Properties

Label 130.2.n.a.29.6
Level $130$
Weight $2$
Character 130.29
Analytic conductor $1.038$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [130,2,Mod(9,130)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("130.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(130, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.6
Root \(-0.147520 - 0.550552i\) of defining polynomial
Character \(\chi\) \(=\) 130.29
Dual form 130.2.n.a.9.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.45071 - 0.837565i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.67513 + 1.48119i) q^{5} +(0.837565 - 1.45071i) q^{6} +(1.56410 + 0.903032i) q^{7} -1.00000i q^{8} +(-0.0969683 + 0.167954i) q^{9} +(-0.710109 + 2.12032i) q^{10} +(-3.22179 - 5.58031i) q^{11} -1.67513i q^{12} +(-1.98082 + 3.01270i) q^{13} +1.80606 q^{14} +(-1.18953 + 3.55181i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.416726 + 0.240597i) q^{17} +0.193937i q^{18} +(-3.14363 + 5.44492i) q^{19} +(0.445186 + 2.19130i) q^{20} +3.02539 q^{21} +(-5.58031 - 3.22179i) q^{22} +(6.16499 - 3.55936i) q^{23} +(-0.837565 - 1.45071i) q^{24} +(0.612127 - 4.96239i) q^{25} +(-0.209095 + 3.59948i) q^{26} +5.35026i q^{27} +(1.56410 - 0.903032i) q^{28} +(1.15633 + 2.00281i) q^{29} +(0.745746 + 3.67072i) q^{30} +3.25694 q^{31} +(-0.866025 - 0.500000i) q^{32} +(-9.34774 - 5.39692i) q^{33} +0.481194 q^{34} +(-3.95763 + 0.804035i) q^{35} +(0.0969683 + 0.167954i) q^{36} +(-2.65264 + 1.53150i) q^{37} +6.28726i q^{38} +(-0.350262 + 6.02961i) q^{39} +(1.48119 + 1.67513i) q^{40} +(-3.75329 - 6.50089i) q^{41} +(2.62007 - 1.51270i) q^{42} +(1.73205 + 1.00000i) q^{43} -6.44358 q^{44} +(-0.0863379 - 0.424974i) q^{45} +(3.55936 - 6.16499i) q^{46} -2.19394i q^{47} +(-1.45071 - 0.837565i) q^{48} +(-1.86907 - 3.23732i) q^{49} +(-1.95108 - 4.60362i) q^{50} +0.806063 q^{51} +(1.61866 + 3.22179i) q^{52} -0.906679i q^{53} +(2.67513 + 4.63346i) q^{54} +(13.6624 + 4.57564i) q^{55} +(0.903032 - 1.56410i) q^{56} +10.5320i q^{57} +(2.00281 + 1.15633i) q^{58} +(3.28726 - 5.69370i) q^{59} +(2.48119 + 2.80606i) q^{60} +(5.47508 - 9.48313i) q^{61} +(2.82059 - 1.62847i) q^{62} +(-0.303336 + 0.175131i) q^{63} -1.00000 q^{64} +(-1.14425 - 7.98064i) q^{65} -10.7938 q^{66} +(-0.562690 + 0.324869i) q^{67} +(0.416726 - 0.240597i) q^{68} +(5.96239 - 10.3272i) q^{69} +(-3.02539 + 2.67513i) q^{70} +(-1.83146 + 3.17217i) q^{71} +(0.167954 + 0.0969683i) q^{72} -2.60720i q^{73} +(-1.53150 + 2.65264i) q^{74} +(-3.26831 - 7.71166i) q^{75} +(3.14363 + 5.44492i) q^{76} -11.6375i q^{77} +(2.71147 + 5.39692i) q^{78} +2.29455 q^{79} +(2.12032 + 0.710109i) q^{80} +(4.19029 + 7.25779i) q^{81} +(-6.50089 - 3.75329i) q^{82} +13.3380i q^{83} +(1.51270 - 2.62007i) q^{84} +(-1.05444 + 0.214221i) q^{85} +2.00000 q^{86} +(3.35498 + 1.93700i) q^{87} +(-5.58031 + 3.22179i) q^{88} +(-0.578163 - 1.00141i) q^{89} +(-0.287258 - 0.324869i) q^{90} +(-5.81876 + 2.92340i) q^{91} -7.11871i q^{92} +(4.72486 - 2.72790i) q^{93} +(-1.09697 - 1.90000i) q^{94} +(-2.79900 - 13.7773i) q^{95} -1.67513 q^{96} +(11.9784 + 6.91573i) q^{97} +(-3.23732 - 1.86907i) q^{98} +1.24965 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 2 q^{9} - 2 q^{10} - 6 q^{11} + 20 q^{14} + 4 q^{15} - 6 q^{16} - 26 q^{19} - 24 q^{21} + 4 q^{25} - 28 q^{29} - 16 q^{30} + 24 q^{31} - 16 q^{34} - 6 q^{35} + 2 q^{36} + 36 q^{39} - 4 q^{40}+ \cdots - 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.45071 0.837565i 0.837565 0.483569i −0.0188705 0.999822i \(-0.506007\pi\)
0.856436 + 0.516253i \(0.172674\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.67513 + 1.48119i −0.749141 + 0.662410i
\(6\) 0.837565 1.45071i 0.341935 0.592248i
\(7\) 1.56410 + 0.903032i 0.591173 + 0.341314i 0.765561 0.643363i \(-0.222461\pi\)
−0.174388 + 0.984677i \(0.555795\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −0.0969683 + 0.167954i −0.0323228 + 0.0559847i
\(10\) −0.710109 + 2.12032i −0.224556 + 0.670503i
\(11\) −3.22179 5.58031i −0.971407 1.68253i −0.691317 0.722552i \(-0.742969\pi\)
−0.280090 0.959974i \(-0.590364\pi\)
\(12\) 1.67513i 0.483569i
\(13\) −1.98082 + 3.01270i −0.549382 + 0.835572i
\(14\) 1.80606 0.482691
\(15\) −1.18953 + 3.55181i −0.307134 + 0.917073i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.416726 + 0.240597i 0.101071 + 0.0583534i 0.549684 0.835373i \(-0.314748\pi\)
−0.448612 + 0.893726i \(0.648082\pi\)
\(18\) 0.193937i 0.0457113i
\(19\) −3.14363 + 5.44492i −0.721198 + 1.24915i 0.239322 + 0.970940i \(0.423075\pi\)
−0.960520 + 0.278211i \(0.910258\pi\)
\(20\) 0.445186 + 2.19130i 0.0995467 + 0.489990i
\(21\) 3.02539 0.660195
\(22\) −5.58031 3.22179i −1.18973 0.686888i
\(23\) 6.16499 3.55936i 1.28549 0.742177i 0.307642 0.951502i \(-0.400460\pi\)
0.977846 + 0.209325i \(0.0671266\pi\)
\(24\) −0.837565 1.45071i −0.170967 0.296124i
\(25\) 0.612127 4.96239i 0.122425 0.992478i
\(26\) −0.209095 + 3.59948i −0.0410069 + 0.705917i
\(27\) 5.35026i 1.02966i
\(28\) 1.56410 0.903032i 0.295587 0.170657i
\(29\) 1.15633 + 2.00281i 0.214724 + 0.371913i 0.953187 0.302381i \(-0.0977814\pi\)
−0.738463 + 0.674294i \(0.764448\pi\)
\(30\) 0.745746 + 3.67072i 0.136154 + 0.670179i
\(31\) 3.25694 0.584964 0.292482 0.956271i \(-0.405519\pi\)
