Properties

Label 1040.2.dh.b.289.5
Level $1040$
Weight $2$
Character 1040.289
Analytic conductor $8.304$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,2,Mod(289,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.dh (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.5
Root \(0.550552 + 0.147520i\) of defining polynomial
Character \(\chi\) \(=\) 1040.289
Dual form 1040.2.dh.b.529.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.45071 - 0.837565i) q^{3} +(-1.67513 - 1.48119i) q^{5} +(1.56410 + 0.903032i) q^{7} +(-0.0969683 + 0.167954i) q^{9} +(3.22179 + 5.58031i) q^{11} +(1.98082 - 3.01270i) q^{13} +(-3.67072 - 0.745746i) q^{15} +(-0.416726 - 0.240597i) q^{17} +(3.14363 - 5.44492i) q^{19} +3.02539 q^{21} +(6.16499 - 3.55936i) q^{23} +(0.612127 + 4.96239i) q^{25} +5.35026i q^{27} +(1.15633 + 2.00281i) q^{29} -3.25694 q^{31} +(9.34774 + 5.39692i) q^{33} +(-1.28250 - 3.82943i) q^{35} +(2.65264 - 1.53150i) q^{37} +(0.350262 - 6.02961i) q^{39} +(-3.75329 - 6.50089i) q^{41} +(1.73205 + 1.00000i) q^{43} +(0.411207 - 0.137716i) q^{45} -2.19394i q^{47} +(-1.86907 - 3.23732i) q^{49} -0.806063 q^{51} +0.906679i q^{53} +(2.86860 - 14.1198i) q^{55} -10.5320i q^{57} +(-3.28726 + 5.69370i) q^{59} +(5.47508 - 9.48313i) q^{61} +(-0.303336 + 0.175131i) q^{63} +(-7.78053 + 2.11268i) q^{65} +(-0.562690 + 0.324869i) q^{67} +(5.96239 - 10.3272i) q^{69} +(1.83146 - 3.17217i) q^{71} +2.60720i q^{73} +(5.04434 + 6.68627i) q^{75} +11.6375i q^{77} -2.29455 q^{79} +(4.19029 + 7.25779i) q^{81} +13.3380i q^{83} +(0.341700 + 1.02028i) q^{85} +(3.35498 + 1.93700i) q^{87} +(-0.578163 - 1.00141i) q^{89} +(5.81876 - 2.92340i) q^{91} +(-4.72486 + 2.72790i) q^{93} +(-13.3310 + 4.46464i) q^{95} +(-11.9784 - 6.91573i) q^{97} -1.24965 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{9} + 6 q^{11} - 4 q^{15} + 26 q^{19} - 24 q^{21} + 4 q^{25} - 28 q^{29} - 24 q^{31} + 6 q^{35} - 36 q^{39} - 4 q^{41} + 12 q^{45} - 4 q^{49} - 8 q^{51} - 12 q^{55} - 16 q^{59} - 8 q^{61} - 10 q^{65}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.45071 0.837565i 0.837565 0.483569i −0.0188705 0.999822i \(-0.506007\pi\)
0.856436 + 0.516253i \(0.172674\pi\)
\(4\) 0 0
\(5\) −1.67513 1.48119i −0.749141 0.662410i
\(6\) 0 0
\(7\) 1.56410 + 0.903032i 0.591173 + 0.341314i 0.765561 0.643363i \(-0.222461\pi\)
−0.174388 + 0.984677i \(0.555795\pi\)
\(8\) 0 0
\(9\) −0.0969683 + 0.167954i −0.0323228 + 0.0559847i
\(10\) 0 0
\(11\) 3.22179 + 5.58031i 0.971407 + 1.68253i 0.691317 + 0.722552i \(0.257031\pi\)
0.280090 + 0.959974i \(0.409636\pi\)
\(12\) 0 0
\(13\) 1.98082 3.01270i 0.549382 0.835572i
\(14\) 0 0
\(15\) −3.67072 0.745746i −0.947776 0.192551i
\(16\) 0 0
\(17\) −0.416726 0.240597i −0.101071 0.0583534i 0.448612 0.893726i \(-0.351918\pi\)
−0.549684 + 0.835373i \(0.685252\pi\)
\(18\) 0 0
\(19\) 3.14363 5.44492i 0.721198 1.24915i −0.239322 0.970940i \(-0.576925\pi\)
0.960520 0.278211i \(-0.0897415\pi\)
\(20\) 0 0
\(21\) 3.02539 0.660195
\(22\) 0 0
\(23\) 6.16499 3.55936i 1.28549 0.742177i 0.307642 0.951502i \(-0.400460\pi\)
0.977846 + 0.209325i \(0.0671266\pi\)
\(24\) 0 0
\(25\) 0.612127 + 4.96239i 0.122425 + 0.992478i
\(26\) 0 0
\(27\) 5.35026i 1.02966i
\(28\) 0 0
\(29\) 1.15633 + 2.00281i 0.214724 + 0.371913i 0.953187 0.302381i \(-0.0977814\pi\)
−0.738463 + 0.674294i \(0.764448\pi\)
\(30\) 0 0
\(31\) −3.25694 −0.584964 −0.292482 0.956271i \(-0.594481\pi\)
−0.292482 + 0.956271i \(0.594481\pi\)
\(32\) 0 0
\(33\) 9.34774 + 5.39692i 1.62723 + 0.939484i
\(34\) 0 0
\(35\) −1.28250 3.82943i −0.216782 0.647291i
\(36\) 0 0
\(37\) 2.65264 1.53150i 0.436091 0.251777i −0.265847 0.964015i \(-0.585652\pi\)
0.701938 + 0.712238i \(0.252318\pi\)
\(38\) 0 0
\(39\) 0.350262 6.02961i 0.0560868 0.965510i
\(40\) 0 0
\(41\) −3.75329 6.50089i −0.586166 1.01527i −0.994729 0.102539i \(-0.967303\pi\)
0.408563 0.912730i \(-0.366030\pi\)
\(42\) 0 0
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) 0 0
\(45\) 0.411207 0.137716i 0.0612991 0.0205295i
\(46\) 0 0
\(47\) 2.19394i 0.320019i −0.987116 0.160009i \(-0.948848\pi\)
0.987116 0.160009i \(-0.0511524\pi\)
\(48\) 0 0
\(49\) −1.86907 3.23732i −0.267010 0.462474i
\(50\) 0 0
\(51\) −0.806063 −0.112871
\(52\) 0 0
\(53\) 0.906679i 0.124542i 0.998059 + 0.0622710i \(0.0198343\pi\)
−0.998059 + 0.0622710i \(0.980166\pi\)
\(54\) 0 0
\(55\) 2.86860 14.1198i 0.386801 1.90392i
\(56\) 0 0
\(57\) 10.5320i 1.39499i
\(58\) 0 0
\(59\) −3.28726 + 5.69370i −0.427965 + 0.741256i −0.996692 0.0812696i \(-0.974103\pi\)
0.568728 + 0.822526i \(0.307436\pi\)
\(60\) 0 0
\(61\) 5.47508 9.48313i 0.701013 1.21419i −0.267098 0.963669i \(-0.586065\pi\)
0.968111 0.250521i \(-0.0806018\pi\)
\(62\) 0 0
\(63\) −0.303336 + 0.175131i −0.0382167 + 0.0220644i
\(64\) 0 0
\(65\) −7.78053 + 2.11268i −0.965056 + 0.262045i
\(66\) 0 0
\(67\) −0.562690 + 0.324869i −0.0687435 + 0.0396891i −0.533978 0.845499i \(-0.679303\pi\)
0.465234 + 0.885188i \(0.345970\pi\)
\(68\) 0 0
\(69\) 5.96239 10.3272i 0.717787 1.24324i
\(70\) 0 0
\(71\) 1.83146 3.17217i 0.217354 0.376468i −0.736644 0.676280i \(-0.763591\pi\)
0.953998 + 0.299812i \(0.0969241\pi\)
\(72\) 0 0
\(73\) 2.60720i 0.305150i 0.988292 + 0.152575i \(0.0487566\pi\)
−0.988292 + 0.152575i \(0.951243\pi\)
\(74\) 0 0
\(75\) 5.04434 + 6.68627i 0.582470 + 0.772064i
\(76\) 0 0
\(77\) 11.6375i 1.32622i
\(78\) 0 0
\(79\) −2.29455 −0.258157 −0.129079 0.991634i \(-0.541202\pi\)
−0.129079 + 0.991634i \(0.541202\pi\)
\(80\) 0 0
