) 0 0
\(124\) 1.62847 2.82059i 0.146241 0.253297i
\(125\) −6.32487 9.21933i −0.565713 0.824602i
\(126\) 0 0
\(127\) 4.49176 2.59332i 0.398580 0.230120i −0.287291 0.957843i \(-0.592755\pi\)
0.685871 + 0.727723i \(0.259421\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −4.98127 6.33932i −0.436886 0.555995i
\(131\) 10.8011 0.943700 0.471850 0.881679i \(-0.343586\pi\)
0.471850 + 0.881679i \(0.343586\pi\)
\(132\) 0 0
\(133\) −9.83388 + 5.67759i −0.852706 + 0.492310i
\(134\) 0.324869 0.562690i 0.0280644 0.0486090i
\(135\) 0 0
\(136\) 0.240597 0.416726i 0.0206310 0.0357340i
\(137\) 5.32095 + 3.07205i 0.454600 + 0.262463i 0.709771 0.704433i \(-0.248798\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(138\) 0 0
\(139\) 5.16902 8.95301i 0.438431 0.759384i −0.559138 0.829075i \(-0.688868\pi\)
0.997569 + 0.0696904i \(0.0222011\pi\)
\(140\) 1.28250 3.82943i 0.108391 0.323646i
\(141\) 0 0
\(142\) 3.66291i 0.307385i
\(143\) −23.1936 1.34732i −1.93954 0.112669i
\(144\) 0 0
\(145\) −4.90355 1.64223i −0.407218 0.136380i
\(146\) 1.30360 + 2.25790i 0.107887 + 0.186865i
\(147\) 0 0
\(148\) 3.06300i 0.251777i
\(149\) 8.02539 13.9004i 0.657466 1.13876i −0.323804 0.946124i \(-0.604962\pi\)
0.981270 0.192640i \(-0.0617049\pi\)
\(150\) 0 0
\(151\) 9.31757 0.758253 0.379127 0.925345i \(-0.376224\pi\)
0.379127 + 0.925345i \(0.376224\pi\)
\(152\) −5.44492 3.14363i −0.441642 0.254982i
\(153\) 0 0
\(154\) −5.81876 10.0784i −0.468889 0.812140i
\(155\) 5.45580 4.82416i 0.438221 0.387486i
\(156\) 0 0
\(157\) 14.7562i 1.17768i 0.808251 + 0.588838i \(0.200414\pi\)
−0.808251 + 0.588838i \(0.799586\pi\)
\(158\) −1.98714 + 1.14728i −0.158088 + 0.0912724i
\(159\) 0 0
\(160\) 2.19130 0.445186i 0.173238 0.0351951i
\(161\) −12.8568 −1.01326
\(162\) 0 0
\(163\) 11.7127 + 6.76234i 0.917411 + 0.529668i 0.882808 0.469734i \(-0.155650\pi\)
0.0346029 + 0.999401i \(0.488983\pi\)
\(164\) 7.50659 0.586166
\(165\) 0 0
\(166\) 6.66902 + 11.5511i 0.517616 + 0.896538i
\(167\) 20.2858 11.7120i 1.56977 0.906304i 0.573570 0.819157i \(-0.305558\pi\)
0.996195 0.0871479i \(-0.0277753\pi\)
\(168\) 0 0
\(169\) −5.15268 11.9352i −0.396360 0.918095i
\(170\) 0.806063 0.712742i 0.0618222 0.0546648i
\(171\) 0 0
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) −4.00480 2.31217i −0.304479 0.175791i 0.339974 0.940435i \(-0.389582\pi\)
−0.644453 + 0.764644i \(0.722915\pi\)
\(174\) 0 0
\(175\) 5.43862 7.20889i 0.411121 0.544941i
\(176\) 3.22179 5.58031i 0.242852 0.420631i
\(177\) 0 0
\(178\) −1.00141 0.578163i −0.0750586 0.0433351i
\(179\) 4.15633 + 7.19897i 0.310658 + 0.538076i 0.978505 0.206223i \(-0.0661172\pi\)
−0.667847 + 0.744299i \(0.732784\pi\)
\(180\) 0 0
\(181\) −1.02539 −0.0762168 −0.0381084 0.999274i \(-0.512133\pi\)
−0.0381084 + 0.999274i \(0.512133\pi\)
\(182\) 3.57749 5.44112i 0.265181 0.403323i
\(183\) 0 0
\(184\) −3.55936 6.16499i −0.262399 0.454489i
\(185\) −2.17507 + 6.49454i −0.159914 + 0.477488i
\(186\) 0 0
\(187\) 3.10062i 0.226739i
\(188\) 1.90000 + 1.09697i 0.138572 + 0.0800046i
\(189\) 0 0
\(190\) −9.31265 10.5320i −0.675611 0.764070i
\(191\) 0.177593 0.307600i 0.0128502 0.0222572i −0.859529 0.511087i \(-0.829243\pi\)
0.872379 + 0.488830i \(0.162576\pi\)
\(192\) 0 0
\(193\) 12.1244 7.00000i 0.872730 0.503871i 0.00447566 0.999990i \(-0.498575\pi\)
0.868255 + 0.496119i \(0.165242\pi\)
\(194\) −13.8315 −0.993041
\(195\) 0 0
\(196\) −3.73813 −0.267010
\(197\) −12.2166 + 7.05325i −0.870396 + 0.502523i −0.867480 0.497473i \(-0.834261\pi\)
−0.00291585 + 0.999996i \(0.500928\pi\)
\(198\) 0 0
\(199\) −1.57452 + 2.72714i −0.111614 + 0.193322i −0.916421 0.400215i \(-0.868935\pi\)
0.804807 + 0.593537i \(0.202269\pi\)
\(200\) 4.96239 + 0.612127i 0.350894 + 0.0432839i
\(201\) 0 0
\(202\) 8.31376 + 4.79995i 0.584954 + 0.337724i
\(203\) 4.17679i 0.293153i
\(204\) 0 0
\(205\) 15.9163 + 5.33049i 1.11165 + 0.372298i
\(206\) −1.53761 2.66322i −0.107130 0.185555i
\(207\) 0 0
\(208\) 3.59948 + 0.209095i 0.249579 + 0.0144981i
\(209\) −40.5125 −2.80231
\(210\) 0 0
\(211\) −1.54666 2.67889i −0.106477 0.184423i 0.807864 0.589369i \(-0.200624\pi\)
−0.914340 + 0.404946i \(0.867290\pi\)
\(212\) 0.785207 + 0.453339i 0.0539282 + 0.0311355i
\(213\) 0 0
\(214\) 0.837565 1.45071i 0.0572548 0.0991682i
\(215\) 4.38261 0.890373i 0.298891 0.0607229i
\(216\) 0 0
\(217\) 5.09417 + 2.94112i 0.345815 + 0.199656i
\(218\) 9.42856 5.44358i 0.638583 0.368686i
\(219\) 0 0
\(220\) 10.7938 9.54420i 0.727721 0.643470i
\(221\) 1.55031 0.778890i 0.104285 0.0523938i
\(222\) 0 0
\(223\) 19.2205 11.0970i 1.28710 0.743108i 0.308965 0.951074i \(-0.400018\pi\)
0.978136 + 0.207966i \(0.0666842\pi\)
\(224\) 0.903032 + 1.56410i 0.0603363 + 0.104506i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) 11.5490 + 6.66784i 0.766536 + 0.442560i 0.831638 0.555319i \(-0.187404\pi\)
−0.0651014 + 0.997879i \(0.520737\pi\)
\(228\) 0 0
\(229\) −26.1744 −1.72965 −0.864827 0.502069i \(-0.832572\pi\)
−0.864827 + 0.502069i \(0.832572\pi\)
\(230\) −3.16915 15.5993i −0.208968 1.02858i
\(231\) 0 0
\(232\) 2.00281 1.15633i 0.131491 0.0759165i