0.292482 + 0.956271i \(0.405519\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −9.34774 5.39692i −1.62723 0.939484i
\(34\) 0.481194 0.0825241
\(35\) −3.95763 + 0.804035i −0.668962 + 0.135907i
\(36\) 0.0969683 + 0.167954i 0.0161614 + 0.0279923i
\(37\) −2.65264 + 1.53150i −0.436091 + 0.251777i −0.701938 0.712238i \(-0.747682\pi\)
0.265847 + 0.964015i \(0.414348\pi\)
\(38\) 6.28726i 1.01993i
\(39\) −0.350262 + 6.02961i −0.0560868 + 0.965510i
\(40\) 1.48119 + 1.67513i 0.234197 + 0.264861i
\(41\) −3.75329 6.50089i −0.586166 1.01527i −0.994729 0.102539i \(-0.967303\pi\)
0.408563 0.912730i \(-0.366030\pi\)
\(42\) 2.62007 1.51270i 0.404285 0.233414i
\(43\) 1.73205 + 1.00000i 0.264135 + 0.152499i 0.626219 0.779647i \(-0.284601\pi\)
−0.362084 + 0.932145i \(0.617935\pi\)
\(44\) −6.44358 −0.971407
\(45\) −0.0863379 0.424974i −0.0128705 0.0633514i
\(46\) 3.55936 6.16499i 0.524799 0.908978i
\(47\) 2.19394i 0.320019i −0.987116 0.160009i \(-0.948848\pi\)
0.987116 0.160009i \(-0.0511524\pi\)
\(48\) −1.45071 0.837565i −0.209391 0.120892i
\(49\) −1.86907 3.23732i −0.267010 0.462474i
\(50\) −1.95108 4.60362i −0.275924 0.651050i
\(51\) 0.806063 0.112871
\(52\) 1.61866 + 3.22179i 0.224468 + 0.446782i
\(53\) 0.906679i 0.124542i −0.998059 0.0622710i \(-0.980166\pi\)
0.998059 0.0622710i \(-0.0198343\pi\)
\(54\) 2.67513 + 4.63346i 0.364039 + 0.630534i
\(55\) 13.6624 + 4.57564i 1.84224 + 0.616980i
\(56\) 0.903032 1.56410i 0.120673 0.209011i
\(57\) 10.5320i 1.39499i
\(58\) 2.00281 + 1.15633i 0.262982 + 0.151833i
\(59\) 3.28726 5.69370i 0.427965 0.741256i −0.568728 0.822526i \(-0.692564\pi\)
0.996692 + 0.0812696i \(0.0258975\pi\)
\(60\) 2.48119 + 2.80606i 0.320321 + 0.362261i
\(61\) 5.47508 9.48313i 0.701013 1.21419i −0.267098 0.963669i \(-0.586065\pi\)
0.968111 0.250521i \(-0.0806018\pi\)
\(62\) 2.82059 1.62847i 0.358216 0.206816i
\(63\) −0.303336 + 0.175131i −0.0382167 + 0.0220644i
\(64\) −1.00000 −0.125000
\(65\) −1.14425 7.98064i −0.141927 0.989877i
\(66\) −10.7938 −1.32863
\(67\) −0.562690 + 0.324869i −0.0687435 + 0.0396891i −0.533978 0.845499i \(-0.679303\pi\)
0.465234 + 0.885188i \(0.345970\pi\)
\(68\) 0.416726 0.240597i 0.0505355 0.0291767i
\(69\) 5.96239 10.3272i 0.717787 1.24324i
\(70\) −3.02539 + 2.67513i −0.361604 + 0.319739i
\(71\) −1.83146 + 3.17217i −0.217354 + 0.376468i −0.953998 0.299812i \(-0.903076\pi\)
0.736644 + 0.676280i \(0.236409\pi\)
\(72\) 0.167954 + 0.0969683i 0.0197936 + 0.0114278i
\(73\) 2.60720i 0.305150i −0.988292 0.152575i \(-0.951243\pi\)
0.988292 0.152575i \(-0.0487566\pi\)
\(74\) −1.53150 + 2.65264i −0.178033 + 0.308363i
\(75\) −3.26831 7.71166i −0.377392 0.890466i
\(76\) 3.14363 + 5.44492i 0.360599 + 0.624576i
\(77\) 11.6375i 1.32622i
\(78\) 2.71147 + 5.39692i 0.307013 + 0.611081i
\(79\) 2.29455 0.258157 0.129079 0.991634i \(-0.458798\pi\)
0.129079 + 0.991634i \(0.458798\pi\)
\(80\) 2.12032 + 0.710109i 0.237059 + 0.0793926i
\(81\) 4.19029 + 7.25779i 0.465588 + 0.806422i
\(82\) −6.50089 3.75329i −0.717904 0.414482i
\(83\) 13.3380i 1.46404i 0.681283 + 0.732020i \(0.261422\pi\)
−0.681283 + 0.732020i \(0.738578\pi\)
\(84\) 1.51270 2.62007i 0.165049 0.285873i
\(85\) −1.05444 + 0.214221i −0.114370 + 0.0232356i
\(86\) 2.00000 0.215666
\(87\) 3.35498 + 1.93700i 0.359691 + 0.207668i
\(88\) −5.58031 + 3.22179i −0.594863 + 0.343444i
\(89\) −0.578163 1.00141i −0.0612851 0.106149i 0.833755 0.552135i \(-0.186187\pi\)
−0.895040 + 0.445986i \(0.852853\pi\)
\(90\) −0.287258 0.324869i −0.0302796 0.0342442i
\(91\) −5.81876 + 2.92340i −0.609972 + 0.306456i
\(92\) 7.11871i 0.742177i
\(93\) 4.72486 2.72790i 0.489945 0.282870i
\(94\) −1.09697 1.90000i −0.113144 0.195971i
\(95\) −2.79900 13.7773i −0.287172 1.41352i
\(96\) −1.67513 −0.170967
\(97\) 11.9784 + 6.91573i 1.21622 + 0.702186i 0.964108 0.265512i \(-0.0855409\pi\)
0.252114 + 0.967698i \(0.418874\pi\)
\(98\) −3.23732 1.86907i −0.327019 0.188804i
\(99\) 1.24965 0.125594
\(100\) −3.99149 3.01131i −0.399149 0.301131i
\(101\) 4.79995 + 8.31376i 0.477613 + 0.827250i 0.999671 0.0256599i \(-0.00816868\pi\)
−0.522057 + 0.852910i \(0.674835\pi\)
\(102\) 0.698071 0.403032i 0.0691194 0.0399061i
\(103\) 3.07522i 0.303011i 0.988456 + 0.151505i \(0.0484121\pi\)
−0.988456 + 0.151505i \(0.951588\pi\)
\(104\) 3.01270 + 1.98082i 0.295419 + 0.194236i
\(105\) −5.06793 + 4.48119i −0.494579 + 0.437320i
\(106\) −0.453339 0.785207i −0.0440322 0.0762660i
\(107\) 1.45071 0.837565i 0.140245 0.0809705i −0.428236 0.903667i \(-0.640865\pi\)
0.568481 + 0.822697i \(0.307531\pi\)
\(108\) 4.63346 + 2.67513i 0.445855 + 0.257415i
\(109\) −10.8872 −1.04280 −0.521401 0.853312i \(-0.674590\pi\)
−0.521401 + 0.853312i \(0.674590\pi\)
\(110\) 14.1198 2.86860i 1.34627 0.273510i
\(111\) −2.56547 + 4.44352i −0.243503 + 0.421760i
\(112\) 1.80606i 0.170657i
\(113\) −12.1244 7.00000i −1.14056 0.658505i −0.193993 0.981003i \(-0.562144\pi\)
−0.946570 + 0.322498i \(0.895477\pi\)
\(114\) 5.26599 + 9.12096i 0.493205 + 0.854256i
\(115\) −5.05506 + 15.0939i −0.471387 + 1.40752i
\(116\) 2.31265 0.214724
\(117\) −0.313917 0.624823i −0.0290217 0.0577649i
\(118\) 6.57452i 0.605233i
\(119\) 0.434534 + 0.752634i 0.0398336 + 0.0689939i
\(120\) 3.55181 + 1.18953i 0.324234 + 0.108588i
\(121\) −15.2599 + 26.4309i −1.38726 + 2.40281i