\(81\) 4.19029 + 7.25779i 0.465588 + 0.806422i
\(82\) 0 0
\(83\) 13.3380i 1.46404i 0.681283 + 0.732020i \(0.261422\pi\)
−0.681283 + 0.732020i \(0.738578\pi\)
\(84\) 0 0
\(85\) 0.341700 + 1.02028i 0.0370626 + 0.110665i
\(86\) 0 0
\(87\) 3.35498 + 1.93700i 0.359691 + 0.207668i
\(88\) 0 0
\(89\) −0.578163 1.00141i −0.0612851 0.106149i 0.833755 0.552135i \(-0.186187\pi\)
−0.895040 + 0.445986i \(0.852853\pi\)
\(90\) 0 0
\(91\) 5.81876 2.92340i 0.609972 0.306456i
\(92\) 0 0
\(93\) −4.72486 + 2.72790i −0.489945 + 0.282870i
\(94\) 0 0
\(95\) −13.3310 + 4.46464i −1.36773 + 0.458062i
\(96\) 0 0
\(97\) −11.9784 6.91573i −1.21622 0.702186i −0.252114 0.967698i \(-0.581126\pi\)
−0.964108 + 0.265512i \(0.914459\pi\)
\(98\) 0 0
\(99\) −1.24965 −0.125594
\(100\) 0 0
\(101\) 4.79995 + 8.31376i 0.477613 + 0.827250i 0.999671 0.0256599i \(-0.00816868\pi\)
−0.522057 + 0.852910i \(0.674835\pi\)
\(102\) 0 0
\(103\) 3.07522i 0.303011i 0.988456 + 0.151505i \(0.0484121\pi\)
−0.988456 + 0.151505i \(0.951588\pi\)
\(104\) 0 0
\(105\) −5.06793 4.48119i −0.494579 0.437320i
\(106\) 0 0
\(107\) 1.45071 0.837565i 0.140245 0.0809705i −0.428236 0.903667i \(-0.640865\pi\)
0.568481 + 0.822697i \(0.307531\pi\)
\(108\) 0 0
\(109\) −10.8872 −1.04280 −0.521401 0.853312i \(-0.674590\pi\)
−0.521401 + 0.853312i \(0.674590\pi\)
\(110\) 0 0
\(111\) 2.56547 4.44352i 0.243503 0.421760i
\(112\) 0 0
\(113\) 12.1244 + 7.00000i 1.14056 + 0.658505i 0.946570 0.322498i \(-0.104523\pi\)
0.193993 + 0.981003i \(0.437856\pi\)
\(114\) 0 0
\(115\) −15.5993 3.16915i −1.45464 0.295525i
\(116\) 0 0
\(117\) 0.313917 + 0.624823i 0.0290217 + 0.0577649i
\(118\) 0 0
\(119\) −0.434534 0.752634i −0.0398336 0.0689939i
\(120\) 0 0
\(121\) −15.2599 + 26.4309i −1.38726 + 2.40281i
\(122\) 0 0
\(123\) −10.8898 6.28726i −0.981905 0.566903i
\(124\) 0 0
\(125\) 6.32487 9.21933i 0.565713 0.824602i
\(126\) 0 0
\(127\) 4.49176 2.59332i 0.398580 0.230120i −0.287291 0.957843i \(-0.592755\pi\)
0.685871 + 0.727723i \(0.259421\pi\)
\(128\) 0 0
\(129\) 3.35026 0.294974
\(130\) 0 0
\(131\) 10.8011 0.943700 0.471850 0.881679i \(-0.343586\pi\)
0.471850 + 0.881679i \(0.343586\pi\)
\(132\) 0 0
\(133\) 9.83388 5.67759i 0.852706 0.492310i
\(134\) 0 0
\(135\) 7.92478 8.96239i 0.682056 0.771360i
\(136\) 0 0
\(137\) 5.32095 + 3.07205i 0.454600 + 0.262463i 0.709771 0.704433i \(-0.248798\pi\)
−0.255171 + 0.966896i \(0.582132\pi\)
\(138\) 0 0
\(139\) −5.16902 + 8.95301i −0.438431 + 0.759384i −0.997569 0.0696904i \(-0.977799\pi\)
0.559138 + 0.829075i \(0.311132\pi\)
\(140\) 0 0
\(141\) −1.83757 3.18276i −0.154751 0.268036i
\(142\) 0 0
\(143\) 23.1936 + 1.34732i 1.93954 + 0.112669i
\(144\) 0 0
\(145\) 1.02956 5.06772i 0.0855004 0.420851i
\(146\) 0 0
\(147\) −5.42293 3.13093i −0.447276 0.258235i
\(148\) 0 0
\(149\) −8.02539 + 13.9004i −0.657466 + 1.13876i 0.323804 + 0.946124i \(0.395038\pi\)
−0.981270 + 0.192640i \(0.938295\pi\)
\(150\) 0 0
\(151\) −9.31757 −0.758253 −0.379127 0.925345i \(-0.623776\pi\)
−0.379127 + 0.925345i \(0.623776\pi\)
\(152\) 0 0
\(153\) 0.0808185 0.0466606i 0.00653379 0.00377228i
\(154\) 0 0
\(155\) 5.45580 + 4.82416i 0.438221 + 0.387486i
\(156\) 0 0
\(157\) 14.7562i 1.17768i −0.808251 0.588838i \(-0.799586\pi\)
0.808251 0.588838i \(-0.200414\pi\)
\(158\) 0 0
\(159\) 0.759403 + 1.31532i 0.0602246 + 0.104312i
\(160\) 0 0
\(161\) 12.8568 1.01326
\(162\) 0 0
\(163\) 11.7127 + 6.76234i 0.917411 + 0.529668i 0.882808 0.469734i \(-0.155650\pi\)
0.0346029 + 0.999401i \(0.488983\pi\)
\(164\) 0 0
\(165\) −7.66480 22.8864i −0.596704 1.78170i
\(166\) 0 0
\(167\) −20.2858 + 11.7120i −1.56977 + 0.906304i −0.573570 + 0.819157i \(0.694442\pi\)
−0.996195 + 0.0871479i \(0.972225\pi\)
\(168\) 0 0
\(169\) −5.15268 11.9352i −0.396360 0.918095i
\(170\) 0 0
\(171\) 0.609665 + 1.05597i 0.0466222 + 0.0807520i
\(172\) 0 0
\(173\) −4.00480 2.31217i −0.304479 0.175791i 0.339974 0.940435i \(-0.389582\pi\)
−0.644453 + 0.764644i \(0.722915\pi\)
\(174\) 0 0
\(175\) −3.52377 + 8.31443i −0.266372 + 0.628512i
\(176\) 0 0
\(177\) 11.0132i 0.827801i
\(178\) 0 0
\(179\) 4.15633 + 7.19897i 0.310658 + 0.538076i 0.978505 0.206223i \(-0.0661172\pi\)
−0.667847 + 0.744299i \(0.732784\pi\)
\(180\) 0 0
\(181\) −1.02539 −0.0762168 −0.0381084 0.999274i \(-0.512133\pi\)
−0.0381084 + 0.999274i \(0.512133\pi\)
\(182\) 0 0
\(183\) 18.3430i 1.35595i
\(184\) 0 0
\(185\) −6.71197 1.36361i −0.493474 0.100254i
\(186\) 0 0
\(187\) 3.10062i 0.226739i
\(188\) 0 0
\(189\) −4.83146 + 8.36833i −0.351437 + 0.608706i
\(190\) 0 0
\(191\) 0.177593 0.307600i 0.0128502 0.0222572i −0.859529 0.511087i \(-0.829243\pi\)
0.872379 + 0.488830i \(0.162576\pi\)
\(192\) 0 0
\(193\) −12.1244 + 7.00000i −0.872730 + 0.503871i −0.868255 0.496119i \(-0.834758\pi\)
−0.00447566 + 0.999990i \(0.501425\pi\)
\(194\) 0 0
\(195\) −9.51775 + 9.58157i −0.681580 + 0.686151i
\(196\) 0 0
\(197\) −12.2166 + 7.05325i −0.870396 + 0.502523i −0.867480 0.497473i \(-0.834261\pi\)
−0.00291585 + 0.999996i \(0.500928\pi\)
\(198\) 0 0
\(199\) 1.57452 2.72714i 0.111614 0.193322i −0.804807 0.593537i \(-0.797731\pi\)
0.916421 + 0.400215i \(0.131065\pi\)
\(200\) 0 0
\(201\) −0.544198 + 0.942579i −0.0383848 + 0.0664844i
\(202\) 0 0
\(203\) 4.17679i 0.293153i
\(204\) 0 0
\(205\) −3.34183 + 16.4492i −0.233404 + 1.14886i
\(206\) 0 0
\(207\) 1.38058i 0.0959569i
\(208\) 0 0
\(209\) 40.5125 2.80231
\(210\) 0 0
\(211\) 1.54666 + 2.67889i 0.106477 + 0.184423i 0.914340 0.404946i \(-0.132710\pi\)