\(233\) 20.8691i 1.36718i −0.729867 0.683589i \(-0.760418\pi\)
0.729867 0.683589i \(-0.239582\pi\)
\(234\) 0 0
\(235\) 3.24965 + 3.67513i 0.211984 + 0.239739i
\(236\) 3.28726 + 5.69370i 0.213982 + 0.370628i
\(237\) 0 0
\(238\) 0.752634 + 0.434534i 0.0487860 + 0.0281666i
\(239\) −15.2931 −0.989231 −0.494615 0.869112i \(-0.664691\pi\)
−0.494615 + 0.869112i \(0.664691\pi\)
\(240\) 0 0
\(241\) 6.38423 11.0578i 0.411244 0.712296i −0.583782 0.811910i \(-0.698428\pi\)
0.995026 + 0.0996147i \(0.0317610\pi\)
\(242\) 30.5198i 1.96188i
\(243\) 0 0
\(244\) −5.47508 9.48313i −0.350506 0.607095i
\(245\) −7.92603 2.65448i −0.506376 0.169589i
\(246\) 0 0
\(247\) −10.1769 20.2562i −0.647543 1.28887i
\(248\) 3.25694i 0.206816i
\(249\) 0 0
\(250\) 10.0872 + 4.82174i 0.637968 + 0.304954i
\(251\) −2.10602 + 3.64773i −0.132931 + 0.230243i −0.924805 0.380441i \(-0.875772\pi\)
0.791874 + 0.610684i \(0.209105\pi\)
\(252\) 0 0
\(253\) −39.7246 22.9350i −2.49746 1.44191i
\(254\) −2.59332 + 4.49176i −0.162719 + 0.281838i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 16.1300 9.31265i 1.00616 0.580907i 0.0960955 0.995372i \(-0.469365\pi\)
0.910065 + 0.414465i \(0.136031\pi\)
\(258\) 0 0
\(259\) −5.53198 −0.343740
\(260\) 7.48357 + 2.99937i 0.464111 + 0.186013i
\(261\) 0 0
\(262\) −9.35406 + 5.40057i −0.577896 + 0.333648i
\(263\) 19.9363 11.5102i 1.22933 0.709751i 0.262437 0.964949i \(-0.415474\pi\)
0.966889 + 0.255198i \(0.0821406\pi\)
\(264\) 0 0
\(265\) 1.34297 + 1.51881i 0.0824978 + 0.0932995i
\(266\) 5.67759 9.83388i 0.348116 0.602954i
\(267\) 0 0
\(268\) 0.649738i 0.0396891i
\(269\) 6.73695 11.6687i 0.410759 0.711456i −0.584214 0.811600i \(-0.698597\pi\)
0.994973 + 0.100144i \(0.0319304\pi\)
\(270\) 0 0
\(271\) 8.95017 + 15.5021i 0.543684 + 0.941688i 0.998688 + 0.0511993i \(0.0163044\pi\)
−0.455004 + 0.890489i \(0.650362\pi\)
\(272\) 0.481194i 0.0291767i
\(273\) 0 0
\(274\) −6.14411 −0.371179
\(275\) 29.6638 12.5719i 1.78879 0.758116i
\(276\) 0 0
\(277\) 7.35125 + 4.24424i 0.441694 + 0.255012i 0.704316 0.709887i \(-0.251254\pi\)
−0.262622 + 0.964899i \(0.584587\pi\)
\(278\) 10.3380i 0.620035i
\(279\) 0 0
\(280\) 0.804035 + 3.95763i 0.0480503 + 0.236514i
\(281\) 16.5296 0.986074 0.493037 0.870008i \(-0.335887\pi\)
0.493037 + 0.870008i \(0.335887\pi\)
\(282\) 0 0
\(283\) 1.33100 0.768452i 0.0791196 0.0456797i −0.459918 0.887961i \(-0.652121\pi\)
0.539038 + 0.842282i \(0.318788\pi\)
\(284\) −1.83146 3.17217i −0.108677 0.188234i
\(285\) 0 0
\(286\) 20.7599 10.4300i 1.22756 0.616737i
\(287\) 13.5574i 0.800266i
\(288\) 0 0
\(289\) −8.38423 14.5219i −0.493190 0.854230i
\(290\) 5.06772 1.02956i 0.297587 0.0604579i
\(291\) 0 0
\(292\) −2.25790 1.30360i −0.132134 0.0762875i
\(293\) 5.13527 + 2.96485i 0.300006 + 0.173208i 0.642446 0.766331i \(-0.277920\pi\)
−0.342440 + 0.939540i \(0.611253\pi\)
\(294\) 0 0
\(295\) 2.92689 + 14.4068i 0.170410 + 0.838794i
\(296\) −1.53150 2.65264i −0.0890167 0.154182i
\(297\) 0 0
\(298\) 16.0508i 0.929797i
\(299\) 1.48849 25.6237i 0.0860815 1.48186i
\(300\) 0 0
\(301\) 1.80606 + 3.12819i 0.104100 + 0.180306i
\(302\) −8.06926 + 4.65879i −0.464334 + 0.268083i
\(303\) 0 0
\(304\) 6.28726 0.360599
\(305\) −4.87487 23.9951i −0.279134 1.37396i
\(306\) 0 0
\(307\) 17.9756i 1.02592i −0.858413 0.512960i \(-0.828549\pi\)
0.858413 0.512960i \(-0.171451\pi\)
\(308\) 10.0784 + 5.81876i 0.574269 + 0.331555i
\(309\) 0 0
\(310\) −2.31278 + 6.90575i −0.131357 + 0.392220i
\(311\) −15.9575 −0.904865 −0.452432 0.891799i \(-0.649444\pi\)
−0.452432 + 0.891799i \(0.649444\pi\)
\(312\) 0 0
\(313\) 23.4372i 1.32475i 0.749172 + 0.662376i \(0.230452\pi\)
−0.749172 + 0.662376i \(0.769548\pi\)
\(314\) −7.37812 12.7793i −0.416371 0.721176i
\(315\) 0 0
\(316\) 1.14728 1.98714i 0.0645393 0.111785i
\(317\) 20.6507i 1.15986i 0.814667 + 0.579929i \(0.196920\pi\)
−0.814667 + 0.579929i \(0.803080\pi\)
\(318\) 0 0
\(319\) 7.45088 12.9053i 0.417169 0.722558i
\(320\) −1.67513 + 1.48119i −0.0936427 + 0.0828013i
\(321\) 0 0
\(322\) 11.1344 6.42842i 0.620493 0.358242i
\(323\) 2.62007 1.51270i 0.145784 0.0841687i
\(324\) 0 0
\(325\) 13.7377 + 11.6738i 0.762028 + 0.647544i
\(326\) −13.5247 −0.749063
\(327\) 0 0
\(328\) −6.50089 + 3.75329i −0.358952 + 0.207241i
\(329\) −1.98119 + 3.43153i −0.109227 + 0.189186i
\(330\) 0 0
\(331\) 13.3380 23.1022i 0.733125 1.26981i −0.222416 0.974952i \(-0.571394\pi\)
0.955541 0.294858i \(-0.0952724\pi\)
\(332\) −11.5511 6.66902i −0.633948 0.366010i
\(333\) 0 0
\(334\) −11.7120 + 20.2858i −0.640854 + 1.10999i
\(335\) −0.461385 + 1.37765i −0.0252081 + 0.0752691i
\(336\) 0 0
\(337\) 8.40597i 0.457902i −0.973438 0.228951i \(-0.926470\pi\)
0.973438 0.228951i \(-0.0735296\pi\)
\(338\) 10.4300 + 7.75988i 0.567316 + 0.422082i
\(339\) 0 0
\(340\) −0.341700 + 1.02028i −0.0185313 + 0.0553327i
\(341\) 10.4932 + 18.1747i 0.568238 + 0.984217i
\(342\) 0 0
\(343\) 19.3938i 1.04716i
\(344\) −1.00000 + 1.73205i −0.0539164 + 0.0933859i
\(345\) 0 0
\(346\) 4.62435 0.248606
\(347\) −18.3177 10.5757i −0.983343 0.567733i −0.0800652 0.996790i \(-0.525513\pi\)
−0.903278 + 0.429056i \(0.858846\pi\)
\(348\) 0 0