\(122\) 10.9502i 0.991382i
\(123\) −10.8898 6.28726i −0.981905 0.566903i
\(124\) 1.62847 2.82059i 0.146241 0.253297i
\(125\) 6.32487 + 9.21933i 0.565713 + 0.824602i
\(126\) −0.175131 + 0.303336i −0.0156019 + 0.0270233i
\(127\) 4.49176 2.59332i 0.398580 0.230120i −0.287291 0.957843i \(-0.592755\pi\)
0.685871 + 0.727723i \(0.259421\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 3.35026 0.294974
\(130\) −4.98127 6.33932i −0.436886 0.555995i
\(131\) −10.8011 −0.943700 −0.471850 0.881679i \(-0.656414\pi\)
−0.471850 + 0.881679i \(0.656414\pi\)
\(132\) −9.34774 + 5.39692i −0.813617 + 0.469742i
\(133\) −9.83388 + 5.67759i −0.852706 + 0.492310i
\(134\) −0.324869 + 0.562690i −0.0280644 + 0.0486090i
\(135\) −7.92478 8.96239i −0.682056 0.771360i
\(136\) 0.240597 0.416726i 0.0206310 0.0357340i
\(137\) −5.32095 3.07205i −0.454600 0.262463i 0.255171 0.966896i \(-0.417868\pi\)
−0.709771 + 0.704433i \(0.751202\pi\)
\(138\) 11.9248i 1.01510i
\(139\) 5.16902 8.95301i 0.438431 0.759384i −0.559138 0.829075i \(-0.688868\pi\)
0.997569 + 0.0696904i \(0.0222011\pi\)
\(140\) −1.28250 + 3.82943i −0.108391 + 0.323646i
\(141\) −1.83757 3.18276i −0.154751 0.268036i
\(142\) 3.66291i 0.307385i
\(143\) 23.1936 + 1.34732i 1.93954 + 0.112669i
\(144\) 0.193937 0.0161614
\(145\) −4.90355 1.64223i −0.407218 0.136380i
\(146\) −1.30360 2.25790i −0.107887 0.186865i
\(147\) −5.42293 3.13093i −0.447276 0.258235i
\(148\) 3.06300i 0.251777i
\(149\) −8.02539 + 13.9004i −0.657466 + 1.13876i 0.323804 + 0.946124i \(0.395038\pi\)
−0.981270 + 0.192640i \(0.938295\pi\)
\(150\) −6.68627 5.04434i −0.545932 0.411869i
\(151\) 9.31757 0.758253 0.379127 0.925345i \(-0.376224\pi\)
0.379127 + 0.925345i \(0.376224\pi\)
\(152\) 5.44492 + 3.14363i 0.441642 + 0.254982i
\(153\) −0.0808185 + 0.0466606i −0.00653379 + 0.00377228i
\(154\) −5.81876 10.0784i −0.468889 0.812140i
\(155\) −5.45580 + 4.82416i −0.438221 + 0.387486i
\(156\) 5.04666 + 3.31814i 0.404056 + 0.265664i
\(157\) 14.7562i 1.17768i 0.808251 + 0.588838i \(0.200414\pi\)
−0.808251 + 0.588838i \(0.799586\pi\)
\(158\) 1.98714 1.14728i 0.158088 0.0912724i
\(159\) −0.759403 1.31532i −0.0602246 0.104312i
\(160\) 2.19130 0.445186i 0.173238 0.0351951i
\(161\) 12.8568 1.01326
\(162\) 7.25779 + 4.19029i 0.570226 + 0.329220i
\(163\) 11.7127 + 6.76234i 0.917411 + 0.529668i 0.882808 0.469734i \(-0.155650\pi\)
0.0346029 + 0.999401i \(0.488983\pi\)
\(164\) −7.50659 −0.586166
\(165\) 23.6526 4.80527i 1.84135 0.374090i
\(166\) 6.66902 + 11.5511i 0.517616 + 0.896538i
\(167\) −20.2858 + 11.7120i −1.56977 + 0.906304i −0.573570 + 0.819157i \(0.694442\pi\)
−0.996195 + 0.0871479i \(0.972225\pi\)
\(168\) 3.02539i 0.233414i
\(169\) −5.15268 11.9352i −0.396360 0.918095i
\(170\) −0.806063 + 0.712742i −0.0618222 + 0.0546648i
\(171\) −0.609665 1.05597i −0.0466222 0.0807520i
\(172\) 1.73205 1.00000i 0.132068 0.0762493i
\(173\) 4.00480 + 2.31217i 0.304479 + 0.175791i 0.644453 0.764644i \(-0.277085\pi\)
−0.339974 + 0.940435i \(0.610418\pi\)
\(174\) 3.87399 0.293687
\(175\) 5.43862 7.20889i 0.411121 0.544941i
\(176\) −3.22179 + 5.58031i −0.242852 + 0.420631i
\(177\) 11.0132i 0.827801i
\(178\) −1.00141 0.578163i −0.0750586 0.0433351i
\(179\) −4.15633 7.19897i −0.310658 0.538076i 0.667847 0.744299i \(-0.267216\pi\)
−0.978505 + 0.206223i \(0.933883\pi\)
\(180\) −0.411207 0.137716i −0.0306496 0.0102647i
\(181\) −1.02539 −0.0762168 −0.0381084 0.999274i \(-0.512133\pi\)
−0.0381084 + 0.999274i \(0.512133\pi\)
\(182\) −3.57749 + 5.44112i −0.265181 + 0.403323i
\(183\) 18.3430i 1.35595i
\(184\) −3.55936 6.16499i −0.262399 0.454489i
\(185\) 2.17507 6.49454i 0.159914 0.477488i
\(186\) 2.72790 4.72486i 0.200019 0.346444i
\(187\) 3.10062i 0.226739i
\(188\) −1.90000 1.09697i −0.138572 0.0800046i
\(189\) −4.83146 + 8.36833i −0.351437 + 0.608706i
\(190\) −9.31265 10.5320i −0.675611 0.764070i
\(191\) −0.177593 + 0.307600i −0.0128502 + 0.0222572i −0.872379 0.488830i \(-0.837424\pi\)
0.859529 + 0.511087i \(0.170757\pi\)
\(192\) −1.45071 + 0.837565i −0.104696 + 0.0604461i
\(193\) 12.1244 7.00000i 0.872730 0.503871i 0.00447566 0.999990i \(-0.498575\pi\)
0.868255 + 0.496119i \(0.165242\pi\)
\(194\) 13.8315 0.993041
\(195\) −8.34428 10.6192i −0.597547 0.760456i
\(196\) −3.73813 −0.267010
\(197\) 12.2166 7.05325i 0.870396 0.502523i 0.00291585 0.999996i \(-0.499072\pi\)
0.867480 + 0.497473i \(0.165739\pi\)
\(198\) 1.08223 0.624823i 0.0769104 0.0444042i
\(199\) −1.57452 + 2.72714i −0.111614 + 0.193322i −0.916421 0.400215i \(-0.868935\pi\)
0.804807 + 0.593537i \(0.202269\pi\)
\(200\) −4.96239 0.612127i −0.350894 0.0432839i
\(201\) −0.544198 + 0.942579i −0.0383848 + 0.0664844i
\(202\) 8.31376 + 4.79995i 0.584954 + 0.337724i
\(203\) 4.17679i 0.293153i
\(204\) 0.403032 0.698071i 0.0282179 0.0488748i
\(205\) 15.9163 + 5.33049i 1.11165 + 0.372298i
\(206\) 1.53761 + 2.66322i 0.107130 + 0.185555i
\(207\) 1.38058i 0.0959569i
\(208\) 3.59948 + 0.209095i 0.249579 + 0.0144981i
\(209\) 40.5125 2.80231
\(210\) −2.14836 + 6.41479i −0.148251 + 0.442663i
\(211\) −1.54666 2.67889i −0.106477 0.184423i 0.807864 0.589369i \(-0.200624\pi\)
−0.914340 + 0.404946i \(0.867290\pi\)
\(212\) −0.785207 0.453339i −0.0539282 0.0311355i
\(213\) 6.13586i 0.420422i
\(214\) 0.837565 1.45071i 0.0572548 0.0991682i