−0.807864 + 0.589369i \(0.799376\pi\)
\(212\) 0 0
\(213\) 6.13586i 0.420422i
\(214\) 0 0
\(215\) −1.42022 4.24063i −0.0968580 0.289209i
\(216\) 0 0
\(217\) −5.09417 2.94112i −0.345815 0.199656i
\(218\) 0 0
\(219\) 2.18370 + 3.78228i 0.147561 + 0.255583i
\(220\) 0 0
\(221\) −1.55031 + 0.778890i −0.104285 + 0.0523938i
\(222\) 0 0
\(223\) 19.2205 11.0970i 1.28710 0.743108i 0.308965 0.951074i \(-0.400018\pi\)
0.978136 + 0.207966i \(0.0666842\pi\)
\(224\) 0 0
\(225\) −0.892810 0.378385i −0.0595207 0.0252257i
\(226\) 0 0
\(227\) −11.5490 6.66784i −0.766536 0.442560i 0.0651014 0.997879i \(-0.479263\pi\)
−0.831638 + 0.555319i \(0.812596\pi\)
\(228\) 0 0
\(229\) −26.1744 −1.72965 −0.864827 0.502069i \(-0.832572\pi\)
−0.864827 + 0.502069i \(0.832572\pi\)
\(230\) 0 0
\(231\) 9.74718 + 16.8826i 0.641318 + 1.11079i
\(232\) 0 0
\(233\) 20.8691i 1.36718i −0.729867 0.683589i \(-0.760418\pi\)
0.729867 0.683589i \(-0.239582\pi\)
\(234\) 0 0
\(235\) −3.24965 + 3.67513i −0.211984 + 0.239739i
\(236\) 0 0
\(237\) −3.32872 + 1.92184i −0.216224 + 0.124837i
\(238\) 0 0
\(239\) −15.2931 −0.989231 −0.494615 0.869112i \(-0.664691\pi\)
−0.494615 + 0.869112i \(0.664691\pi\)
\(240\) 0 0
\(241\) 6.38423 11.0578i 0.411244 0.712296i −0.583782 0.811910i \(-0.698428\pi\)
0.995026 + 0.0996147i \(0.0317610\pi\)
\(242\) 0 0
\(243\) −1.74263 1.00611i −0.111790 0.0645419i
\(244\) 0 0
\(245\) −1.66417 + 8.19139i −0.106320 + 0.523328i
\(246\) 0 0
\(247\) −10.1769 20.2562i −0.647543 1.28887i
\(248\) 0 0
\(249\) 11.1715 + 19.3496i 0.707964 + 1.22623i
\(250\) 0 0
\(251\) −2.10602 + 3.64773i −0.132931 + 0.230243i −0.924805 0.380441i \(-0.875772\pi\)
0.791874 + 0.610684i \(0.209105\pi\)
\(252\) 0 0
\(253\) 39.7246 + 22.9350i 2.49746 + 1.44191i
\(254\) 0 0
\(255\) 1.35026 + 1.19394i 0.0845567 + 0.0747672i
\(256\) 0 0
\(257\) 16.1300 9.31265i 1.00616 0.580907i 0.0960955 0.995372i \(-0.469365\pi\)
0.910065 + 0.414465i \(0.136031\pi\)
\(258\) 0 0
\(259\) 5.53198 0.343740
\(260\) 0 0
\(261\) −0.448507 −0.0277619
\(262\) 0 0
\(263\) −19.9363 + 11.5102i −1.22933 + 0.709751i −0.966889 0.255198i \(-0.917859\pi\)
−0.262437 + 0.964949i \(0.584526\pi\)
\(264\) 0 0
\(265\) 1.34297 1.51881i 0.0824978 0.0932995i
\(266\) 0 0
\(267\) −1.67749 0.968498i −0.102661 0.0592711i
\(268\) 0 0
\(269\) −6.73695 + 11.6687i −0.410759 + 0.711456i −0.994973 0.100144i \(-0.968070\pi\)
0.584214 + 0.811600i \(0.301403\pi\)
\(270\) 0 0
\(271\) −8.95017 15.5021i −0.543684 0.941688i −0.998688 0.0511993i \(-0.983696\pi\)
0.455004 0.890489i \(-0.349638\pi\)
\(272\) 0 0
\(273\) 5.99277 9.11459i 0.362699 0.551640i
\(274\) 0 0
\(275\) −25.7195 + 19.4036i −1.55094 + 1.17008i
\(276\) 0 0
\(277\) −7.35125 4.24424i −0.441694 0.255012i 0.262622 0.964899i \(-0.415413\pi\)
−0.704316 + 0.709887i \(0.748746\pi\)
\(278\) 0 0
\(279\) 0.315820 0.547016i 0.0189076 0.0327490i
\(280\) 0 0
\(281\) −16.5296 −0.986074 −0.493037 0.870008i \(-0.664113\pi\)
−0.493037 + 0.870008i \(0.664113\pi\)
\(282\) 0 0
\(283\) 1.33100 0.768452i 0.0791196 0.0456797i −0.459918 0.887961i \(-0.652121\pi\)
0.539038 + 0.842282i \(0.318788\pi\)
\(284\) 0 0
\(285\) −15.5999 + 17.6424i −0.924059 + 1.04505i
\(286\) 0 0
\(287\) 13.5574i 0.800266i
\(288\) 0 0
\(289\) −8.38423 14.5219i −0.493190 0.854230i
\(290\) 0 0
\(291\) −23.1695 −1.35822
\(292\) 0 0
\(293\) 5.13527 + 2.96485i 0.300006 + 0.173208i 0.642446 0.766331i \(-0.277920\pi\)
−0.342440 + 0.939540i \(0.611253\pi\)
\(294\) 0 0
\(295\) 13.9401 4.66862i 0.811622 0.271818i
\(296\) 0 0
\(297\) −29.8561 + 17.2374i −1.73243 + 1.00022i
\(298\) 0 0
\(299\) 1.48849 25.6237i 0.0860815 1.48186i
\(300\) 0 0
\(301\) 1.80606 + 3.12819i 0.104100 + 0.180306i
\(302\) 0 0
\(303\) 13.9266 + 8.04055i 0.800065 + 0.461918i
\(304\) 0 0
\(305\) −23.2178 + 7.77581i −1.32945 + 0.445242i
\(306\) 0 0
\(307\) 17.9756i 1.02592i −0.858413 0.512960i \(-0.828549\pi\)
0.858413 0.512960i \(-0.171451\pi\)
\(308\) 0 0
\(309\) 2.57570 + 4.46124i 0.146526 + 0.253791i
\(310\) 0 0
\(311\) −15.9575 −0.904865 −0.452432 0.891799i \(-0.649444\pi\)
−0.452432 + 0.891799i \(0.649444\pi\)
\(312\) 0 0
\(313\) 23.4372i 1.32475i −0.749172 0.662376i \(-0.769548\pi\)
0.749172 0.662376i \(-0.230452\pi\)
\(314\) 0 0
\(315\) 0.767530 + 0.155932i 0.0432454 + 0.00878576i
\(316\) 0 0
\(317\) 20.6507i 1.15986i 0.814667 + 0.579929i \(0.196920\pi\)
−0.814667 + 0.579929i \(0.803080\pi\)
\(318\) 0 0
\(319\) −7.45088 + 12.9053i −0.417169 + 0.722558i
\(320\) 0 0
\(321\) 1.40303 2.43012i 0.0783096 0.135636i
\(322\) 0 0
\(323\) −2.62007 + 1.51270i −0.145784 + 0.0841687i
\(324\) 0 0
\(325\) 16.1627 + 7.98546i 0.896544 + 0.442954i
\(326\) 0 0
\(327\) −15.7941 + 9.11871i −0.873414 + 0.504266i
\(328\) 0 0
\(329\) 1.98119 3.43153i 0.109227 0.189186i
\(330\) 0 0
\(331\) −13.3380 + 23.1022i −0.733125 + 1.26981i 0.222416 + 0.974952i \(0.428606\pi\)
−0.955541 + 0.294858i \(0.904728\pi\)
\(332\) 0 0
\(333\) 0.594028i 0.0325526i
\(334\) 0 0
\(335\) 1.42377 + 0.289255i 0.0777891 + 0.0158037i
\(336\) 0 0
\(337\) 8.40597i 0.457902i 0.973438 + 0.228951i \(0.0735296\pi\)
−0.973438 + 0.228951i \(0.926470\pi\)
\(338\) 0 0
\(339\) 23.4518 1.27373
\(340\) 0 0
\(341\) −10.4932 18.1747i −0.568238 0.984217i
\(342\) 0 0
\(343\) 19.3938i 1.04716i
\(344\) 0 0
\(345\) −25.2843 + 8.46789i −1.36126 + 0.455896i
\(346\) 0 0
\(347\) 18.3177 + 10.5757i 0.983343 + 0.567733i 0.903278 0.429056i \(-0.141154\pi\)
0.0800652 + 0.996790i \(0.474487\pi\)
\(348\) 0 0