\(349\) 2.73695 + 4.74054i 0.146506 + 0.253755i 0.929934 0.367727i \(-0.119864\pi\)
−0.783428 + 0.621482i \(0.786531\pi\)
\(350\) −1.10554 + 8.96239i −0.0590936 + 0.479060i
\(351\) 0 0
\(352\) 6.44358i 0.343444i
\(353\) −26.1056 + 15.0721i −1.38946 + 0.802204i −0.993254 0.115958i \(-0.963006\pi\)
−0.396205 + 0.918162i \(0.629673\pi\)
\(354\) 0 0
\(355\) −1.63068 8.02655i −0.0865474 0.426005i
\(356\) 1.15633 0.0612851
\(357\) 0 0
\(358\) −7.19897 4.15633i −0.380477 0.219669i
\(359\) −8.38787 −0.442695 −0.221348 0.975195i \(-0.571046\pi\)
−0.221348 + 0.975195i \(0.571046\pi\)
\(360\) 0 0
\(361\) −10.2648 17.7792i −0.540253 0.935745i
\(362\) 0.888016 0.512696i 0.0466731 0.0269467i
\(363\) 0 0
\(364\) −0.377639 + 6.50089i −0.0197937 + 0.340739i
\(365\) −3.86177 4.36741i −0.202134 0.228600i
\(366\) 0 0
\(367\) −16.8983 + 9.75623i −0.882084 + 0.509271i −0.871345 0.490671i \(-0.836752\pi\)
−0.0107388 + 0.999942i \(0.503418\pi\)
\(368\) 6.16499 + 3.55936i 0.321372 + 0.185544i
\(369\) 0 0
\(370\) −1.36361 6.71197i −0.0708906 0.348939i
\(371\) −0.818760 + 1.41813i −0.0425079 + 0.0736258i
\(372\) 0 0
\(373\) −7.37324 4.25694i −0.381772 0.220416i 0.296817 0.954934i \(-0.404075\pi\)
−0.678589 + 0.734518i \(0.737408\pi\)
\(374\) 1.55031 + 2.68521i 0.0801645 + 0.138849i
\(375\) 0 0
\(376\) −2.19394 −0.113144
\(377\) 8.32435 + 0.483564i 0.428726 + 0.0249048i
\(378\) 0 0
\(379\) −9.85931 17.0768i −0.506439 0.877178i −0.999972 0.00745089i \(-0.997628\pi\)
0.493533 0.869727i \(-0.335705\pi\)
\(380\) 13.3310 + 4.46464i 0.683865 + 0.229031i
\(381\) 0 0
\(382\) 0.355186i 0.0181729i
\(383\) −24.0059 13.8598i −1.22664 0.708202i −0.260316 0.965523i \(-0.583827\pi\)
−0.966326 + 0.257321i \(0.917160\pi\)
\(384\) 0 0
\(385\) 17.2374 + 19.4944i 0.878501 + 0.993525i
\(386\) −7.00000 + 12.1244i −0.356291 + 0.617113i
\(387\) 0 0
\(388\) 11.9784 6.91573i 0.608111 0.351093i
\(389\) 9.15140 0.463994 0.231997 0.972716i \(-0.425474\pi\)
0.231997 + 0.972716i \(0.425474\pi\)
\(390\) 0 0
\(391\) 3.42548 0.173234
\(392\) 3.23732 1.86907i 0.163509 0.0944022i
\(393\) 0 0
\(394\) 7.05325 12.2166i 0.355337 0.615463i
\(395\) 3.84367 3.39868i 0.193396 0.171006i
\(396\) 0 0
\(397\) −1.23877 0.715205i −0.0621721 0.0358951i 0.468592 0.883415i \(-0.344762\pi\)
−0.530764 + 0.847520i \(0.678095\pi\)
\(398\) 3.14903i 0.157847i
\(399\) 0 0
\(400\) −4.60362 + 1.95108i −0.230181 + 0.0975538i
\(401\) 10.8351 + 18.7669i 0.541079 + 0.937177i 0.998842 + 0.0481025i \(0.0153174\pi\)
−0.457763 + 0.889074i \(0.651349\pi\)
\(402\) 0 0
\(403\) −6.45142 + 9.81217i −0.321368 + 0.488779i
\(404\) −9.59991 −0.477613
\(405\) 0 0
\(406\) 2.08840 + 3.61721i 0.103645 + 0.179519i
\(407\) −17.0925 9.86836i −0.847244 0.489156i
\(408\) 0 0
\(409\) 4.54055 7.86447i 0.224516 0.388873i −0.731658 0.681672i \(-0.761253\pi\)
0.956174 + 0.292799i \(0.0945866\pi\)
\(410\) −16.4492 + 3.34183i −0.812368 + 0.165041i
\(411\) 0 0
\(412\) 2.66322 + 1.53761i 0.131207 + 0.0757527i
\(413\) −10.2832 + 5.93700i −0.506002 + 0.292140i
\(414\) 0 0
\(415\) −19.7562 22.3430i −0.969795 1.09677i
\(416\) −3.22179 + 1.61866i −0.157961 + 0.0793613i
\(417\) 0 0
\(418\) 35.0848 20.2562i 1.71605 0.990765i
\(419\) 7.77139 + 13.4604i 0.379657 + 0.657586i 0.991012 0.133771i \(-0.0427086\pi\)
−0.611355 + 0.791356i \(0.709375\pi\)
\(420\) 0 0
\(421\) −4.96476 −0.241968 −0.120984 0.992654i \(-0.538605\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(422\) 2.67889 + 1.54666i 0.130407 + 0.0752903i
\(423\) 0 0
\(424\) −0.906679 −0.0440322
\(425\) −1.44903 + 1.92068i −0.0702881 + 0.0931668i
\(426\) 0 0
\(427\) 17.1271 9.88835i 0.828840 0.478531i
\(428\) 1.67513i 0.0809705i
\(429\) 0 0
\(430\) −3.35026 + 2.96239i −0.161564 + 0.142859i
\(431\) −16.4853 28.5534i −0.794070 1.37537i −0.923428 0.383771i \(-0.874625\pi\)
0.129358 0.991598i \(-0.458708\pi\)
\(432\) 0 0
\(433\) −13.9529 8.05571i −0.670534 0.387133i 0.125745 0.992063i \(-0.459868\pi\)
−0.796279 + 0.604930i \(0.793201\pi\)
\(434\) −5.88224 −0.282357
\(435\) 0 0
\(436\) −5.44358 + 9.42856i −0.260700 + 0.451546i
\(437\) 44.7572i 2.14103i
\(438\) 0 0
\(439\) −0.0417360 0.0722889i −0.00199195 0.00345016i 0.865028 0.501724i \(-0.167301\pi\)
−0.867020 + 0.498274i \(0.833967\pi\)
\(440\) −4.57564 + 13.6624i −0.218135 + 0.651331i
\(441\) 0 0
\(442\) −0.953161 + 1.44969i −0.0453372 + 0.0689548i
\(443\) 40.9135i 1.94386i 0.235271 + 0.971930i \(0.424402\pi\)
−0.235271 + 0.971930i \(0.575598\pi\)
\(444\) 0 0
\(445\) 2.45178 + 0.821117i 0.116225 + 0.0389247i
\(446\) −11.0970 + 19.2205i −0.525457 + 0.910118i
\(447\) 0 0
\(448\) −1.56410 0.903032i −0.0738966 0.0426642i
\(449\) 14.5659 25.2290i 0.687409 1.19063i −0.285264 0.958449i \(-0.592081\pi\)
0.972673 0.232179i \(-0.0745855\pi\)
\(450\) 0 0
\(451\) −24.1847 + 41.8891i −1.13881 + 1.97248i
\(452\) 12.1244 7.00000i 0.570282 0.329252i
\(453\) 0 0
\(454\) −13.3357 −0.625874
\(455\) −5.41706 + 13.5158i −0.253956 + 0.633630i
\(456\) 0 0
\(457\) −28.2912 + 16.3339i −1.32341 + 0.764068i −0.984270 0.176669i \(-0.943468\pi\)
−0.339135 + 0.940738i \(0.610134\pi\)
\(458\) 22.6677 13.0872i 1.05919 0.611525i