\(215\) −4.38261 + 0.890373i −0.298891 + 0.0607229i
\(216\) 5.35026 0.364039
\(217\) 5.09417 + 2.94112i 0.345815 + 0.199656i
\(218\) −9.42856 + 5.44358i −0.638583 + 0.368686i
\(219\) −2.18370 3.78228i −0.147561 0.255583i
\(220\) 10.7938 9.54420i 0.727721 0.643470i
\(221\) −1.55031 + 0.778890i −0.104285 + 0.0523938i
\(222\) 5.13093i 0.344366i
\(223\) 19.2205 11.0970i 1.28710 0.743108i 0.308965 0.951074i \(-0.400018\pi\)
0.978136 + 0.207966i \(0.0666842\pi\)
\(224\) −0.903032 1.56410i −0.0603363 0.104506i
\(225\) 0.774096 + 0.584003i 0.0516064 + 0.0389336i
\(226\) −14.0000 −0.931266
\(227\) −11.5490 6.66784i −0.766536 0.442560i 0.0651014 0.997879i \(-0.479263\pi\)
−0.831638 + 0.555319i \(0.812596\pi\)
\(228\) 9.12096 + 5.26599i 0.604050 + 0.348749i
\(229\) −26.1744 −1.72965 −0.864827 0.502069i \(-0.832572\pi\)
−0.864827 + 0.502069i \(0.832572\pi\)
\(230\) 3.16915 + 15.5993i 0.208968 + 1.02858i
\(231\) −9.74718 16.8826i −0.641318 1.11079i
\(232\) 2.00281 1.15633i 0.131491 0.0759165i
\(233\) 20.8691i 1.36718i 0.729867 + 0.683589i \(0.239582\pi\)
−0.729867 + 0.683589i \(0.760418\pi\)
\(234\) −0.584272 0.384154i −0.0381951 0.0251129i
\(235\) 3.24965 + 3.67513i 0.211984 + 0.239739i
\(236\) −3.28726 5.69370i −0.213982 0.370628i
\(237\) 3.32872 1.92184i 0.216224 0.124837i
\(238\) 0.752634 + 0.434534i 0.0487860 + 0.0281666i
\(239\) 15.2931 0.989231 0.494615 0.869112i \(-0.335309\pi\)
0.494615 + 0.869112i \(0.335309\pi\)
\(240\) 3.67072 0.745746i 0.236944 0.0481377i
\(241\) 6.38423 11.0578i 0.411244 0.712296i −0.583782 0.811910i \(-0.698428\pi\)
0.995026 + 0.0996147i \(0.0317610\pi\)
\(242\) 30.5198i 1.96188i
\(243\) −1.74263 1.00611i −0.111790 0.0645419i
\(244\) −5.47508 9.48313i −0.350506 0.607095i
\(245\) 7.92603 + 2.65448i 0.506376 + 0.169589i
\(246\) −12.5745 −0.801722
\(247\) −10.1769 20.2562i −0.647543 1.28887i
\(248\) 3.25694i 0.206816i
\(249\) 11.1715 + 19.3496i 0.707964 + 1.22623i
\(250\) 10.0872 + 4.82174i 0.637968 + 0.304954i
\(251\) 2.10602 3.64773i 0.132931 0.230243i −0.791874 0.610684i \(-0.790895\pi\)
0.924805 + 0.380441i \(0.124228\pi\)
\(252\) 0.350262i 0.0220644i
\(253\) −39.7246 22.9350i −2.49746 1.44191i
\(254\) 2.59332 4.49176i 0.162719 0.281838i
\(255\) −1.35026 + 1.19394i −0.0845567 + 0.0747672i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −16.1300 + 9.31265i −1.00616 + 0.580907i −0.910065 0.414465i \(-0.863969\pi\)
−0.0960955 + 0.995372i \(0.530635\pi\)
\(258\) 2.90141 1.67513i 0.180634 0.104289i
\(259\) −5.53198 −0.343740
\(260\) −7.48357 2.99937i −0.464111 0.186013i
\(261\) −0.448507 −0.0277619
\(262\) −9.35406 + 5.40057i −0.577896 + 0.333648i
\(263\) −19.9363 + 11.5102i −1.22933 + 0.709751i −0.966889 0.255198i \(-0.917859\pi\)
−0.262437 + 0.964949i \(0.584526\pi\)
\(264\) −5.39692 + 9.34774i −0.332158 + 0.575314i
\(265\) 1.34297 + 1.51881i 0.0824978 + 0.0932995i
\(266\) −5.67759 + 9.83388i −0.348116 + 0.602954i
\(267\) −1.67749 0.968498i −0.102661 0.0592711i
\(268\) 0.649738i 0.0396891i
\(269\) −6.73695 + 11.6687i −0.410759 + 0.711456i −0.994973 0.100144i \(-0.968070\pi\)
0.584214 + 0.811600i \(0.301403\pi\)
\(270\) −11.3443 3.79927i −0.690389 0.231216i
\(271\) 8.95017 + 15.5021i 0.543684 + 0.941688i 0.998688 + 0.0511993i \(0.0163044\pi\)
−0.455004 + 0.890489i \(0.650362\pi\)
\(272\) 0.481194i 0.0291767i
\(273\) −5.99277 + 9.11459i −0.362699 + 0.551640i
\(274\) −6.14411 −0.371179
\(275\) −29.6638 + 12.5719i −1.78879 + 0.758116i
\(276\) −5.96239 10.3272i −0.358894 0.621622i
\(277\) 7.35125 + 4.24424i 0.441694 + 0.255012i 0.704316 0.709887i \(-0.251254\pi\)
−0.262622 + 0.964899i \(0.584587\pi\)
\(278\) 10.3380i 0.620035i
\(279\) −0.315820 + 0.547016i −0.0189076 + 0.0327490i
\(280\) 0.804035 + 3.95763i 0.0480503 + 0.236514i
\(281\) −16.5296 −0.986074 −0.493037 0.870008i \(-0.664113\pi\)
−0.493037 + 0.870008i \(0.664113\pi\)
\(282\) −3.18276 1.83757i −0.189530 0.109425i
\(283\) 1.33100 0.768452i 0.0791196 0.0456797i −0.459918 0.887961i \(-0.652121\pi\)
0.539038 + 0.842282i \(0.318788\pi\)
\(284\) 1.83146 + 3.17217i 0.108677 + 0.188234i
\(285\) −15.5999 17.6424i −0.924059 1.04505i
\(286\) 20.7599 10.4300i 1.22756 0.616737i
\(287\) 13.5574i 0.800266i
\(288\) 0.167954 0.0969683i 0.00989678 0.00571391i
\(289\) −8.38423 14.5219i −0.493190 0.854230i
\(290\) −5.06772 + 1.02956i −0.297587 + 0.0604579i
\(291\) 23.1695 1.35822
\(292\) −2.25790 1.30360i −0.132134 0.0762875i
\(293\) −5.13527 2.96485i −0.300006 0.173208i 0.342440 0.939540i \(-0.388747\pi\)
−0.642446 + 0.766331i \(0.722080\pi\)
\(294\) −6.26187 −0.365199
\(295\) 2.92689 + 14.4068i 0.170410 + 0.838794i
\(296\) 1.53150 + 2.65264i 0.0890167 + 0.154182i
\(297\) 29.8561 17.2374i 1.73243 1.00022i
\(298\) 16.0508i 0.929797i
\(299\) −1.48849 + 25.6237i −0.0860815 + 1.48186i
\(300\) −8.31265 1.02539i −0.479931 0.0592011i
\(301\) 1.80606 + 3.12819i 0.104100 + 0.180306i
\(302\) 8.06926 4.65879i 0.464334 0.268083i
\(303\) 13.9266 + 8.04055i 0.800065 + 0.461918i
\(304\) 6.28726 0.360599
\(305\) 4.87487 + 23.9951i 0.279134 + 1.37396i
\(306\) −0.0466606 + 0.0808185i −0.00266741 + 0.00462009i
\(307\) 17.9756i 1.02592i −0.858413 0.512960i \(-0.828549\pi\)
0.858413 0.512960i \(-0.171451\pi\)
\(308\) −10.0784 5.81876i −0.574269 0.331555i