\(349\) 2.73695 + 4.74054i 0.146506 + 0.253755i 0.929934 0.367727i \(-0.119864\pi\)
−0.783428 + 0.621482i \(0.786531\pi\)
\(350\) 0 0
\(351\) 16.1187 + 10.5979i 0.860353 + 0.565675i
\(352\) 0 0
\(353\) −26.1056 + 15.0721i −1.38946 + 0.802204i −0.993254 0.115958i \(-0.963006\pi\)
−0.396205 + 0.918162i \(0.629673\pi\)
\(354\) 0 0
\(355\) −7.76654 + 2.60107i −0.412205 + 0.138050i
\(356\) 0 0
\(357\) −1.26076 0.727901i −0.0667266 0.0385246i
\(358\) 0 0
\(359\) −8.38787 −0.442695 −0.221348 0.975195i \(-0.571046\pi\)
−0.221348 + 0.975195i \(0.571046\pi\)
\(360\) 0 0
\(361\) −10.2648 17.7792i −0.540253 0.935745i
\(362\) 0 0
\(363\) 51.1246i 2.68335i
\(364\) 0 0
\(365\) 3.86177 4.36741i 0.202134 0.228600i
\(366\) 0 0
\(367\) −16.8983 + 9.75623i −0.882084 + 0.509271i −0.871345 0.490671i \(-0.836752\pi\)
−0.0107388 + 0.999942i \(0.503418\pi\)
\(368\) 0 0
\(369\) 1.45580 0.0757860
\(370\) 0 0
\(371\) −0.818760 + 1.41813i −0.0425079 + 0.0736258i
\(372\) 0 0
\(373\) 7.37324 + 4.25694i 0.381772 + 0.220416i 0.678589 0.734518i \(-0.262592\pi\)
−0.296817 + 0.954934i \(0.595925\pi\)
\(374\) 0 0
\(375\) 1.45373 18.6720i 0.0750705 0.964219i
\(376\) 0 0
\(377\) 8.32435 + 0.483564i 0.428726 + 0.0249048i
\(378\) 0 0
\(379\) 9.85931 + 17.0768i 0.506439 + 0.877178i 0.999972 + 0.00745089i \(0.00237172\pi\)
−0.493533 + 0.869727i \(0.664295\pi\)
\(380\) 0 0
\(381\) 4.34415 7.52429i 0.222558 0.385481i
\(382\) 0 0
\(383\) 24.0059 + 13.8598i 1.22664 + 0.708202i 0.966326 0.257321i \(-0.0828399\pi\)
0.260316 + 0.965523i \(0.416173\pi\)
\(384\) 0 0
\(385\) 17.2374 19.4944i 0.878501 0.993525i
\(386\) 0 0
\(387\) −0.335908 + 0.193937i −0.0170752 + 0.00985835i
\(388\) 0 0
\(389\) −9.15140 −0.463994 −0.231997 0.972716i \(-0.574526\pi\)
−0.231997 + 0.972716i \(0.574526\pi\)
\(390\) 0 0
\(391\) −3.42548 −0.173234
\(392\) 0 0
\(393\) 15.6693 9.04666i 0.790410 0.456344i
\(394\) 0 0
\(395\) 3.84367 + 3.39868i 0.193396 + 0.171006i
\(396\) 0 0
\(397\) 1.23877 + 0.715205i 0.0621721 + 0.0358951i 0.530764 0.847520i \(-0.321905\pi\)
−0.468592 + 0.883415i \(0.655238\pi\)
\(398\) 0 0
\(399\) 9.51071 16.4730i 0.476131 0.824683i
\(400\) 0 0
\(401\) −10.8351 18.7669i −0.541079 0.937177i −0.998842 0.0481025i \(-0.984683\pi\)
0.457763 0.889074i \(-0.348651\pi\)
\(402\) 0 0
\(403\) −6.45142 + 9.81217i −0.321368 + 0.488779i
\(404\) 0 0
\(405\) 3.73092 18.3644i 0.185391 0.912534i
\(406\) 0 0
\(407\) 17.0925 + 9.86836i 0.847244 + 0.489156i
\(408\) 0 0
\(409\) 4.54055 7.86447i 0.224516 0.388873i −0.731658 0.681672i \(-0.761253\pi\)
0.956174 + 0.292799i \(0.0945866\pi\)
\(410\) 0 0
\(411\) 10.2922 0.507676
\(412\) 0 0
\(413\) −10.2832 + 5.93700i −0.506002 + 0.292140i
\(414\) 0 0
\(415\) 19.7562 22.3430i 0.969795 1.09677i
\(416\) 0 0
\(417\) 17.3176i 0.848045i
\(418\) 0 0
\(419\) 7.77139 + 13.4604i 0.379657 + 0.657586i 0.991012 0.133771i \(-0.0427086\pi\)
−0.611355 + 0.791356i \(0.709375\pi\)
\(420\) 0 0
\(421\) −4.96476 −0.241968 −0.120984 0.992654i \(-0.538605\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(422\) 0 0
\(423\) 0.368480 + 0.212742i 0.0179161 + 0.0103439i
\(424\) 0 0
\(425\) 0.938847 2.21523i 0.0455408 0.107455i
\(426\) 0 0
\(427\) 17.1271 9.88835i 0.828840 0.478531i
\(428\) 0 0
\(429\) 34.7755 17.4716i 1.67898 0.843535i
\(430\) 0 0
\(431\) −16.4853 28.5534i −0.794070 1.37537i −0.923428 0.383771i \(-0.874625\pi\)
0.129358 0.991598i \(-0.458708\pi\)
\(432\) 0 0
\(433\) 13.9529 + 8.05571i 0.670534 + 0.387133i 0.796279 0.604930i \(-0.206799\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(434\) 0 0
\(435\) −2.75096 8.21409i −0.131898 0.393836i
\(436\) 0 0
\(437\) 44.7572i 2.14103i
\(438\) 0 0
\(439\) 0.0417360 + 0.0722889i 0.00199195 + 0.00345016i 0.867020 0.498274i \(-0.166033\pi\)
−0.865028 + 0.501724i \(0.832699\pi\)
\(440\) 0 0
\(441\) 0.724961 0.0345220
\(442\) 0 0
\(443\) 40.9135i 1.94386i −0.235271 0.971930i \(-0.575598\pi\)
0.235271 0.971930i \(-0.424402\pi\)
\(444\) 0 0
\(445\) −0.514780 + 2.53386i −0.0244029 + 0.120116i
\(446\) 0 0
\(447\) 26.8872i 1.27172i
\(448\) 0 0
\(449\) −14.5659 + 25.2290i −0.687409 + 1.19063i 0.285264 + 0.958449i \(0.407919\pi\)
−0.972673 + 0.232179i \(0.925415\pi\)
\(450\) 0 0
\(451\) 24.1847 41.8891i 1.13881 1.97248i
\(452\) 0 0
\(453\) −13.5171 + 7.80408i −0.635087 + 0.366668i
\(454\) 0 0
\(455\) −14.0773 3.72163i −0.659955 0.174473i
\(456\) 0 0
\(457\) 28.2912 16.3339i 1.32341 0.764068i 0.339135 0.940738i \(-0.389866\pi\)
0.984270 + 0.176669i \(0.0565323\pi\)
\(458\) 0 0
\(459\) 1.28726 2.22960i 0.0600840 0.104069i
\(460\) 0 0
\(461\) 9.55031 16.5416i 0.444802 0.770420i −0.553236 0.833024i \(-0.686607\pi\)
0.998038 + 0.0626044i \(0.0199407\pi\)
\(462\) 0 0
\(463\) 8.29218i 0.385370i −0.981261 0.192685i \(-0.938280\pi\)
0.981261 0.192685i \(-0.0617196\pi\)
\(464\) 0 0
\(465\) 11.9553 + 2.42885i 0.554414 + 0.112635i
\(466\) 0 0
\(467\) 23.5369i 1.08916i −0.838710 0.544579i \(-0.816689\pi\)
0.838710 0.544579i \(-0.183311\pi\)
\(468\) 0 0
\(469\) −1.17347 −0.0541857
\(470\) 0 0
\(471\) −12.3593 21.4070i −0.569487 0.986380i
\(472\) 0 0
\(473\) 12.8872i 0.592553i
\(474\) 0 0
\(475\) 28.9441 + 12.2669i 1.32805 + 0.562845i
\(476\) 0 0
\(477\) −0.152280 0.0879191i −0.00697244 0.00402554i
\(478\) 0 0
\(479\) −3.27821 5.67802i −0.149785 0.259436i 0.781363 0.624077i \(-0.214525\pi\)
−0.931148 + 0.364642i \(0.881192\pi\)
\(480\) 0 0
\(481\) 0.640459 11.0252i 0.0292024 0.502707i
\(482\) 0 0
\(483\) 18.6515 10.7685i 0.848673 0.489982i
\(484\) 0 0