\(459\) 0 0
\(460\) 10.5442 + 11.9248i 0.491626 + 0.555996i
\(461\) −9.55031 + 16.5416i −0.444802 + 0.770420i −0.998038 0.0626044i \(-0.980059\pi\)
0.553236 + 0.833024i \(0.313393\pi\)
\(462\) 0 0
\(463\) 8.29218i 0.385370i −0.981261 0.192685i \(-0.938280\pi\)
0.981261 0.192685i \(-0.0617196\pi\)
\(464\) −1.15633 + 2.00281i −0.0536810 + 0.0929783i
\(465\) 0 0
\(466\) 10.4345 + 18.0731i 0.483370 + 0.837222i
\(467\) 23.5369i 1.08916i 0.838710 + 0.544579i \(0.183311\pi\)
−0.838710 + 0.544579i \(0.816689\pi\)
\(468\) 0 0
\(469\) −1.17347 −0.0541857
\(470\) −4.65184 1.55793i −0.214573 0.0718621i
\(471\) 0 0
\(472\) −5.69370 3.28726i −0.262074 0.151308i
\(473\) 12.8872i 0.592553i
\(474\) 0 0
\(475\) 25.0955 + 18.9329i 1.15146 + 0.868701i
\(476\) −0.869067 −0.0398336
\(477\) 0 0
\(478\) 13.2442 7.64657i 0.605778 0.349746i
\(479\) −3.27821 5.67802i −0.149785 0.259436i 0.781363 0.624077i \(-0.214525\pi\)
−0.931148 + 0.364642i \(0.881192\pi\)
\(480\) 0 0
\(481\) 0.640459 11.0252i 0.0292024 0.502707i
\(482\) 12.7685i 0.581587i
\(483\) 0 0
\(484\) 15.2599 + 26.4309i 0.693631 + 1.20140i
\(485\) 30.3089 6.15758i 1.37626 0.279601i
\(486\) 0 0
\(487\) 11.7432 + 6.77996i 0.532137 + 0.307229i 0.741886 0.670526i \(-0.233931\pi\)
−0.209749 + 0.977755i \(0.567265\pi\)
\(488\) 9.48313 + 5.47508i 0.429281 + 0.247845i
\(489\) 0 0
\(490\) 8.19139 1.66417i 0.370049 0.0751794i
\(491\) 2.47873 + 4.29329i 0.111864 + 0.193753i 0.916522 0.399985i \(-0.130985\pi\)
−0.804658 + 0.593739i \(0.797651\pi\)
\(492\) 0 0
\(493\) 1.11283i 0.0501195i
\(494\) 18.9416 + 12.4539i 0.852223 + 0.560330i
\(495\) 0 0
\(496\) −1.62847 2.82059i −0.0731205 0.126648i
\(497\) 5.72915 3.30773i 0.256987 0.148372i
\(498\) 0 0
\(499\) 13.8700 0.620907 0.310454 0.950588i \(-0.399519\pi\)
0.310454 + 0.950588i \(0.399519\pi\)
\(500\) −11.1466 + 0.867833i −0.498491 + 0.0388107i
\(501\) 0 0
\(502\) 4.21203i 0.187992i
\(503\) 2.98650 + 1.72425i 0.133161 + 0.0768807i 0.565101 0.825022i \(-0.308837\pi\)
−0.431940 + 0.901903i \(0.642171\pi\)
\(504\) 0 0
\(505\) −20.3549 6.81698i −0.905779 0.303352i
\(506\) 45.8700 2.03917
\(507\) 0 0
\(508\) 5.18664i 0.230120i
\(509\) 15.4812 + 26.8142i 0.686192 + 1.18852i 0.973061 + 0.230549i \(0.0740523\pi\)
−0.286869 + 0.957970i \(0.592614\pi\)
\(510\) 0 0
\(511\) 2.35439 4.07792i 0.104152 0.180396i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −9.31265 + 16.1300i −0.410763 + 0.711463i
\(515\) 4.55500 + 5.15140i 0.200717 + 0.226998i
\(516\) 0 0
\(517\) −12.2428 + 7.06841i −0.538439 + 0.310868i
\(518\) 4.79083 2.76599i 0.210497 0.121531i
\(519\) 0 0
\(520\) −7.98064 + 1.14425i −0.349974 + 0.0501787i
\(521\) −14.2506 −0.624330 −0.312165 0.950028i \(-0.601054\pi\)
−0.312165 + 0.950028i \(0.601054\pi\)
\(522\) 0 0
\(523\) −9.10529 + 5.25694i −0.398146 + 0.229870i −0.685684 0.727899i \(-0.740497\pi\)
0.287537 + 0.957769i \(0.407163\pi\)
\(524\) 5.40057 9.35406i 0.235925 0.408634i
\(525\) 0 0
\(526\) −11.5102 + 19.9363i −0.501870 + 0.869264i
\(527\) −1.35725 0.783611i −0.0591229 0.0341346i
\(528\) 0 0
\(529\) 13.8380 23.9682i 0.601654 1.04210i
\(530\) −1.92245 0.643841i −0.0835058 0.0279666i
\(531\) 0 0
\(532\) 11.3552i 0.492310i
\(533\) −27.0198 1.56959i −1.17036 0.0679865i
\(534\) 0 0
\(535\) −1.18953 + 3.55181i −0.0514277 + 0.153558i
\(536\) −0.324869 0.562690i −0.0140322 0.0243045i
\(537\) 0 0
\(538\) 13.4739i 0.580901i
\(539\) 12.0435 20.8599i 0.518750 0.898501i
\(540\) 0 0
\(541\) 15.5345 0.667882 0.333941 0.942594i \(-0.391621\pi\)
0.333941 + 0.942594i \(0.391621\pi\)
\(542\) −15.5021 8.95017i −0.665874 0.384443i
\(543\) 0 0
\(544\) −0.240597 0.416726i −0.0103155 0.0178670i
\(545\) −18.2374 + 16.1260i −0.781206 + 0.690762i
\(546\) 0 0
\(547\) 23.5515i 1.00699i 0.863998 + 0.503495i \(0.167953\pi\)
−0.863998 + 0.503495i \(0.832047\pi\)
\(548\) 5.32095 3.07205i 0.227300 0.131232i
\(549\) 0 0
\(550\) −19.4036 + 25.7195i −0.827374 + 1.09668i
\(551\) 14.5402 0.619435
\(552\) 0 0
\(553\) 3.58890 + 2.07205i 0.152616 + 0.0881127i
\(554\) −8.48849 −0.360641
\(555\) 0 0
\(556\) −5.16902 8.95301i −0.219215 0.379692i
\(557\) 17.3602 10.0229i 0.735576 0.424685i −0.0848824 0.996391i \(-0.527051\pi\)
0.820459 + 0.571706i \(0.193718\pi\)
\(558\) 0 0
\(559\) −6.44358 + 3.23732i −0.272535 + 0.136924i
\(560\) −2.67513 3.02539i −0.113045 0.127846i
\(561\) 0 0
\(562\) −14.3151 + 8.26480i −0.603844 + 0.348630i
\(563\) −10.8898 6.28726i −0.458952 0.264976i 0.252651 0.967557i \(-0.418697\pi\)
−0.711604 + 0.702581i \(0.752031\pi\)
\(564\) 0 0
\(565\) 30.6782 6.23261i 1.29064 0.262208i
\(566\) −0.768452 + 1.33100i −0.0323004 + 0.0559460i
\(567\) 0 0
\(568\) 3.17217 + 1.83146i 0.133102 + 0.0768462i
\(569\) −2.14481 3.71493i −0.0899153 0.155738i 0.817560 0.575844i \(-0.195326\pi\)
−0.907475 + 0.420106i \(0.861993\pi\)
\(570\) 0 0
\(571\) 6.39280 0.267530 0.133765 0.991013i \(-0.457293\pi\)
0.133765 + 0.991013i \(0.457293\pi\)
\(572\) −12.7636 + 19.4126i −0.533673 + 0.811680i
\(573\) 0 0
\(574\) −6.77869 11.7410i −0.282937 0.490061i
\(575\) 13.8892 + 32.7718i 0.579218 + 1.36668i
\(576\) 0 0