\(309\) 2.57570 + 4.46124i 0.146526 + 0.253791i
\(310\) −2.31278 + 6.90575i −0.131357 + 0.392220i
\(311\) 15.9575 0.904865 0.452432 0.891799i \(-0.350556\pi\)
0.452432 + 0.891799i \(0.350556\pi\)
\(312\) 6.02961 + 0.350262i 0.341359 + 0.0198297i
\(313\) 23.4372i 1.32475i 0.749172 + 0.662376i \(0.230452\pi\)
−0.749172 + 0.662376i \(0.769548\pi\)
\(314\) 7.37812 + 12.7793i 0.416371 + 0.721176i
\(315\) 0.248724 0.742666i 0.0140140 0.0418445i
\(316\) 1.14728 1.98714i 0.0645393 0.111785i
\(317\) 20.6507i 1.15986i −0.814667 0.579929i \(-0.803080\pi\)
0.814667 0.579929i \(-0.196920\pi\)
\(318\) −1.31532 0.759403i −0.0737597 0.0425852i
\(319\) 7.45088 12.9053i 0.417169 0.722558i
\(320\) 1.67513 1.48119i 0.0936427 0.0828013i
\(321\) 1.40303 2.43012i 0.0783096 0.135636i
\(322\) 11.1344 6.42842i 0.620493 0.358242i
\(323\) −2.62007 + 1.51270i −0.145784 + 0.0841687i
\(324\) 8.38058 0.465588
\(325\) 13.7377 + 11.6738i 0.762028 + 0.647544i
\(326\) 13.5247 0.749063
\(327\) −15.7941 + 9.11871i −0.873414 + 0.504266i
\(328\) −6.50089 + 3.75329i −0.358952 + 0.207241i
\(329\) 1.98119 3.43153i 0.109227 0.189186i
\(330\) 18.0811 15.9878i 0.995332 0.880098i
\(331\) 13.3380 23.1022i 0.733125 1.26981i −0.222416 0.974952i \(-0.571394\pi\)
0.955541 0.294858i \(-0.0952724\pi\)
\(332\) 11.5511 + 6.66902i 0.633948 + 0.366010i
\(333\) 0.594028i 0.0325526i
\(334\) −11.7120 + 20.2858i −0.640854 + 1.10999i
\(335\) 0.461385 1.37765i 0.0252081 0.0752691i
\(336\) −1.51270 2.62007i −0.0825243 0.142936i
\(337\) 8.40597i 0.457902i −0.973438 0.228951i \(-0.926470\pi\)
0.973438 0.228951i \(-0.0735296\pi\)
\(338\) −10.4300 7.75988i −0.567316 0.422082i
\(339\) −23.4518 −1.27373
\(340\) −0.341700 + 1.02028i −0.0185313 + 0.0553327i
\(341\) −10.4932 18.1747i −0.568238 0.984217i
\(342\) −1.05597 0.609665i −0.0571003 0.0329669i
\(343\) 19.3938i 1.04716i
\(344\) 1.00000 1.73205i 0.0539164 0.0933859i
\(345\) 5.30875 + 26.1308i 0.285813 + 1.40684i
\(346\) 4.62435 0.248606
\(347\) 18.3177 + 10.5757i 0.983343 + 0.567733i 0.903278 0.429056i \(-0.141154\pi\)
0.0800652 + 0.996790i \(0.474487\pi\)
\(348\) 3.35498 1.93700i 0.179846 0.103834i
\(349\) 2.73695 + 4.74054i 0.146506 + 0.253755i 0.929934 0.367727i \(-0.119864\pi\)
−0.783428 + 0.621482i \(0.786531\pi\)
\(350\) 1.10554 8.96239i 0.0590936 0.479060i
\(351\) −16.1187 10.5979i −0.860353 0.565675i
\(352\) 6.44358i 0.343444i
\(353\) 26.1056 15.0721i 1.38946 0.802204i 0.396205 0.918162i \(-0.370327\pi\)
0.993254 + 0.115958i \(0.0369937\pi\)
\(354\) −5.50659 9.53769i −0.292672 0.506922i
\(355\) −1.63068 8.02655i −0.0865474 0.426005i
\(356\) −1.15633 −0.0612851
\(357\) 1.26076 + 0.727901i 0.0667266 + 0.0385246i
\(358\) −7.19897 4.15633i −0.380477 0.219669i
\(359\) 8.38787 0.442695 0.221348 0.975195i \(-0.428954\pi\)
0.221348 + 0.975195i \(0.428954\pi\)
\(360\) −0.424974 + 0.0863379i −0.0223981 + 0.00455041i
\(361\) −10.2648 17.7792i −0.540253 0.935745i
\(362\) −0.888016 + 0.512696i −0.0466731 + 0.0269467i
\(363\) 51.1246i 2.68335i
\(364\) −0.377639 + 6.50089i −0.0197937 + 0.340739i
\(365\) 3.86177 + 4.36741i 0.202134 + 0.228600i
\(366\) −9.17148 15.8855i −0.479401 0.830347i
\(367\) −16.8983 + 9.75623i −0.882084 + 0.509271i −0.871345 0.490671i \(-0.836752\pi\)
−0.0107388 + 0.999942i \(0.503418\pi\)
\(368\) −6.16499 3.55936i −0.321372 0.185544i
\(369\) 1.45580 0.0757860
\(370\) −1.36361 6.71197i −0.0708906 0.348939i
\(371\) 0.818760 1.41813i 0.0425079 0.0736258i
\(372\) 5.45580i 0.282870i
\(373\) −7.37324 4.25694i −0.381772 0.220416i 0.296817 0.954934i \(-0.404075\pi\)
−0.678589 + 0.734518i \(0.737408\pi\)
\(374\) −1.55031 2.68521i −0.0801645 0.138849i
\(375\) 16.8973 + 8.07704i 0.872574 + 0.417097i
\(376\) −2.19394 −0.113144
\(377\) −8.32435 0.483564i −0.428726 0.0249048i
\(378\) 9.66291i 0.497007i
\(379\) −9.85931 17.0768i −0.506439 0.877178i −0.999972 0.00745089i \(-0.997628\pi\)
0.493533 0.869727i \(-0.335705\pi\)
\(380\) −13.3310 4.46464i −0.683865 0.229031i
\(381\) 4.34415 7.52429i 0.222558 0.385481i
\(382\) 0.355186i 0.0181729i
\(383\) 24.0059 + 13.8598i 1.22664 + 0.708202i 0.966326 0.257321i \(-0.0828399\pi\)
0.260316 + 0.965523i \(0.416173\pi\)
\(384\) −0.837565 + 1.45071i −0.0427418 + 0.0740310i
\(385\) 17.2374 + 19.4944i 0.878501 + 0.993525i
\(386\) 7.00000 12.1244i 0.356291 0.617113i
\(387\) −0.335908 + 0.193937i −0.0170752 + 0.00985835i
\(388\) 11.9784 6.91573i 0.608111 0.351093i
\(389\) −9.15140 −0.463994 −0.231997 0.972716i \(-0.574526\pi\)
−0.231997 + 0.972716i \(0.574526\pi\)
\(390\) −12.5360 5.02434i −0.634783 0.254417i
\(391\) 3.42548 0.173234
\(392\) −3.23732 + 1.86907i −0.163509 + 0.0944022i
\(393\) −15.6693 + 9.04666i −0.790410 + 0.456344i
\(394\) 7.05325 12.2166i 0.355337 0.615463i
\(395\) −3.84367 + 3.39868i −0.193396 + 0.171006i
\(396\) 0.624823 1.08223i 0.0313985 0.0543839i
\(397\) −1.23877 0.715205i −0.0621721 0.0358951i 0.468592 0.883415i \(-0.344762\pi\)
−0.530764 + 0.847520i \(0.678095\pi\)
\(398\) 3.14903i 0.157847i
\(399\) −9.51071 + 16.4730i −0.476131 + 0.824683i
\(400\) −4.60362 + 1.95108i −0.230181 + 0.0975538i
\(401\) −10.8351 18.7669i −0.541079 0.937177i −0.998842 0.0481025i \(-0.984683\pi\)
0.457763 0.889074i \(-0.348651\pi\)
\(402\) 1.08840i 0.0542843i