\(485\) 9.82184 + 29.3271i 0.445987 + 1.33167i
\(486\) 0 0
\(487\) 11.7432 + 6.77996i 0.532137 + 0.307229i 0.741886 0.670526i \(-0.233931\pi\)
−0.209749 + 0.977755i \(0.567265\pi\)
\(488\) 0 0
\(489\) 22.6556 1.02452
\(490\) 0 0
\(491\) 2.47873 + 4.29329i 0.111864 + 0.193753i 0.916522 0.399985i \(-0.130985\pi\)
−0.804658 + 0.593739i \(0.797651\pi\)
\(492\) 0 0
\(493\) 1.11283i 0.0501195i
\(494\) 0 0
\(495\) 2.09332 + 1.85097i 0.0940878 + 0.0831949i
\(496\) 0 0
\(497\) 5.72915 3.30773i 0.256987 0.148372i
\(498\) 0 0
\(499\) −13.8700 −0.620907 −0.310454 0.950588i \(-0.600481\pi\)
−0.310454 + 0.950588i \(0.600481\pi\)
\(500\) 0 0
\(501\) −19.6192 + 33.9814i −0.876521 + 1.51818i
\(502\) 0 0
\(503\) −2.98650 1.72425i −0.133161 0.0768807i 0.431940 0.901903i \(-0.357829\pi\)
−0.565101 + 0.825022i \(0.691163\pi\)
\(504\) 0 0
\(505\) 4.27375 21.0363i 0.190179 0.936103i
\(506\) 0 0
\(507\) −17.4716 12.9988i −0.775939 0.577298i
\(508\) 0 0
\(509\) −15.4812 26.8142i −0.686192 1.18852i −0.973061 0.230549i \(-0.925948\pi\)
0.286869 0.957970i \(-0.407386\pi\)
\(510\) 0 0
\(511\) −2.35439 + 4.07792i −0.104152 + 0.180396i
\(512\) 0 0
\(513\) 29.1318 + 16.8192i 1.28620 + 0.742587i
\(514\) 0 0
\(515\) 4.55500 5.15140i 0.200717 0.226998i
\(516\) 0 0
\(517\) 12.2428 7.06841i 0.538439 0.310868i
\(518\) 0 0
\(519\) −7.74638 −0.340029
\(520\) 0 0
\(521\) 14.2506 0.624330 0.312165 0.950028i \(-0.398946\pi\)
0.312165 + 0.950028i \(0.398946\pi\)
\(522\) 0 0
\(523\) −9.10529 + 5.25694i −0.398146 + 0.229870i −0.685684 0.727899i \(-0.740497\pi\)
0.287537 + 0.957769i \(0.407163\pi\)
\(524\) 0 0
\(525\) 1.85192 + 15.0132i 0.0808246 + 0.655229i
\(526\) 0 0
\(527\) 1.35725 + 0.783611i 0.0591229 + 0.0341346i
\(528\) 0 0
\(529\) 13.8380 23.9682i 0.601654 1.04210i
\(530\) 0 0
\(531\) −0.637519 1.10422i −0.0276660 0.0479189i
\(532\) 0 0
\(533\) −27.0198 1.56959i −1.17036 0.0679865i
\(534\) 0 0
\(535\) −3.67072 0.745746i −0.158699 0.0322414i
\(536\) 0 0
\(537\) 12.0592 + 6.96239i 0.520393 + 0.300449i
\(538\) 0 0
\(539\) 12.0435 20.8599i 0.518750 0.898501i
\(540\) 0 0
\(541\) 15.5345 0.667882 0.333941 0.942594i \(-0.391621\pi\)
0.333941 + 0.942594i \(0.391621\pi\)
\(542\) 0 0
\(543\) −1.48754 + 0.858833i −0.0638366 + 0.0368561i
\(544\) 0 0
\(545\) 18.2374 + 16.1260i 0.781206 + 0.690762i
\(546\) 0 0
\(547\) 23.5515i 1.00699i 0.863998 + 0.503495i \(0.167953\pi\)
−0.863998 + 0.503495i \(0.832047\pi\)
\(548\) 0 0
\(549\) 1.06182 + 1.83912i 0.0453173 + 0.0784919i
\(550\) 0 0
\(551\) 14.5402 0.619435
\(552\) 0 0
\(553\) −3.58890 2.07205i −0.152616 0.0881127i
\(554\) 0 0
\(555\) −10.8792 + 3.64352i −0.461797 + 0.154659i
\(556\) 0 0
\(557\) 17.3602 10.0229i 0.735576 0.424685i −0.0848824 0.996391i \(-0.527051\pi\)
0.820459 + 0.571706i \(0.193718\pi\)
\(558\) 0 0
\(559\) 6.44358 3.23732i 0.272535 0.136924i
\(560\) 0 0
\(561\) −2.59697 4.49808i −0.109644 0.189909i
\(562\) 0 0
\(563\) 10.8898 + 6.28726i 0.458952 + 0.264976i 0.711604 0.702581i \(-0.247969\pi\)
−0.252651 + 0.967557i \(0.581303\pi\)
\(564\) 0 0
\(565\) −9.94152 29.6844i −0.418243 1.24883i
\(566\) 0 0
\(567\) 15.1359i 0.635646i
\(568\) 0 0
\(569\) 2.14481 + 3.71493i 0.0899153 + 0.155738i 0.907475 0.420106i \(-0.138007\pi\)
−0.817560 + 0.575844i \(0.804674\pi\)
\(570\) 0 0
\(571\) −6.39280 −0.267530 −0.133765 0.991013i \(-0.542707\pi\)
−0.133765 + 0.991013i \(0.542707\pi\)
\(572\) 0 0
\(573\) 0.594984i 0.0248558i
\(574\) 0 0
\(575\) 21.4367 + 28.4143i 0.893971 + 1.18496i
\(576\) 0 0
\(577\) 37.8169i 1.57434i 0.616738 + 0.787168i \(0.288454\pi\)
−0.616738 + 0.787168i \(0.711546\pi\)
\(578\) 0 0
\(579\) −11.7259 + 20.3099i −0.487312 + 0.844050i
\(580\) 0 0
\(581\) −12.0447 + 20.8620i −0.499697 + 0.865501i
\(582\) 0 0
\(583\) −5.05955 + 2.92113i −0.209545 + 0.120981i
\(584\) 0 0
\(585\) 0.399632 1.51163i 0.0165227 0.0624983i
\(586\) 0 0
\(587\) 19.5289 11.2750i 0.806046 0.465371i −0.0395351 0.999218i \(-0.512588\pi\)
0.845581 + 0.533848i \(0.179254\pi\)
\(588\) 0 0
\(589\) −10.2386 + 17.7338i −0.421875 + 0.730708i
\(590\) 0 0
\(591\) −11.8151 + 20.4644i −0.486009 + 0.841792i
\(592\) 0 0
\(593\) 8.38787i 0.344449i 0.985058 + 0.172224i \(0.0550954\pi\)
−0.985058 + 0.172224i \(0.944905\pi\)
\(594\) 0 0
\(595\) −0.386897 + 1.90439i −0.0158612 + 0.0780724i
\(596\) 0 0
\(597\) 5.27504i 0.215893i
\(598\) 0 0
\(599\) 29.0884 1.18852 0.594260 0.804273i \(-0.297445\pi\)
0.594260 + 0.804273i \(0.297445\pi\)
\(600\) 0 0
\(601\) 21.5059 + 37.2493i 0.877243 + 1.51943i 0.854354 + 0.519692i \(0.173953\pi\)
0.0228892 + 0.999738i \(0.492713\pi\)
\(602\) 0 0
\(603\) 0.126008i 0.00513144i
\(604\) 0 0
\(605\) 64.7116 21.6723i 2.63090 0.881106i
\(606\) 0 0
\(607\) −18.8372 10.8757i −0.764578 0.441429i 0.0663591 0.997796i \(-0.478862\pi\)
−0.830937 + 0.556367i \(0.812195\pi\)
\(608\) 0 0
\(609\) 3.49834 + 6.05930i 0.141760 + 0.245535i
\(610\) 0 0
\(611\) −6.60966 4.34580i −0.267398 0.175812i
\(612\) 0 0
\(613\) 26.6848 15.4064i 1.07779 0.622261i 0.147488 0.989064i \(-0.452881\pi\)
0.930299 + 0.366803i \(0.119548\pi\)
\(614\) 0 0
\(615\) 8.92927 + 26.6620i 0.360063 + 1.07511i
\(616\) 0 0
\(617\) −39.9125 23.0435i −1.60682 0.927696i −0.990077 0.140529i \(-0.955120\pi\)
−0.616740 0.787167i \(-0.711547\pi\)
\(618\) 0 0
\(619\) −13.5564 −0.544878 −0.272439 0.962173i \(-0.587830\pi\)
−0.272439 + 0.962173i \(0.587830\pi\)
\(620\) 0 0
\(621\) 19.0435 + 32.9843i 0.764189 + 1.32361i
\(622\) 0 0
\(623\) 2.08840i 0.0836698i
\(624\) 0 0