\(577\) 37.8169i 1.57434i −0.616738 0.787168i \(-0.711546\pi\)
0.616738 0.787168i \(-0.288454\pi\)
\(578\) 14.5219 + 8.38423i 0.604032 + 0.348738i
\(579\) 0 0
\(580\) −3.87399 + 3.42548i −0.160859 + 0.142236i
\(581\) 12.0447 20.8620i 0.499697 0.865501i
\(582\) 0 0
\(583\) −5.05955 + 2.92113i −0.209545 + 0.120981i
\(584\) 2.60720 0.107887
\(585\) 0 0
\(586\) −5.92970 −0.244954
\(587\) −19.5289 + 11.2750i −0.806046 + 0.465371i −0.845581 0.533848i \(-0.820746\pi\)
0.0395351 + 0.999218i \(0.487412\pi\)
\(588\) 0 0
\(589\) −10.2386 + 17.7338i −0.421875 + 0.730708i
\(590\) −9.73813 11.0132i −0.400913 0.453405i
\(591\) 0 0
\(592\) 2.65264 + 1.53150i 0.109023 + 0.0629443i
\(593\) 8.38787i 0.344449i 0.985058 + 0.172224i \(0.0550954\pi\)
−0.985058 + 0.172224i \(0.944905\pi\)
\(594\) 0 0
\(595\) −1.84270 0.617132i −0.0755433 0.0253000i
\(596\) −8.02539 13.9004i −0.328733 0.569382i
\(597\) 0 0
\(598\) 11.5228 + 22.9350i 0.471201 + 0.937882i
\(599\) 29.0884 1.18852 0.594260 0.804273i \(-0.297445\pi\)
0.594260 + 0.804273i \(0.297445\pi\)
\(600\) 0 0
\(601\) 21.5059 + 37.2493i 0.877243 + 1.51943i 0.854354 + 0.519692i \(0.173953\pi\)
0.0228892 + 0.999738i \(0.492713\pi\)
\(602\) −3.12819 1.80606i −0.127496 0.0736097i
\(603\) 0 0
\(604\) 4.65879 8.06926i 0.189563 0.328333i
\(605\) 13.5870 + 66.8780i 0.552389 + 2.71898i
\(606\) 0 0
\(607\) −18.8372 10.8757i −0.764578 0.441429i 0.0663591 0.997796i \(-0.478862\pi\)
−0.830937 + 0.556367i \(0.812195\pi\)
\(608\) −5.44492 + 3.14363i −0.220821 + 0.127491i
\(609\) 0 0
\(610\) 16.2193 + 18.3430i 0.656701 + 0.742685i
\(611\) −6.60966 4.34580i −0.267398 0.175812i
\(612\) 0 0
\(613\) −26.6848 + 15.4064i −1.07779 + 0.622261i −0.930299 0.366803i \(-0.880452\pi\)
−0.147488 + 0.989064i \(0.547119\pi\)
\(614\) 8.98778 + 15.5673i 0.362717 + 0.628245i
\(615\) 0 0
\(616\) −11.6375 −0.468889
\(617\) −39.9125 23.0435i −1.60682 0.927696i −0.990077 0.140529i \(-0.955120\pi\)
−0.616740 0.787167i \(-0.711547\pi\)
\(618\) 0 0
\(619\) 13.5564 0.544878 0.272439 0.962173i \(-0.412170\pi\)
0.272439 + 0.962173i \(0.412170\pi\)
\(620\) −1.44995 7.13694i −0.0582312 0.286627i
\(621\) 0 0
\(622\) 13.8196 7.97873i 0.554114 0.319918i
\(623\) 2.08840i 0.0836698i
\(624\) 0 0
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) −11.7186 20.2972i −0.468370 0.811241i
\(627\) 0 0
\(628\) 12.7793 + 7.37812i 0.509949 + 0.294419i
\(629\) 1.47390 0.0587682
\(630\) 0 0
\(631\) 2.67513 4.63346i 0.106495 0.184455i −0.807853 0.589384i \(-0.799370\pi\)
0.914348 + 0.404929i \(0.132704\pi\)
\(632\) 2.29455i 0.0912724i
\(633\) 0 0
\(634\) −10.3253 17.8840i −0.410072 0.710265i
\(635\) 3.68308 10.9973i 0.146159 0.436416i
\(636\) 0 0
\(637\) 13.4554 + 0.781626i 0.533121 + 0.0309691i
\(638\) 14.9018i 0.589966i
\(639\) 0 0
\(640\) 0.710109 2.12032i 0.0280695 0.0838129i
\(641\) 6.19029 10.7219i 0.244502 0.423489i −0.717490 0.696569i \(-0.754709\pi\)
0.961991 + 0.273080i \(0.0880423\pi\)
\(642\) 0 0
\(643\) 9.98067 + 5.76234i 0.393599 + 0.227245i 0.683718 0.729746i \(-0.260362\pi\)
−0.290119 + 0.956991i \(0.593695\pi\)
\(644\) −6.42842 + 11.1344i −0.253315 + 0.438755i
\(645\) 0 0
\(646\) −1.51270 + 2.62007i −0.0595162 + 0.103085i
\(647\) 3.17849 1.83510i 0.124959 0.0721453i −0.436217 0.899841i \(-0.643682\pi\)
0.561177 + 0.827696i \(0.310349\pi\)
\(648\) 0 0
\(649\) −42.3634 −1.66291
\(650\) −17.7340 3.24095i −0.695586 0.127121i
\(651\) 0 0
\(652\) 11.7127 6.76234i 0.458706 0.264834i
\(653\) −7.02043 + 4.05325i −0.274731 + 0.158616i −0.631036 0.775754i \(-0.717370\pi\)
0.356305 + 0.934370i \(0.384036\pi\)
\(654\) 0 0
\(655\) 18.0933 15.9986i 0.706965 0.625116i
\(656\) 3.75329 6.50089i 0.146541 0.253817i
\(657\) 0 0
\(658\) 3.96239i 0.154470i
\(659\) −9.27210 + 16.0597i −0.361190 + 0.625599i −0.988157 0.153447i \(-0.950963\pi\)
0.626967 + 0.779046i \(0.284296\pi\)
\(660\) 0 0
\(661\) −23.2059 40.1938i −0.902606 1.56336i −0.824099 0.566446i \(-0.808318\pi\)
−0.0785068 0.996914i \(-0.525015\pi\)
\(662\) 26.6761i 1.03680i
\(663\) 0 0
\(664\) 13.3380 0.517616
\(665\) −8.06342 + 24.0766i −0.312686 + 0.933650i
\(666\) 0 0
\(667\) 14.2575 + 8.23155i 0.552051 + 0.318727i
\(668\) 23.4241i 0.906304i
\(669\) 0 0
\(670\) −0.289255 1.42377i −0.0111749 0.0550052i
\(671\) 70.5583 2.72387
\(672\) 0 0
\(673\) −34.9956 + 20.2047i −1.34898 + 0.778836i −0.988105 0.153778i \(-0.950856\pi\)
−0.360877 + 0.932613i \(0.617523\pi\)
\(674\) 4.20299 + 7.27978i 0.161893 + 0.280407i
\(675\) 0 0
\(676\) −12.9126 1.50527i −0.496637 0.0578950i
\(677\) 14.2473i 0.547567i −0.961791 0.273784i \(-0.911725\pi\)
0.961791 0.273784i \(-0.0882752\pi\)
\(678\) 0 0
\(679\) 12.4902 + 21.6337i 0.479332 + 0.830227i
\(680\) −0.214221 1.05444i −0.00821501 0.0404360i
\(681\) 0 0
\(682\) −18.1747 10.4932i −0.695946 0.401805i
\(683\) 5.02599 + 2.90175i 0.192314 + 0.111033i 0.593065 0.805154i \(-0.297918\pi\)
−0.400751 + 0.916187i \(0.631251\pi\)
\(684\) 0 0
\(685\) 13.4636 2.73527i 0.514418 0.104509i
\(686\) 9.69688 + 16.7955i 0.370228 + 0.641255i
\(687\) 0 0
\(688\) 2.00000i 0.0762493i
\(689\) −2.73155 1.79597i −0.104064 0.0684210i
\(690\) 0 0