\(403\) −6.45142 + 9.81217i −0.321368 + 0.488779i
\(404\) 9.59991 0.477613
\(405\) −17.7695 5.95112i −0.882973 0.295714i
\(406\) 2.08840 + 3.61721i 0.103645 + 0.179519i
\(407\) 17.0925 + 9.86836i 0.847244 + 0.489156i
\(408\) 0.806063i 0.0399061i
\(409\) 4.54055 7.86447i 0.224516 0.388873i −0.731658 0.681672i \(-0.761253\pi\)
0.956174 + 0.292799i \(0.0945866\pi\)
\(410\) 16.4492 3.34183i 0.812368 0.165041i
\(411\) −10.2922 −0.507676
\(412\) 2.66322 + 1.53761i 0.131207 + 0.0757527i
\(413\) 10.2832 5.93700i 0.506002 0.292140i
\(414\) 0.690289 + 1.19562i 0.0339259 + 0.0587613i
\(415\) −19.7562 22.3430i −0.969795 1.09677i
\(416\) 3.22179 1.61866i 0.157961 0.0793613i
\(417\) 17.3176i 0.848045i
\(418\) 35.0848 20.2562i 1.71605 0.990765i
\(419\) −7.77139 13.4604i −0.379657 0.657586i 0.611355 0.791356i \(-0.290625\pi\)
−0.991012 + 0.133771i \(0.957291\pi\)
\(420\) 1.34686 + 6.62955i 0.0657202 + 0.323489i
\(421\) −4.96476 −0.241968 −0.120984 0.992654i \(-0.538605\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(422\) −2.67889 1.54666i −0.130407 0.0752903i
\(423\) 0.368480 + 0.212742i 0.0179161 + 0.0103439i
\(424\) −0.906679 −0.0440322
\(425\) 1.44903 1.92068i 0.0702881 0.0931668i
\(426\) 3.06793 + 5.31381i 0.148642 + 0.257455i
\(427\) 17.1271 9.88835i 0.828840 0.478531i
\(428\) 1.67513i 0.0809705i
\(429\) 34.7755 17.4716i 1.67898 0.843535i
\(430\) −3.35026 + 2.96239i −0.161564 + 0.142859i
\(431\) 16.4853 + 28.5534i 0.794070 + 1.37537i 0.923428 + 0.383771i \(0.125375\pi\)
−0.129358 + 0.991598i \(0.541292\pi\)
\(432\) 4.63346 2.67513i 0.222928 0.128707i
\(433\) −13.9529 8.05571i −0.670534 0.387133i 0.125745 0.992063i \(-0.459868\pi\)
−0.796279 + 0.604930i \(0.793201\pi\)
\(434\) 5.88224 0.282357
\(435\) −8.48909 + 1.72465i −0.407021 + 0.0826906i
\(436\) −5.44358 + 9.42856i −0.260700 + 0.451546i
\(437\) 44.7572i 2.14103i
\(438\) −3.78228 2.18370i −0.180725 0.104341i
\(439\) −0.0417360 0.0722889i −0.00199195 0.00345016i 0.865028 0.501724i \(-0.167301\pi\)
−0.867020 + 0.498274i \(0.833967\pi\)
\(440\) 4.57564 13.6624i 0.218135 0.651331i
\(441\) 0.724961 0.0345220
\(442\) −0.953161 + 1.44969i −0.0453372 + 0.0689548i
\(443\) 40.9135i 1.94386i −0.235271 0.971930i \(-0.575598\pi\)
0.235271 0.971930i \(-0.424402\pi\)
\(444\) 2.56547 + 4.44352i 0.121752 + 0.210880i
\(445\) 2.45178 + 0.821117i 0.116225 + 0.0389247i
\(446\) 11.0970 19.2205i 0.525457 0.910118i
\(447\) 26.8872i 1.27172i
\(448\) −1.56410 0.903032i −0.0738966 0.0426642i
\(449\) −14.5659 + 25.2290i −0.687409 + 1.19063i 0.285264 + 0.958449i \(0.407919\pi\)
−0.972673 + 0.232179i \(0.925415\pi\)
\(450\) 0.962389 + 0.118714i 0.0453674 + 0.00559622i
\(451\) −24.1847 + 41.8891i −1.13881 + 1.97248i
\(452\) −12.1244 + 7.00000i −0.570282 + 0.329252i
\(453\) 13.5171 7.80408i 0.635087 0.366668i
\(454\) −13.3357 −0.625874
\(455\) 5.41706 13.5158i 0.253956 0.633630i
\(456\) 10.5320 0.493205
\(457\) −28.2912 + 16.3339i −1.32341 + 0.764068i −0.984270 0.176669i \(-0.943468\pi\)
−0.339135 + 0.940738i \(0.610134\pi\)
\(458\) −22.6677 + 13.0872i −1.05919 + 0.611525i
\(459\) −1.28726 + 2.22960i −0.0600840 + 0.104069i
\(460\) 10.5442 + 11.9248i 0.491626 + 0.555996i
\(461\) 9.55031 16.5416i 0.444802 0.770420i −0.553236 0.833024i \(-0.686607\pi\)
0.998038 + 0.0626044i \(0.0199407\pi\)
\(462\) −16.8826 9.74718i −0.785450 0.453480i
\(463\) 8.29218i 0.385370i −0.981261 0.192685i \(-0.938280\pi\)
0.981261 0.192685i \(-0.0617196\pi\)
\(464\) 1.15633 2.00281i 0.0536810 0.0929783i
\(465\) −3.87421 + 11.5680i −0.179662 + 0.536455i
\(466\) 10.4345 + 18.0731i 0.483370 + 0.837222i
\(467\) 23.5369i 1.08916i −0.838710 0.544579i \(-0.816689\pi\)
0.838710 0.544579i \(-0.183311\pi\)
\(468\) −0.698071 0.0405512i −0.0322684 0.00187448i
\(469\) −1.17347 −0.0541857
\(470\) 4.65184 + 1.55793i 0.214573 + 0.0718621i
\(471\) 12.3593 + 21.4070i 0.569487 + 0.986380i
\(472\) −5.69370 3.28726i −0.262074 0.151308i
\(473\) 12.8872i 0.592553i
\(474\) 1.92184 3.32872i 0.0882729 0.152893i
\(475\) 25.0955 + 18.9329i 1.15146 + 0.868701i
\(476\) 0.869067 0.0398336
\(477\) 0.152280 + 0.0879191i 0.00697244 + 0.00402554i
\(478\) 13.2442 7.64657i 0.605778 0.349746i
\(479\) 3.27821 + 5.67802i 0.149785 + 0.259436i 0.931148 0.364642i \(-0.118808\pi\)
−0.781363 + 0.624077i \(0.785475\pi\)
\(480\) 2.80606 2.48119i 0.128079 0.113251i
\(481\) 0.640459 11.0252i 0.0292024 0.502707i
\(482\) 12.7685i 0.581587i
\(483\) 18.6515 10.7685i 0.848673 0.489982i
\(484\) 15.2599 + 26.4309i 0.693631 + 1.20140i
\(485\) −30.3089 + 6.15758i −1.37626 + 0.279601i
\(486\) −2.01222 −0.0912761
\(487\) 11.7432 + 6.77996i 0.532137 + 0.307229i 0.741886 0.670526i \(-0.233931\pi\)
−0.209749 + 0.977755i \(0.567265\pi\)
\(488\) −9.48313 5.47508i −0.429281 0.247845i
\(489\) 22.6556 1.02452
\(490\) 8.19139 1.66417i 0.370049 0.0751794i
\(491\) −2.47873 4.29329i −0.111864 0.193753i 0.804658 0.593739i \(-0.202349\pi\)
−0.916522 + 0.399985i \(0.869015\pi\)
\(492\) −10.8898 + 6.28726i −0.490952 + 0.283451i
\(493\) 1.11283i 0.0501195i
\(494\) −18.9416 12.4539i −0.852223 0.560330i
\(495\) −2.09332 + 1.85097i −0.0940878 + 0.0831949i
\(496\) −1.62847 2.82059i −0.0731205 0.126648i
\(497\) −5.72915 + 3.30773i −0.256987 + 0.148372i
\(498\) 19.3496 + 11.1715i 0.867075 + 0.500606i