\(625\) −24.2506 + 6.07522i −0.970024 + 0.243009i
\(626\) 0 0
\(627\) 58.7717 33.9318i 2.34711 1.35511i
\(628\) 0 0
\(629\) −1.47390 −0.0587682
\(630\) 0 0
\(631\) −2.67513 + 4.63346i −0.106495 + 0.184455i −0.914348 0.404929i \(-0.867296\pi\)
0.807853 + 0.589384i \(0.200630\pi\)
\(632\) 0 0
\(633\) 4.48750 + 2.59086i 0.178362 + 0.102977i
\(634\) 0 0
\(635\) −11.3655 2.30902i −0.451026 0.0916308i
\(636\) 0 0
\(637\) −13.4554 0.781626i −0.533121 0.0309691i
\(638\) 0 0
\(639\) 0.355186 + 0.615201i 0.0140510 + 0.0243370i
\(640\) 0 0
\(641\) −6.19029 + 10.7219i −0.244502 + 0.423489i −0.961991 0.273080i \(-0.911958\pi\)
0.717490 + 0.696569i \(0.245291\pi\)
\(642\) 0 0
\(643\) 9.98067 + 5.76234i 0.393599 + 0.227245i 0.683718 0.729746i \(-0.260362\pi\)
−0.290119 + 0.956991i \(0.593695\pi\)
\(644\) 0 0
\(645\) −5.61213 4.96239i −0.220977 0.195394i
\(646\) 0 0
\(647\) −3.17849 + 1.83510i −0.124959 + 0.0721453i −0.561177 0.827696i \(-0.689651\pi\)
0.436217 + 0.899841i \(0.356318\pi\)
\(648\) 0 0
\(649\) −42.3634 −1.66291
\(650\) 0 0
\(651\) −9.85352 −0.386190
\(652\) 0 0
\(653\) −7.02043 + 4.05325i −0.274731 + 0.158616i −0.631036 0.775754i \(-0.717370\pi\)
0.356305 + 0.934370i \(0.384036\pi\)
\(654\) 0 0
\(655\) −18.0933 15.9986i −0.706965 0.625116i
\(656\) 0 0
\(657\) −0.437890 0.252816i −0.0170837 0.00986329i
\(658\) 0 0
\(659\) −9.27210 + 16.0597i −0.361190 + 0.625599i −0.988157 0.153447i \(-0.950963\pi\)
0.626967 + 0.779046i \(0.284296\pi\)
\(660\) 0 0
\(661\) −23.2059 40.1938i −0.902606 1.56336i −0.824099 0.566446i \(-0.808318\pi\)
−0.0785068 0.996914i \(-0.525015\pi\)
\(662\) 0 0
\(663\) −1.59667 + 2.42842i −0.0620095 + 0.0943122i
\(664\) 0 0
\(665\) −24.8827 5.05518i −0.964908 0.196031i
\(666\) 0 0
\(667\) 14.2575 + 8.23155i 0.552051 + 0.318727i
\(668\) 0 0
\(669\) 18.5889 32.1969i 0.718687 1.24480i
\(670\) 0 0
\(671\) 70.5583 2.72387
\(672\) 0 0
\(673\) 34.9956 20.2047i 1.34898 0.778836i 0.360877 0.932613i \(-0.382477\pi\)
0.988105 + 0.153778i \(0.0491440\pi\)
\(674\) 0 0
\(675\) −26.5501 + 3.27504i −1.02191 + 0.126056i
\(676\) 0 0
\(677\) 14.2473i 0.547567i −0.961791 0.273784i \(-0.911725\pi\)
0.961791 0.273784i \(-0.0882752\pi\)
\(678\) 0 0
\(679\) −12.4902 21.6337i −0.479332 0.830227i
\(680\) 0 0
\(681\) −22.3390 −0.856032
\(682\) 0 0
\(683\) −5.02599 2.90175i −0.192314 0.111033i 0.400751 0.916187i \(-0.368749\pi\)
−0.593065 + 0.805154i \(0.702082\pi\)
\(684\) 0 0
\(685\) −4.36298 13.0275i −0.166701 0.497753i
\(686\) 0 0
\(687\) −37.9714 + 21.9228i −1.44870 + 0.836407i
\(688\) 0 0
\(689\) 2.73155 + 1.79597i 0.104064 + 0.0684210i
\(690\) 0 0
\(691\) −9.61990 16.6622i −0.365958 0.633858i 0.622971 0.782245i \(-0.285925\pi\)
−0.988929 + 0.148387i \(0.952592\pi\)
\(692\) 0 0
\(693\) −1.95457 1.12847i −0.0742479 0.0428670i
\(694\) 0 0
\(695\) 21.9199 7.34113i 0.831470 0.278465i
\(696\) 0 0
\(697\) 3.61213i 0.136819i
\(698\) 0 0
\(699\) −17.4792 30.2749i −0.661124 1.14510i
\(700\) 0 0
\(701\) 45.3742 1.71376 0.856881 0.515515i \(-0.172399\pi\)
0.856881 + 0.515515i \(0.172399\pi\)
\(702\) 0 0
\(703\) 19.2579i 0.726325i
\(704\) 0 0
\(705\) −1.63612 + 8.05333i −0.0616198 + 0.303306i
\(706\) 0 0
\(707\) 17.3380i 0.652064i
\(708\) 0 0
\(709\) 1.98660 3.44089i 0.0746082 0.129225i −0.826308 0.563219i \(-0.809563\pi\)
0.900916 + 0.433994i \(0.142896\pi\)
\(710\) 0 0
\(711\) 0.222499 0.385379i 0.00834436 0.0144528i
\(712\) 0 0
\(713\) −20.0790 + 11.5926i −0.751964 + 0.434147i
\(714\) 0 0
\(715\) −36.8566 36.6111i −1.37836 1.36918i
\(716\) 0 0
\(717\) −22.1858 + 12.8090i −0.828546 + 0.478361i
\(718\) 0 0
\(719\) −22.8496 + 39.5766i −0.852145 + 1.47596i 0.0271244 + 0.999632i \(0.491365\pi\)
−0.879269 + 0.476326i \(0.841968\pi\)
\(720\) 0 0
\(721\) −2.77702 + 4.80995i −0.103422 + 0.179132i
\(722\) 0 0
\(723\) 21.3888i 0.795459i
\(724\) 0 0
\(725\) −9.23092 + 6.96411i −0.342828 + 0.258641i
\(726\) 0 0
\(727\) 24.7948i 0.919588i 0.888026 + 0.459794i \(0.152077\pi\)
−0.888026 + 0.459794i \(0.847923\pi\)
\(728\) 0 0
\(729\) −28.5125 −1.05602
\(730\) 0 0
\(731\) −0.481194 0.833453i −0.0177976 0.0308264i
\(732\) 0 0
\(733\) 45.8651i 1.69407i −0.531540 0.847033i \(-0.678387\pi\)
0.531540 0.847033i \(-0.321613\pi\)
\(734\) 0 0
\(735\) 4.44661 + 13.2771i 0.164016 + 0.489735i
\(736\) 0 0
\(737\) −3.62574 2.09332i −0.133556 0.0771085i
\(738\) 0 0
\(739\) −17.4817 30.2791i −0.643074 1.11384i −0.984743 0.174016i \(-0.944326\pi\)
0.341669 0.939820i \(-0.389008\pi\)
\(740\) 0 0
\(741\) −31.7297 20.8620i −1.16562 0.766384i
\(742\) 0 0
\(743\) −5.94673 + 3.43335i −0.218165 + 0.125957i −0.605100 0.796149i \(-0.706867\pi\)
0.386936 + 0.922107i \(0.373534\pi\)
\(744\) 0 0
\(745\) 34.0328 11.3978i 1.24686 0.417583i
\(746\) 0 0
\(747\) −2.24018 1.29337i −0.0819638 0.0473218i
\(748\) 0 0
\(749\) 3.02539 0.110545
\(750\) 0 0
\(751\) 2.40009 + 4.15708i 0.0875806 + 0.151694i 0.906488 0.422232i \(-0.138753\pi\)
−0.818907 + 0.573926i \(0.805420\pi\)
\(752\) 0 0
\(753\) 7.05571i 0.257124i
\(754\) 0 0
\(755\) 15.6082 + 13.8011i 0.568039 + 0.502275i
\(756\) 0 0
\(757\) −24.0541 + 13.8876i −0.874261 + 0.504755i −0.868762 0.495230i \(-0.835084\pi\)
−0.00549931 + 0.999985i \(0.501750\pi\)
\(758\) 0 0
\(759\) 76.8383 2.78905
\(760\) 0 0
\(761\) 1.58110 2.73855i 0.0573149 0.0992723i −0.835944 0.548814i \(-0.815079\pi\)
0.893259 + 0.449542i \(0.148413\pi\)
\(762\) 0 0
\(763\) −17.0286 9.83146i −0.616476 0.355923i
\(764\) 0 0
\(765\) −0.204495 0.0415453i −0.00739353 0.00150207i