\(691\) 9.61990 + 16.6622i 0.365958 + 0.633858i 0.988929 0.148387i \(-0.0474080\pi\)
−0.622971 + 0.782245i \(0.714075\pi\)
\(692\) −4.00480 + 2.31217i −0.152240 + 0.0878956i
\(693\) 0 0
\(694\) 21.1514 0.802896
\(695\) −4.60236 22.6538i −0.174577 0.859307i
\(696\) 0 0
\(697\) 3.61213i 0.136819i
\(698\) −4.74054 2.73695i −0.179432 0.103595i
\(699\) 0 0
\(700\) −3.52377 8.31443i −0.133186 0.314256i
\(701\) −45.3742 −1.71376 −0.856881 0.515515i \(-0.827601\pi\)
−0.856881 + 0.515515i \(0.827601\pi\)
\(702\) 0 0
\(703\) 19.2579i 0.726325i
\(704\) −3.22179 5.58031i −0.121426 0.210316i
\(705\) 0 0
\(706\) 15.0721 26.1056i 0.567244 0.982496i
\(707\) 17.3380i 0.652064i
\(708\) 0 0
\(709\) 1.98660 3.44089i 0.0746082 0.129225i −0.826308 0.563219i \(-0.809563\pi\)
0.900916 + 0.433994i \(0.142896\pi\)
\(710\) 5.42548 + 6.13586i 0.203615 + 0.230275i
\(711\) 0 0
\(712\) −1.00141 + 0.578163i −0.0375293 + 0.0216676i
\(713\) −20.0790 + 11.5926i −0.751964 + 0.434147i
\(714\) 0 0
\(715\) −40.8479 + 32.0972i −1.52763 + 1.20037i
\(716\) 8.31265 0.310658
\(717\) 0 0
\(718\) 7.26411 4.19394i 0.271094 0.156516i
\(719\) −22.8496 + 39.5766i −0.852145 + 1.47596i 0.0271244 + 0.999632i \(0.491365\pi\)
−0.879269 + 0.476326i \(0.841968\pi\)
\(720\) 0 0
\(721\) −2.77702 + 4.80995i −0.103422 + 0.179132i
\(722\) 17.7792 + 10.2648i 0.661672 + 0.382016i
\(723\) 0 0
\(724\) −0.512696 + 0.888016i −0.0190542 + 0.0330029i
\(725\) −10.6466 + 4.51216i −0.395403 + 0.167577i
\(726\) 0 0
\(727\) 24.7948i 0.919588i 0.888026 + 0.459794i \(0.152077\pi\)
−0.888026 + 0.459794i \(0.847923\pi\)
\(728\) −2.92340 5.81876i −0.108349 0.215658i
\(729\) 0 0
\(730\) 5.52810 + 1.85140i 0.204604 + 0.0685233i
\(731\) −0.481194 0.833453i −0.0177976 0.0308264i
\(732\) 0 0
\(733\) 45.8651i 1.69407i 0.531540 + 0.847033i \(0.321613\pi\)
−0.531540 + 0.847033i \(0.678387\pi\)
\(734\) 9.75623 16.8983i 0.360109 0.623727i
\(735\) 0 0
\(736\) −7.11871 −0.262399
\(737\) −3.62574 2.09332i −0.133556 0.0771085i
\(738\) 0 0
\(739\) 17.4817 + 30.2791i 0.643074 + 1.11384i 0.984743 + 0.174016i \(0.0556744\pi\)
−0.341669 + 0.939820i \(0.610992\pi\)
\(740\) 4.53690 + 5.13093i 0.166780 + 0.188617i
\(741\) 0 0
\(742\) 1.63752i 0.0601152i
\(743\) 5.94673 3.43335i 0.218165 0.125957i −0.386936 0.922107i \(-0.626466\pi\)
0.605100 + 0.796149i \(0.293133\pi\)
\(744\) 0 0
\(745\) −7.14559 35.1721i −0.261794 1.28861i
\(746\) 8.51388 0.311715
\(747\) 0 0
\(748\) −2.68521 1.55031i −0.0981811 0.0566849i
\(749\) −3.02539 −0.110545
\(750\) 0 0
\(751\) −2.40009 4.15708i −0.0875806 0.151694i 0.818907 0.573926i \(-0.194580\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(752\) 1.90000 1.09697i 0.0692860 0.0400023i
\(753\) 0 0
\(754\) −7.45088 + 3.74339i −0.271345 + 0.136326i
\(755\) 15.6082 13.8011i 0.568039 0.502275i
\(756\) 0 0
\(757\) 24.0541 13.8876i 0.874261 0.504755i 0.00549931 0.999985i \(-0.498250\pi\)
0.868762 + 0.495230i \(0.164916\pi\)
\(758\) 17.0768 + 9.85931i 0.620258 + 0.358106i
\(759\) 0 0
\(760\) −13.7773 + 2.79900i −0.499755 + 0.101530i
\(761\) −1.58110 + 2.73855i −0.0573149 + 0.0992723i −0.893259 0.449542i \(-0.851587\pi\)
0.835944 + 0.548814i \(0.184921\pi\)
\(762\) 0 0
\(763\) −17.0286 9.83146i −0.616476 0.355923i
\(764\) −0.177593 0.307600i −0.00642509 0.0111286i
\(765\) 0 0
\(766\) 27.7196 1.00155
\(767\) −10.6419 21.1817i −0.384257 0.764828i
\(768\) 0 0
\(769\) 4.07816 + 7.06358i 0.147062 + 0.254719i 0.930140 0.367204i \(-0.119685\pi\)
−0.783078 + 0.621923i \(0.786352\pi\)
\(770\) −24.6752 8.26390i −0.889234 0.297810i
\(771\) 0 0
\(772\) 14.0000i 0.503871i
\(773\) 5.09129 + 2.93946i 0.183121 + 0.105725i 0.588758 0.808309i \(-0.299617\pi\)
−0.405637 + 0.914034i \(0.632950\pi\)
\(774\) 0 0
\(775\) 1.99366 16.1622i 0.0716144 0.580564i
\(776\) −6.91573 + 11.9784i −0.248260 + 0.429999i
\(777\) 0 0
\(778\) −7.92535 + 4.57570i −0.284137 + 0.164047i
\(779\) −47.1958 −1.69097
\(780\) 0 0
\(781\) 23.6023 0.844556
\(782\) −2.96656 + 1.71274i −0.106084 + 0.0612475i
\(783\) 0 0
\(784\) −1.86907 + 3.23732i −0.0667524 + 0.115619i
\(785\) 21.8568 + 24.7186i 0.780104 + 0.882245i
\(786\) 0 0
\(787\) 20.5261 + 11.8507i 0.731676 + 0.422433i 0.819035 0.573744i \(-0.194509\pi\)
−0.0873591 + 0.996177i \(0.527843\pi\)
\(788\) 14.1065i 0.502523i
\(789\) 0 0
\(790\) −1.62938 + 4.86518i −0.0579708 + 0.173095i
\(791\) 12.6424 + 21.8974i 0.449514 + 0.778580i
\(792\) 0 0
\(793\) 17.7246 + 35.2792i 0.629419 + 1.25280i
\(794\) 1.43041 0.0507633
\(795\) 0 0
\(796\) 1.57452 + 2.72714i 0.0558072 + 0.0966609i
\(797\) 42.0193 + 24.2599i 1.48840 + 0.859329i 0.999912 0.0132409i \(-0.00421482\pi\)
0.488489 + 0.872570i \(0.337548\pi\)
\(798\) 0 0
\(799\) 0.527855 0.914271i 0.0186742 0.0323446i
\(800\) 3.01131 3.99149i 0.106466 0.141121i
\(801\) 0 0
\(802\) −18.7669 10.8351i −0.662684 0.382601i
\(803\) 14.5490 8.39986i 0.513423 0.296425i
\(804\) 0 0
\(805\) −21.5369 + 19.0435i −0.759076 + 0.671195i
\(806\) 0.681010 11.7233i 0.0239876 0.412936i
\(807\) 0 0
\(808\) 8.31376 4.79995i 0.292477 0.168862i
\(809\) 8.55936 + 14.8252i 0.300931 + 0.521228i 0.976347 0.216209i \(-0.0693693\pi\)