\(499\) 13.8700 0.620907 0.310454 0.950588i \(-0.399519\pi\)
0.310454 + 0.950588i \(0.399519\pi\)
\(500\) 11.1466 0.867833i 0.498491 0.0388107i
\(501\) −19.6192 + 33.9814i −0.876521 + 1.51818i
\(502\) 4.21203i 0.187992i
\(503\) −2.98650 1.72425i −0.133161 0.0768807i 0.431940 0.901903i \(-0.357829\pi\)
−0.565101 + 0.825022i \(0.691163\pi\)
\(504\) 0.175131 + 0.303336i 0.00780095 + 0.0135116i
\(505\) −20.3549 6.81698i −0.905779 0.303352i
\(506\) −45.8700 −2.03917
\(507\) −17.4716 12.9988i −0.775939 0.577298i
\(508\) 5.18664i 0.230120i
\(509\) −15.4812 26.8142i −0.686192 1.18852i −0.973061 0.230549i \(-0.925948\pi\)
0.286869 0.957970i \(-0.407386\pi\)
\(510\) −0.572393 + 1.70911i −0.0253460 + 0.0756807i
\(511\) 2.35439 4.07792i 0.104152 0.180396i
\(512\) 1.00000i 0.0441942i
\(513\) −29.1318 16.8192i −1.28620 0.742587i
\(514\) −9.31265 + 16.1300i −0.410763 + 0.711463i
\(515\) −4.55500 5.15140i −0.200717 0.226998i
\(516\) 1.67513 2.90141i 0.0737435 0.127728i
\(517\) −12.2428 + 7.06841i −0.538439 + 0.310868i
\(518\) −4.79083 + 2.76599i −0.210497 + 0.121531i
\(519\) 7.74638 0.340029
\(520\) −7.98064 + 1.14425i −0.349974 + 0.0501787i
\(521\) 14.2506 0.624330 0.312165 0.950028i \(-0.398946\pi\)
0.312165 + 0.950028i \(0.398946\pi\)
\(522\) −0.388419 + 0.224254i −0.0170006 + 0.00981532i
\(523\) −9.10529 + 5.25694i −0.398146 + 0.229870i −0.685684 0.727899i \(-0.740497\pi\)
0.287537 + 0.957769i \(0.407163\pi\)
\(524\) −5.40057 + 9.35406i −0.235925 + 0.408634i
\(525\) 1.85192 15.0132i 0.0808246 0.655229i
\(526\) −11.5102 + 19.9363i −0.501870 + 0.869264i
\(527\) 1.35725 + 0.783611i 0.0591229 + 0.0341346i
\(528\) 10.7938i 0.469742i
\(529\) 13.8380 23.9682i 0.601654 1.04210i
\(530\) 1.92245 + 0.643841i 0.0835058 + 0.0279666i
\(531\) 0.637519 + 1.10422i 0.0276660 + 0.0479189i
\(532\) 11.3552i 0.492310i
\(533\) 27.0198 + 1.56959i 1.17036 + 0.0679865i
\(534\) −1.93700 −0.0838220
\(535\) −1.18953 + 3.55181i −0.0514277 + 0.153558i
\(536\) 0.324869 + 0.562690i 0.0140322 + 0.0243045i
\(537\) −12.0592 6.96239i −0.520393 0.300449i
\(538\) 13.4739i 0.580901i
\(539\) −12.0435 + 20.8599i −0.518750 + 0.898501i
\(540\) −11.7240 + 2.38186i −0.504523 + 0.102499i
\(541\) 15.5345 0.667882 0.333941 0.942594i \(-0.391621\pi\)
0.333941 + 0.942594i \(0.391621\pi\)
\(542\) 15.5021 + 8.95017i 0.665874 + 0.384443i
\(543\) −1.48754 + 0.858833i −0.0638366 + 0.0368561i
\(544\) −0.240597 0.416726i −0.0103155 0.0178670i
\(545\) 18.2374 16.1260i 0.781206 0.690762i
\(546\) −0.632595 + 10.8898i −0.0270726 + 0.466043i
\(547\) 23.5515i 1.00699i 0.863998 + 0.503495i \(0.167953\pi\)
−0.863998 + 0.503495i \(0.832047\pi\)
\(548\) −5.32095 + 3.07205i −0.227300 + 0.131232i
\(549\) 1.06182 + 1.83912i 0.0453173 + 0.0784919i
\(550\) −19.4036 + 25.7195i −0.827374 + 1.09668i
\(551\) −14.5402 −0.619435
\(552\) −10.3272 5.96239i −0.439553 0.253776i
\(553\) 3.58890 + 2.07205i 0.152616 + 0.0881127i
\(554\) 8.48849 0.360641
\(555\) −2.28422 11.2434i −0.0969598 0.477257i
\(556\) −5.16902 8.95301i −0.219215 0.379692i
\(557\) −17.3602 + 10.0229i −0.735576 + 0.424685i −0.820459 0.571706i \(-0.806282\pi\)
0.0848824 + 0.996391i \(0.472949\pi\)
\(558\) 0.631640i 0.0267394i
\(559\) −6.44358 + 3.23732i −0.272535 + 0.136924i
\(560\) 2.67513 + 3.02539i 0.113045 + 0.127846i
\(561\) −2.59697 4.49808i −0.109644 0.189909i
\(562\) −14.3151 + 8.26480i −0.603844 + 0.348630i
\(563\) 10.8898 + 6.28726i 0.458952 + 0.264976i 0.711604 0.702581i \(-0.247969\pi\)
−0.252651 + 0.967557i \(0.581303\pi\)
\(564\) −3.67513 −0.154751
\(565\) 30.6782 6.23261i 1.29064 0.262208i
\(566\) 0.768452 1.33100i 0.0323004 0.0559460i
\(567\) 15.1359i 0.635646i
\(568\) 3.17217 + 1.83146i 0.133102 + 0.0768462i
\(569\) 2.14481 + 3.71493i 0.0899153 + 0.155738i 0.907475 0.420106i \(-0.138007\pi\)
−0.817560 + 0.575844i \(0.804674\pi\)
\(570\) −22.3311 7.47885i −0.935348 0.313255i
\(571\) 6.39280 0.267530 0.133765 0.991013i \(-0.457293\pi\)
0.133765 + 0.991013i \(0.457293\pi\)
\(572\) 12.7636 19.4126i 0.533673 0.811680i
\(573\) 0.594984i 0.0248558i
\(574\) −6.77869 11.7410i −0.282937 0.490061i
\(575\) −13.8892 32.7718i −0.579218 1.36668i
\(576\) 0.0969683 0.167954i 0.00404035 0.00699808i
\(577\) 37.8169i 1.57434i −0.616738 0.787168i \(-0.711546\pi\)
0.616738 0.787168i \(-0.288454\pi\)
\(578\) −14.5219 8.38423i −0.604032 0.348738i
\(579\) 11.7259 20.3099i 0.487312 0.844050i
\(580\) −3.87399 + 3.42548i −0.160859 + 0.142236i
\(581\) −12.0447 + 20.8620i −0.499697 + 0.865501i
\(582\) 20.0654 11.5847i 0.831737 0.480203i
\(583\) −5.05955 + 2.92113i −0.209545 + 0.120981i
\(584\) −2.60720 −0.107887
\(585\) 1.45134 + 0.581688i 0.0600054 + 0.0240498i
\(586\) −5.92970 −0.244954
\(587\) 19.5289 11.2750i 0.806046 0.465371i −0.0395351 0.999218i \(-0.512588\pi\)
0.845581 + 0.533848i \(0.179254\pi\)
\(588\) −5.42293 + 3.13093i −0.223638 + 0.129117i
\(589\) −10.2386 + 17.7338i −0.421875 + 0.730708i
\(590\) 9.73813 + 11.0132i 0.400913 + 0.453405i
\(591\) 11.8151 20.4644i 0.486009 0.841792i
\(592\) 2.65264 + 1.53150i 0.109023 + 0.0629443i
\(593\) 8.38787i 0.344449i −0.985058 0.172224i \(-0.944905\pi\)
0.985058 0.172224i \(-0.0550954\pi\)
\(594\) 17.2374 29.8561i 0.707260 1.22501i
\(595\) −1.84270 0.617132i −0.0755433 0.0253000i
\(596\) 8.02539 + 13.9004i 0.328733 + 0.569382i