\(766\) 0 0
\(767\) 10.6419 + 21.1817i 0.384257 + 0.764828i
\(768\) 0 0
\(769\) 4.07816 + 7.06358i 0.147062 + 0.254719i 0.930140 0.367204i \(-0.119685\pi\)
−0.783078 + 0.621923i \(0.786352\pi\)
\(770\) 0 0
\(771\) 15.5999 27.0198i 0.561817 0.973096i
\(772\) 0 0
\(773\) 5.09129 + 2.93946i 0.183121 + 0.105725i 0.588758 0.808309i \(-0.299617\pi\)
−0.405637 + 0.914034i \(0.632950\pi\)
\(774\) 0 0
\(775\) −1.99366 16.1622i −0.0716144 0.580564i
\(776\) 0 0
\(777\) 8.02528 4.63339i 0.287905 0.166222i
\(778\) 0 0
\(779\) −47.1958 −1.69097
\(780\) 0 0
\(781\) 23.6023 0.844556
\(782\) 0 0
\(783\) −10.7156 + 6.18664i −0.382944 + 0.221093i
\(784\) 0 0
\(785\) −21.8568 + 24.7186i −0.780104 + 0.882245i
\(786\) 0 0
\(787\) 20.5261 + 11.8507i 0.731676 + 0.422433i 0.819035 0.573744i \(-0.194509\pi\)
−0.0873591 + 0.996177i \(0.527843\pi\)
\(788\) 0 0
\(789\) −19.2811 + 33.3959i −0.686427 + 1.18893i
\(790\) 0 0
\(791\) 12.6424 + 21.8974i 0.449514 + 0.778580i
\(792\) 0 0
\(793\) −17.7246 35.2792i −0.629419 1.25280i
\(794\) 0 0
\(795\) 0.676152 3.32816i 0.0239806 0.118038i
\(796\) 0 0
\(797\) 42.0193 + 24.2599i 1.48840 + 0.859329i 0.999912 0.0132409i \(-0.00421482\pi\)
0.488489 + 0.872570i \(0.337548\pi\)
\(798\) 0 0
\(799\) −0.527855 + 0.914271i −0.0186742 + 0.0323446i
\(800\) 0 0
\(801\) 0.224254 0.00792362
\(802\) 0 0
\(803\) −14.5490 + 8.39986i −0.513423 + 0.296425i
\(804\) 0 0
\(805\) −21.5369 19.0435i −0.759076 0.671195i
\(806\) 0 0
\(807\) 22.5705i 0.794521i
\(808\) 0 0
\(809\) −8.55936 14.8252i −0.300931 0.521228i 0.675416 0.737437i \(-0.263964\pi\)
−0.976347 + 0.216209i \(0.930631\pi\)
\(810\) 0 0
\(811\) 7.67372 0.269461 0.134730 0.990882i \(-0.456983\pi\)
0.134730 + 0.990882i \(0.456983\pi\)
\(812\) 0 0
\(813\) −25.9681 14.9927i −0.910742 0.525817i
\(814\) 0 0
\(815\) −9.60400 28.6766i −0.336413 1.00450i
\(816\) 0 0
\(817\) 10.8898 6.28726i 0.380988 0.219963i
\(818\) 0 0
\(819\) −0.0732380 + 1.26076i −0.00255914 + 0.0440546i
\(820\) 0 0
\(821\) 26.8933 + 46.5805i 0.938582 + 1.62567i 0.768119 + 0.640307i \(0.221193\pi\)
0.170463 + 0.985364i \(0.445474\pi\)
\(822\) 0 0
\(823\) −8.46604 4.88787i −0.295108 0.170381i 0.345135 0.938553i \(-0.387833\pi\)
−0.640243 + 0.768172i \(0.721166\pi\)
\(824\) 0 0
\(825\) −21.0596 + 49.6907i −0.733202 + 1.73001i
\(826\) 0 0
\(827\) 28.1598i 0.979213i −0.871943 0.489607i \(-0.837140\pi\)
0.871943 0.489607i \(-0.162860\pi\)
\(828\) 0 0
\(829\) 10.1065 + 17.5050i 0.351013 + 0.607972i 0.986427 0.164199i \(-0.0525039\pi\)
−0.635414 + 0.772172i \(0.719171\pi\)
\(830\) 0 0
\(831\) −14.2193 −0.493263
\(832\) 0 0
\(833\) 1.79877i 0.0623237i
\(834\) 0 0
\(835\) 51.3292 + 10.4281i 1.77632 + 0.360879i
\(836\) 0 0
\(837\) 17.4255i 0.602313i
\(838\) 0 0
\(839\) −6.29631 + 10.9055i −0.217373 + 0.376500i −0.954004 0.299794i \(-0.903082\pi\)
0.736631 + 0.676295i \(0.236415\pi\)
\(840\) 0 0
\(841\) 11.8258 20.4829i 0.407787 0.706308i
\(842\) 0 0
\(843\) −23.9796 + 13.8446i −0.825901 + 0.476834i
\(844\) 0 0
\(845\) −9.04700 + 27.6252i −0.311226 + 0.950336i
\(846\) 0 0
\(847\) −47.7359 + 27.5603i −1.64022 + 0.946984i
\(848\) 0 0
\(849\) 1.28726 2.22960i 0.0441786 0.0765195i
\(850\) 0 0
\(851\) 10.9023 18.8834i 0.373727 0.647314i
\(852\) 0 0
\(853\) 45.7704i 1.56715i 0.621299 + 0.783574i \(0.286605\pi\)
−0.621299 + 0.783574i \(0.713395\pi\)
\(854\) 0 0
\(855\) 0.542829 2.67192i 0.0185644 0.0913777i
\(856\) 0 0
\(857\) 27.8169i 0.950206i −0.879930 0.475103i \(-0.842411\pi\)
0.879930 0.475103i \(-0.157589\pi\)
\(858\) 0 0
\(859\) 25.9706 0.886107 0.443053 0.896495i \(-0.353895\pi\)
0.443053 + 0.896495i \(0.353895\pi\)
\(860\) 0 0
\(861\) −11.3552 19.6678i −0.386984 0.670275i
\(862\) 0 0
\(863\) 18.7210i 0.637270i 0.947877 + 0.318635i \(0.103224\pi\)
−0.947877 + 0.318635i \(0.896776\pi\)
\(864\) 0 0
\(865\) 3.28379 + 9.80508i 0.111652 + 0.333383i
\(866\) 0 0
\(867\) −24.3261 14.0447i −0.826157 0.476982i
\(868\) 0 0
\(869\) −7.39257 12.8043i −0.250776 0.434356i
\(870\) 0 0
\(871\) −0.135857 + 2.33872i −0.00460334 + 0.0792446i
\(872\) 0 0
\(873\) 2.32305 1.34121i 0.0786233 0.0453932i
\(874\) 0 0
\(875\) 18.2181 8.70837i 0.615883 0.294397i
\(876\) 0 0
\(877\) 19.6466 + 11.3430i 0.663418 + 0.383025i 0.793578 0.608468i \(-0.208216\pi\)
−0.130160 + 0.991493i \(0.541549\pi\)
\(878\) 0 0
\(879\) 9.93303 0.335033
\(880\) 0 0
\(881\) 1.23813 + 2.14451i 0.0417138 + 0.0722505i 0.886129 0.463440i \(-0.153385\pi\)
−0.844415 + 0.535690i \(0.820052\pi\)
\(882\) 0 0
\(883\) 31.4641i 1.05885i −0.848357 0.529425i \(-0.822408\pi\)
0.848357 0.529425i \(-0.177592\pi\)
\(884\) 0 0
\(885\) 16.3127 18.4485i 0.548344 0.620140i
\(886\) 0 0
\(887\) −34.3953 + 19.8581i −1.15488 + 0.666771i −0.950072 0.312031i \(-0.898991\pi\)
−0.204809 + 0.978802i \(0.565657\pi\)
\(888\) 0 0
\(889\) 9.36741 0.314173
\(890\) 0 0
\(891\) −27.0005 + 46.7662i −0.904550 + 1.56673i
\(892\) 0 0
\(893\) −11.9458 6.89692i −0.399752 0.230797i
\(894\) 0 0
\(895\) 3.70068 18.2155i 0.123700 0.608878i
\(896\) 0 0
\(897\) −19.3022 38.4191i −0.644480 1.28278i
\(898\) 0 0
\(899\) −3.76608 6.52305i −0.125606 0.217556i
\(900\) 0 0
\(901\) 0.218144 0.377837i 0.00726744 0.0125876i
\(902\) 0 0
\(903\) 5.24013 + 3.02539i 0.174381 + 0.100679i
\(904\) 0 0
\(905\) 1.71767 + 1.51881i 0.0570972 + 0.0504868i
\(906\) 0 0
\(907\) 46.3977 26.7877i 1.54061 0.889472i 0.541811 0.840500i \(-0.317739\pi\)
0.998800 0.0489717i \(-0.0155944\pi\)
\(908\) 0 0