−0.675416 + 0.737437i \(0.736036\pi\)
\(810\) 0 0
\(811\) −7.67372 −0.269461 −0.134730 0.990882i \(-0.543017\pi\)
−0.134730 + 0.990882i \(0.543017\pi\)
\(812\) −3.61721 2.08840i −0.126939 0.0732884i
\(813\) 0 0
\(814\) 19.7367 0.691772
\(815\) 29.6367 6.02101i 1.03813 0.210907i
\(816\) 0 0
\(817\) −10.8898 + 6.28726i −0.380988 + 0.219963i
\(818\) 9.08110i 0.317513i
\(819\) 0 0
\(820\) 12.5745 11.1187i 0.439121 0.388282i
\(821\) −26.8933 46.5805i −0.938582 1.62567i −0.768119 0.640307i \(-0.778807\pi\)
−0.170463 0.985364i \(-0.554526\pi\)
\(822\) 0 0
\(823\) −8.46604 4.88787i −0.295108 0.170381i 0.345135 0.938553i \(-0.387833\pi\)
−0.640243 + 0.768172i \(0.721166\pi\)
\(824\) −3.07522 −0.107130
\(825\) 0 0
\(826\) 5.93700 10.2832i 0.206575 0.357798i
\(827\) 28.1598i 0.979213i 0.871943 + 0.489607i \(0.162860\pi\)
−0.871943 + 0.489607i \(0.837140\pi\)
\(828\) 0 0
\(829\) 10.1065 + 17.5050i 0.351013 + 0.607972i 0.986427 0.164199i \(-0.0525039\pi\)
−0.635414 + 0.772172i \(0.719171\pi\)
\(830\) 28.2809 + 9.47146i 0.981644 + 0.328759i
\(831\) 0 0
\(832\) 1.98082 3.01270i 0.0686727 0.104446i
\(833\) 1.79877i 0.0623237i
\(834\) 0 0
\(835\) 16.6336 49.6665i 0.575631 1.71878i
\(836\) −20.2562 + 35.0848i −0.700576 + 1.21343i
\(837\) 0 0
\(838\) −13.4604 7.77139i −0.464983 0.268458i
\(839\) −6.29631 + 10.9055i −0.217373 + 0.376500i −0.954004 0.299794i \(-0.903082\pi\)
0.736631 + 0.676295i \(0.236415\pi\)
\(840\) 0 0
\(841\) 11.8258 20.4829i 0.407787 0.706308i
\(842\) 4.29961 2.48238i 0.148174 0.0855484i
\(843\) 0 0
\(844\) −3.09332 −0.106477
\(845\) −26.3098 12.3610i −0.905085 0.425230i
\(846\) 0 0
\(847\) −47.7359 + 27.5603i −1.64022 + 0.946984i
\(848\) 0.785207 0.453339i 0.0269641 0.0155677i
\(849\) 0 0
\(850\) 0.294552 2.38787i 0.0101030 0.0819034i
\(851\) 10.9023 18.8834i 0.373727 0.647314i
\(852\) 0 0
\(853\) 45.7704i 1.56715i −0.621299 0.783574i \(-0.713395\pi\)
0.621299 0.783574i \(-0.286605\pi\)
\(854\) −9.88835 + 17.1271i −0.338372 + 0.586078i
\(855\) 0 0
\(856\) −0.837565 1.45071i −0.0286274 0.0495841i
\(857\) 27.8169i 0.950206i −0.879930 0.475103i \(-0.842411\pi\)
0.879930 0.475103i \(-0.157589\pi\)
\(858\) 0 0
\(859\) −25.9706 −0.886107 −0.443053 0.896495i \(-0.646105\pi\)
−0.443053 + 0.896495i \(0.646105\pi\)
\(860\) 1.42022 4.24063i 0.0484290 0.144604i
\(861\) 0 0
\(862\) 28.5534 + 16.4853i 0.972533 + 0.561492i
\(863\) 18.7210i 0.637270i −0.947877 0.318635i \(-0.896776\pi\)
0.947877 0.318635i \(-0.103224\pi\)
\(864\) 0 0
\(865\) −10.1333 + 2.05870i −0.344544 + 0.0699978i
\(866\) 16.1114 0.547488
\(867\) 0 0
\(868\) 5.09417 2.94112i 0.172907 0.0998281i
\(869\) 7.39257 + 12.8043i 0.250776 + 0.434356i
\(870\) 0 0
\(871\) 0.135857 2.33872i 0.00460334 0.0792446i
\(872\) 10.8872i 0.368686i
\(873\) 0 0
\(874\) 22.3786 + 38.7609i 0.756967 + 1.31111i
\(875\) −1.56736 20.1315i −0.0529865 0.680568i
\(876\) 0 0
\(877\) −19.6466 11.3430i −0.663418 0.383025i 0.130160 0.991493i \(-0.458451\pi\)
−0.793578 + 0.608468i \(0.791784\pi\)
\(878\) 0.0722889 + 0.0417360i 0.00243963 + 0.00140852i
\(879\) 0 0
\(880\) −2.86860 14.1198i −0.0967003 0.475980i
\(881\) −1.23813 2.14451i −0.0417138 0.0722505i 0.844415 0.535690i \(-0.179948\pi\)
−0.886129 + 0.463440i \(0.846615\pi\)
\(882\) 0 0
\(883\) 31.4641i 1.05885i −0.848357 0.529425i \(-0.822408\pi\)
0.848357 0.529425i \(-0.177592\pi\)
\(884\) 0.100615 1.73205i 0.00338406 0.0582552i
\(885\) 0 0
\(886\) −20.4568 35.4321i −0.687258 1.19037i
\(887\) 34.3953 19.8581i 1.15488 0.666771i 0.204809 0.978802i \(-0.434343\pi\)
0.950072 + 0.312031i \(0.101009\pi\)
\(888\) 0 0
\(889\) 9.36741 0.314173
\(890\) −2.53386 + 0.514780i −0.0849351 + 0.0172555i
\(891\) 0 0
\(892\) 22.1939i 0.743108i
\(893\) −11.9458 6.89692i −0.399752 0.230797i
\(894\) 0 0
\(895\) 17.6255 + 5.90289i 0.589154 + 0.197312i
\(896\) 1.80606 0.0603363
\(897\) 0 0
\(898\) 29.1319i 0.972144i
\(899\) −3.76608 6.52305i −0.125606 0.217556i
\(900\) 0 0
\(901\) 0.218144 0.377837i 0.00726744 0.0125876i
\(902\) 48.3693i 1.61052i
\(903\) 0 0
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) −1.71767 + 1.51881i −0.0570972 + 0.0504868i
\(906\) 0 0
\(907\) 46.3977 26.7877i 1.54061 0.889472i 0.541811 0.840500i \(-0.317739\pi\)
0.998800 0.0489717i \(-0.0155944\pi\)
\(908\) 11.5490 6.66784i 0.383268 0.221280i
\(909\) 0 0
\(910\) −2.06659 14.4136i −0.0685067 0.477805i
\(911\) −14.6253 −0.484558 −0.242279 0.970207i \(-0.577895\pi\)
−0.242279 + 0.970207i \(0.577895\pi\)
\(912\) 0 0
\(913\) 74.4304 42.9724i 2.46329 1.42218i
\(914\) 16.3339 28.2912i 0.540278 0.935789i
\(915\) 0 0
\(916\) −13.0872 + 22.6677i −0.432414 + 0.748962i
\(917\) 16.8940 + 9.75377i 0.557890 + 0.322098i
\(918\) 0 0
\(919\) 26.5247 45.9421i 0.874969 1.51549i 0.0181725 0.999835i \(-0.494215\pi\)
0.856796 0.515655i \(-0.172451\pi\)
\(920\) −15.0939 5.05506i −0.497632 0.166660i
\(921\) 0 0
\(922\) 19.1006i 0.629045i
\(923\) 5.92901 + 11.8011i 0.195156 + 0.388439i
\(924\) 0 0
\(925\) 5.97616 + 14.1009i 0.196495 + 0.463635i
\(926\) 4.14609 + 7.18124i 0.136249 + 0.235990i
\(927\) 0 0
\(928\) 2.31265i 0.0759165i
\(929\) 5.22521 9.05033i 0.171434 0.296932i −0.767488 0.641064i \(-0.778493\pi\)
0.938921 + 0.344132i \(0.111827\pi\)
\(930\) 0 0
\(931\) 23.5026 0.770267
\(932\) −18.0731 10.4345i −0.592005 0.341795i
\(933\) 0 0
\(934\) −11.7685 20.3836i −0.385076 0.666970i
\(935\) −4.59261 5.19394i −0.150195 0.169860i
\(936\) 0 0
\(937\) 10.5745i 0.345454i −0.984970 0.172727i \(-0.944742\pi\)
0.984970 0.172727i \(-0.0552579\pi\)
\(938\) 1.01625 0.586734i 0.0331819 0.0191576i
\(939\) 0 0
\(940\) 4.80758 0.976711i 0.156806 0.0318568i
\(941\) 16.6107 0.541494 0.270747 0.962651i \(-0.412729\pi\)
0.270747 + 0.962651i \(0.412729\pi\)
\(942\) 0 0
\(943\) −46.2780 26.7186i −1.50702 0.870078i
\(944\) 6.57452 0.213982
\(945\) 0 0
\(946\) −6.44358 11.1606i −0.209499 0.362863i
\(947\) −36.7949 + 21.2435i −1.19567 + 0.690322i −0.959588 0.281410i \(-0.909198\pi\)
−0.236086 + 0.971732i \(0.575865\pi\)
\(948\) 0 0
\(949\) 7.85471 + 5.16441i 0.254975 + 0.167644i
\(950\) −31.1998 3.84860i −1.01226 0.124865i
\(951\) 0 0
\(952\) 0.752634 0.434534i 0.0243930 0.0140833i
\(953\) −38.9897 22.5107i −1.26300 0.729193i −0.289346 0.957224i \(-0.593438\pi\)
−0.973654 + 0.228031i \(0.926771\pi\)
\(954\) 0 0
\(955\) −0.158124 0.778321i −0.00511678 0.0251859i
\(956\) −7.64657 + 13.2442i −0.247308 + 0.428350i
\(957\) 0 0
\(958\) 5.67802 + 3.27821i 0.183449 + 0.105914i
\(959\) 5.54832 + 9.60998i 0.179165 + 0.310322i
\(960\) 0 0
\(961\) −20.3923 −0.657817
\(962\) 4.95796 + 9.86836i 0.159851 + 0.318169i
\(963\) 0 0
\(964\) −6.38423 11.0578i −0.205622 0.356148i
\(965\) 9.94152 29.6844i 0.320029 0.955576i
\(966\) 0 0
\(967\) 24.4763i 0.787104i −0.919302 0.393552i \(-0.871246\pi\)
0.919302 0.393552i \(-0.128754\pi\)
\(968\) −26.4309 15.2599i −0.849521 0.490471i
\(969\) 0 0
\(970\) −23.1695 + 20.4871i −0.743928 + 0.657800i
\(971\) −28.2023 + 48.8478i −0.905054 + 1.56760i −0.0842097 + 0.996448i \(0.526837\pi\)
−0.820844 + 0.571152i \(0.806497\pi\)
\(972\) 0 0
\(973\) 16.1697 9.33558i 0.518377 0.299285i
\(974\) −13.5599 −0.434488
\(975\) 0 0
\(976\) −10.9502 −0.350506
\(977\) 11.7021 6.75623i 0.374385 0.216151i −0.300988 0.953628i \(-0.597316\pi\)
0.675372 + 0.737477i \(0.263983\pi\)
\(978\) 0 0
\(979\) −3.72544 + 6.45265i −0.119066 + 0.206228i
\(980\) −6.26187 + 5.53690i −0.200028 + 0.176870i
\(981\) 0 0
\(982\) −4.29329 2.47873i −0.137004 0.0790995i
\(983\) 30.1187i 0.960638i −0.877094 0.480319i \(-0.840521\pi\)
0.877094 0.480319i \(-0.159479\pi\)
\(984\) 0 0
\(985\) −10.0171 + 29.9102i −0.319173 + 0.953020i
\(986\) −0.556417 0.963743i −0.0177199 0.0306918i
\(987\) 0 0
\(988\) −22.6309 1.31464i −0.719984 0.0418241i
\(989\) −14.2374 −0.452724
\(990\) 0 0
\(991\) −17.6629 30.5931i −0.561081 0.971821i −0.997402 0.0720298i \(-0.977052\pi\)
0.436322 0.899791i \(-0.356281\pi\)
\(992\) 2.82059 + 1.62847i 0.0895539 + 0.0517040i
\(993\) 0 0
\(994\) −3.30773 + 5.72915i −0.104915 + 0.181718i
\(995\) 1.40191 + 6.90048i 0.0444434 + 0.218760i
\(996\) 0 0
\(997\) 14.5638 + 8.40843i 0.461241 + 0.266298i 0.712566 0.701605i \(-0.247533\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(998\) −12.0118 + 6.93501i −0.380227 + 0.219524i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.h.289.3 12
3.2 odd 2 130.2.n.a.29.6 yes 12
5.4 even 2 inner 1170.2.bp.h.289.6 12
12.11 even 2 1040.2.dh.b.289.2 12
13.9 even 3 inner 1170.2.bp.h.919.6 12
15.2 even 4 650.2.e.k.601.1 6
15.8 even 4 650.2.e.j.601.3 6
15.14 odd 2 130.2.n.a.29.1 yes 12
39.2 even 12 1690.2.c.c.1689.5 6
39.11 even 12 1690.2.c.b.1689.5 6
39.23 odd 6 1690.2.b.b.339.3 6
39.29 odd 6 1690.2.b.c.339.6 6
39.35 odd 6 130.2.n.a.9.1 12
60.59 even 2 1040.2.dh.b.289.5 12
65.9 even 6 inner 1170.2.bp.h.919.3 12
156.35 even 6 1040.2.dh.b.529.5 12
195.23 even 12 8450.2.a.bt.1.1 3
195.29 odd 6 1690.2.b.c.339.1 6
195.62 even 12 8450.2.a.ca.1.3 3
195.68 even 12 8450.2.a.cb.1.1 3
195.74 odd 6 130.2.n.a.9.6 yes 12
195.89 even 12 1690.2.c.c.1689.2 6
195.107 even 12 8450.2.a.bu.1.3 3
195.113 even 12 650.2.e.j.451.3 6
195.119 even 12 1690.2.c.b.1689.2 6
195.152 even 12 650.2.e.k.451.1 6
195.179 odd 6 1690.2.b.b.339.4 6
780.659 even 6 1040.2.dh.b.529.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.1 12 39.35 odd 6
130.2.n.a.9.6 yes 12 195.74 odd 6
130.2.n.a.29.1 yes 12 15.14 odd 2
130.2.n.a.29.6 yes 12 3.2 odd 2
650.2.e.j.451.3 6 195.113 even 12
650.2.e.j.601.3 6 15.8 even 4
650.2.e.k.451.1 6 195.152 even 12
650.2.e.k.601.1 6 15.2 even 4
1040.2.dh.b.289.2 12 12.11 even 2
1040.2.dh.b.289.5 12 60.59 even 2
1040.2.dh.b.529.2 12 780.659 even 6
1040.2.dh.b.529.5 12 156.35 even 6
1170.2.bp.h.289.3 12 1.1 even 1 trivial
1170.2.bp.h.289.6 12 5.4 even 2 inner
1170.2.bp.h.919.3 12 65.9 even 6 inner
1170.2.bp.h.919.6 12 13.9 even 3 inner
1690.2.b.b.339.3 6 39.23 odd 6
1690.2.b.b.339.4 6 195.179 odd 6
1690.2.b.c.339.1 6 195.29 odd 6
1690.2.b.c.339.6 6 39.29 odd 6
1690.2.c.b.1689.2 6 195.119 even 12
1690.2.c.b.1689.5 6 39.11 even 12
1690.2.c.c.1689.2 6 195.89 even 12
1690.2.c.c.1689.5 6 39.2 even 12
8450.2.a.bt.1.1 3 195.23 even 12
8450.2.a.bu.1.3 3 195.107 even 12
8450.2.a.ca.1.3 3 195.62 even 12
8450.2.a.cb.1.1 3 195.68 even 12