\(909\) −1.86177 −0.0617511
\(910\) 0 0
\(911\) −14.6253 −0.484558 −0.242279 0.970207i \(-0.577895\pi\)
−0.242279 + 0.970207i \(0.577895\pi\)
\(912\) 0 0
\(913\) −74.4304 + 42.9724i −2.46329 + 1.42218i
\(914\) 0 0
\(915\) −27.1695 + 30.7269i −0.898196 + 1.01580i
\(916\) 0 0
\(917\) 16.8940 + 9.75377i 0.557890 + 0.322098i
\(918\) 0 0
\(919\) −26.5247 + 45.9421i −0.874969 + 1.51549i −0.0181725 + 0.999835i \(0.505785\pi\)
−0.856796 + 0.515655i \(0.827549\pi\)
\(920\) 0 0
\(921\) −15.0557 26.0773i −0.496103 0.859275i
\(922\) 0 0
\(923\) −5.92901 11.8011i −0.195156 0.388439i
\(924\) 0 0
\(925\) 9.22366 + 12.2260i 0.303272 + 0.401987i
\(926\) 0 0
\(927\) −0.516496 0.298199i −0.0169640 0.00979414i
\(928\) 0 0
\(929\) −5.22521 + 9.05033i −0.171434 + 0.296932i −0.938921 0.344132i \(-0.888173\pi\)
0.767488 + 0.641064i \(0.221507\pi\)
\(930\) 0 0
\(931\) −23.5026 −0.770267
\(932\) 0 0
\(933\) −23.1496 + 13.3654i −0.757883 + 0.437564i
\(934\) 0 0
\(935\) −4.59261 + 5.19394i −0.150195 + 0.169860i
\(936\) 0 0
\(937\) 10.5745i 0.345454i 0.984970 + 0.172727i \(0.0552579\pi\)
−0.984970 + 0.172727i \(0.944742\pi\)
\(938\) 0 0
\(939\) −19.6302 34.0005i −0.640608 1.10957i
\(940\) 0 0
\(941\) −16.6107 −0.541494 −0.270747 0.962651i \(-0.587271\pi\)
−0.270747 + 0.962651i \(0.587271\pi\)
\(942\) 0 0
\(943\) −46.2780 26.7186i −1.50702 0.870078i
\(944\) 0 0
\(945\) 20.4884 6.86172i 0.666489 0.223212i
\(946\) 0 0
\(947\) 36.7949 21.2435i 1.19567 0.690322i 0.236086 0.971732i \(-0.424135\pi\)
0.959588 + 0.281410i \(0.0908021\pi\)
\(948\) 0 0
\(949\) 7.85471 + 5.16441i 0.254975 + 0.167644i
\(950\) 0 0
\(951\) 17.2963 + 29.9581i 0.560871 + 0.971457i
\(952\) 0 0
\(953\) −38.9897 22.5107i −1.26300 0.729193i −0.289346 0.957224i \(-0.593438\pi\)
−0.973654 + 0.228031i \(0.926771\pi\)
\(954\) 0 0
\(955\) −0.753108 + 0.252221i −0.0243700 + 0.00816168i
\(956\) 0 0
\(957\) 24.9624i 0.806919i
\(958\) 0 0
\(959\) 5.54832 + 9.60998i 0.179165 + 0.310322i
\(960\) 0 0
\(961\) −20.3923 −0.657817
\(962\) 0 0
\(963\) 0.324869i 0.0104688i
\(964\) 0 0
\(965\) 30.6782 + 6.23261i 0.987568 + 0.200635i
\(966\) 0 0
\(967\) 24.4763i 0.787104i −0.919302 0.393552i \(-0.871246\pi\)
0.919302 0.393552i \(-0.128754\pi\)
\(968\) 0 0
\(969\) −2.53396 + 4.38895i −0.0814027 + 0.140994i
\(970\) 0 0
\(971\) −28.2023 + 48.8478i −0.905054 + 1.56760i −0.0842097 + 0.996448i \(0.526837\pi\)
−0.820844 + 0.571152i \(0.806497\pi\)
\(972\) 0 0
\(973\) −16.1697 + 9.33558i −0.518377 + 0.299285i
\(974\) 0 0
\(975\) 30.1356 1.95275i 0.965113 0.0625380i
\(976\) 0 0
\(977\) 11.7021 6.75623i 0.374385 0.216151i −0.300988 0.953628i \(-0.597316\pi\)
0.675372 + 0.737477i \(0.263983\pi\)
\(978\) 0 0
\(979\) 3.72544 6.45265i 0.119066 0.206228i
\(980\) 0 0
\(981\) 1.05571 1.82854i 0.0337062 0.0583809i
\(982\) 0 0
\(983\) 30.1187i 0.960638i 0.877094 + 0.480319i \(0.159479\pi\)
−0.877094 + 0.480319i \(0.840521\pi\)
\(984\) 0 0
\(985\) 30.9116 + 6.28002i 0.984926 + 0.200098i
\(986\) 0 0
\(987\) 6.63752i 0.211275i
\(988\) 0 0
\(989\) 14.2374 0.452724
\(990\) 0 0
\(991\) 17.6629 + 30.5931i 0.561081 + 0.971821i 0.997402 + 0.0720298i \(0.0229477\pi\)
−0.436322 + 0.899791i \(0.643719\pi\)
\(992\) 0 0
\(993\) 44.6859i 1.41807i
\(994\) 0 0
\(995\) −6.67694 + 2.23615i −0.211673 + 0.0708909i
\(996\) 0 0
\(997\) −14.5638 8.40843i −0.461241 0.266298i 0.251325 0.967903i \(-0.419134\pi\)
−0.712566 + 0.701605i \(0.752467\pi\)
\(998\) 0 0
\(999\) 8.19394 + 14.1923i 0.259245 + 0.449025i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.dh.b.289.5 12
4.3 odd 2 130.2.n.a.29.1 yes 12
5.4 even 2 inner 1040.2.dh.b.289.2 12
12.11 even 2 1170.2.bp.h.289.6 12
13.9 even 3 inner 1040.2.dh.b.529.2 12
20.3 even 4 650.2.e.k.601.1 6
20.7 even 4 650.2.e.j.601.3 6
20.19 odd 2 130.2.n.a.29.6 yes 12
52.3 odd 6 1690.2.b.c.339.1 6
52.11 even 12 1690.2.c.c.1689.2 6
52.15 even 12 1690.2.c.b.1689.2 6
52.23 odd 6 1690.2.b.b.339.4 6
52.35 odd 6 130.2.n.a.9.6 yes 12
60.59 even 2 1170.2.bp.h.289.3 12
65.9 even 6 inner 1040.2.dh.b.529.5 12
156.35 even 6 1170.2.bp.h.919.3 12
260.3 even 12 8450.2.a.bu.1.3 3
260.23 even 12 8450.2.a.ca.1.3 3
260.87 even 12 650.2.e.j.451.3 6
260.107 even 12 8450.2.a.cb.1.1 3
260.119 even 12 1690.2.c.c.1689.5 6
260.127 even 12 8450.2.a.bt.1.1 3
260.139 odd 6 130.2.n.a.9.1 12
260.159 odd 6 1690.2.b.c.339.6 6
260.179 odd 6 1690.2.b.b.339.3 6
260.219 even 12 1690.2.c.b.1689.5 6
260.243 even 12 650.2.e.k.451.1 6
780.659 even 6 1170.2.bp.h.919.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.1 12 260.139 odd 6
130.2.n.a.9.6 yes 12 52.35 odd 6
130.2.n.a.29.1 yes 12 4.3 odd 2
130.2.n.a.29.6 yes 12 20.19 odd 2
650.2.e.j.451.3 6 260.87 even 12
650.2.e.j.601.3 6 20.7 even 4
650.2.e.k.451.1 6 260.243 even 12
650.2.e.k.601.1 6 20.3 even 4
1040.2.dh.b.289.2 12 5.4 even 2 inner
1040.2.dh.b.289.5 12 1.1 even 1 trivial
1040.2.dh.b.529.2 12 13.9 even 3 inner
1040.2.dh.b.529.5 12 65.9 even 6 inner
1170.2.bp.h.289.3 12 60.59 even 2
1170.2.bp.h.289.6 12 12.11 even 2
1170.2.bp.h.919.3 12 156.35 even 6
1170.2.bp.h.919.6 12 780.659 even 6
1690.2.b.b.339.3 6 260.179 odd 6
1690.2.b.b.339.4 6 52.23 odd 6
1690.2.b.c.339.1 6 52.3 odd 6
1690.2.b.c.339.6 6 260.159 odd 6
1690.2.c.b.1689.2 6 52.15 even 12
1690.2.c.b.1689.5 6 260.219 even 12
1690.2.c.c.1689.2 6 52.11 even 12
1690.2.c.c.1689.5 6 260.119 even 12
8450.2.a.bt.1.1 3 260.127 even 12
8450.2.a.bu.1.3 3 260.3 even 12
8450.2.a.ca.1.3 3 260.23 even 12
8450.2.a.cb.1.1 3 260.107 even 12