\(597\) 5.27504i 0.215893i
\(598\) 11.5228 + 22.9350i 0.471201 + 0.937882i
\(599\) −29.0884 −1.18852 −0.594260 0.804273i \(-0.702555\pi\)
−0.594260 + 0.804273i \(0.702555\pi\)
\(600\) −7.71166 + 3.26831i −0.314827 + 0.133428i
\(601\) 21.5059 + 37.2493i 0.877243 + 1.51943i 0.854354 + 0.519692i \(0.173953\pi\)
0.0228892 + 0.999738i \(0.492713\pi\)
\(602\) 3.12819 + 1.80606i 0.127496 + 0.0736097i
\(603\) 0.126008i 0.00513144i
\(604\) 4.65879 8.06926i 0.189563 0.328333i
\(605\) −13.5870 66.8780i −0.552389 2.71898i
\(606\) 16.0811 0.653250
\(607\) −18.8372 10.8757i −0.764578 0.441429i 0.0663591 0.997796i \(-0.478862\pi\)
−0.830937 + 0.556367i \(0.812195\pi\)
\(608\) 5.44492 3.14363i 0.220821 0.127491i
\(609\) 3.49834 + 6.05930i 0.141760 + 0.245535i
\(610\) 16.2193 + 18.3430i 0.656701 + 0.742685i
\(611\) 6.60966 + 4.34580i 0.267398 + 0.175812i
\(612\) 0.0933212i 0.00377228i
\(613\) −26.6848 + 15.4064i −1.07779 + 0.622261i −0.930299 0.366803i \(-0.880452\pi\)
−0.147488 + 0.989064i \(0.547119\pi\)
\(614\) −8.98778 15.5673i −0.362717 0.628245i
\(615\) 27.5546 5.59800i 1.11111 0.225733i
\(616\) −11.6375 −0.468889
\(617\) 39.9125 + 23.0435i 1.60682 + 0.927696i 0.990077 + 0.140529i \(0.0448804\pi\)
0.616740 + 0.787167i \(0.288453\pi\)
\(618\) 4.46124 + 2.57570i 0.179458 + 0.103610i
\(619\) 13.5564 0.544878 0.272439 0.962173i \(-0.412170\pi\)
0.272439 + 0.962173i \(0.412170\pi\)
\(620\) 1.44995 + 7.13694i 0.0582312 + 0.286627i
\(621\) 19.0435 + 32.9843i 0.764189 + 1.32361i
\(622\) 13.8196 7.97873i 0.554114 0.319918i
\(623\) 2.08840i 0.0836698i
\(624\) 5.39692 2.71147i 0.216050 0.108546i
\(625\) −24.2506 6.07522i −0.970024 0.243009i
\(626\) 11.7186 + 20.2972i 0.468370 + 0.811241i
\(627\) 58.7717 33.9318i 2.34711 1.35511i
\(628\) 12.7793 + 7.37812i 0.509949 + 0.294419i
\(629\) −1.47390 −0.0587682
\(630\) −0.155932 0.767530i −0.00621247 0.0305791i
\(631\) 2.67513 4.63346i 0.106495 0.184455i −0.807853 0.589384i \(-0.799370\pi\)
0.914348 + 0.404929i \(0.132704\pi\)
\(632\) 2.29455i 0.0912724i
\(633\) −4.48750 2.59086i −0.178362 0.102977i
\(634\) −10.3253 17.8840i −0.410072 0.710265i
\(635\) −3.68308 + 10.9973i −0.146159 + 0.436416i
\(636\) −1.51881 −0.0602246
\(637\) 13.4554 + 0.781626i 0.533121 + 0.0309691i
\(638\) 14.9018i 0.589966i
\(639\) −0.355186 0.615201i −0.0140510 0.0243370i
\(640\) 0.710109 2.12032i 0.0280695 0.0838129i
\(641\) −6.19029 + 10.7219i −0.244502 + 0.423489i −0.961991 0.273080i \(-0.911958\pi\)
0.717490 + 0.696569i \(0.245291\pi\)
\(642\) 2.80606i 0.110746i
\(643\) 9.98067 + 5.76234i 0.393599 + 0.227245i 0.683718 0.729746i \(-0.260362\pi\)
−0.290119 + 0.956991i \(0.593695\pi\)
\(644\) 6.42842 11.1344i 0.253315 0.438755i
\(645\) −5.61213 + 4.96239i −0.220977 + 0.195394i
\(646\) −1.51270 + 2.62007i −0.0595162 + 0.103085i
\(647\) −3.17849 + 1.83510i −0.124959 + 0.0721453i −0.561177 0.827696i \(-0.689651\pi\)
0.436217 + 0.899841i \(0.356318\pi\)
\(648\) 7.25779 4.19029i 0.285113 0.164610i
\(649\) −42.3634 −1.66291
\(650\) 17.7340 + 3.24095i 0.695586 + 0.127121i
\(651\) 9.85352 0.386190
\(652\) 11.7127 6.76234i 0.458706 0.264834i
\(653\) 7.02043 4.05325i 0.274731 0.158616i −0.356305 0.934370i \(-0.615964\pi\)
0.631036 + 0.775754i \(0.282630\pi\)
\(654\) −9.11871 + 15.7941i −0.356570 + 0.617597i
\(655\) 18.0933 15.9986i 0.706965 0.625116i
\(656\) −3.75329 + 6.50089i −0.146541 + 0.253817i
\(657\) 0.437890 + 0.252816i 0.0170837 + 0.00986329i
\(658\) 3.96239i 0.154470i
\(659\) 9.27210 16.0597i 0.361190 0.625599i −0.626967 0.779046i \(-0.715704\pi\)
0.988157 + 0.153447i \(0.0490373\pi\)
\(660\) 7.66480 22.8864i 0.298352 0.890851i
\(661\) −23.2059 40.1938i −0.902606 1.56336i −0.824099 0.566446i \(-0.808318\pi\)
−0.0785068 0.996914i \(-0.525015\pi\)
\(662\) 26.6761i 1.03680i
\(663\) −1.59667 + 2.42842i −0.0620095 + 0.0943122i
\(664\) 13.3380 0.517616
\(665\) 8.06342 24.0766i 0.312686 0.933650i
\(666\) −0.297014 0.514444i −0.0115091 0.0199343i
\(667\) 14.2575 + 8.23155i 0.552051 + 0.318727i
\(668\) 23.4241i 0.906304i
\(669\) 18.5889 32.1969i 0.718687 1.24480i
\(670\) −0.289255 1.42377i −0.0111749 0.0550052i
\(671\) −70.5583 −2.72387
\(672\) −2.62007 1.51270i −0.101071 0.0583535i
\(673\) −34.9956 + 20.2047i −1.34898 + 0.778836i −0.988105 0.153778i \(-0.950856\pi\)
−0.360877 + 0.932613i \(0.617523\pi\)
\(674\) −4.20299 7.27978i −0.161893 0.280407i
\(675\) 26.5501 + 3.27504i 1.02191 + 0.126056i
\(676\) −12.9126 1.50527i −0.496637 0.0578950i
\(677\) 14.2473i 0.547567i 0.961791 + 0.273784i \(0.0882752\pi\)
−0.961791 + 0.273784i \(0.911725\pi\)
\(678\) −20.3099 + 11.7259i −0.779996 + 0.450331i
\(679\) 12.4902 + 21.6337i 0.479332 + 0.830227i
\(680\) 0.214221 + 1.05444i 0.00821501 + 0.0404360i
\(681\) −22.3390 −0.856032
\(682\) −18.1747 10.4932i −0.695946 0.401805i
\(683\) −5.02599 2.90175i −0.192314 0.111033i 0.400751 0.916187i \(-0.368749\pi\)
−0.593065 + 0.805154i \(0.702082\pi\)
\(684\) −1.21933 −0.0466222
\(685\) 13.4636 2.73527i 0.514418 0.104509i
\(686\) −9.69688 16.7955i −0.370228 0.641255i
\(687\) −37.9714 + 21.9228i −1.44870 + 0.836407i
\(688\) 2.00000i 0.0762493i
\(689\) 2.73155 + 1.79597i 0.104064 + 0.0684210i
\(690\) 17.6629 + 19.9756i 0.672416 + 0.760457i
\(691\) 9.61990 + 16.6622i 0.365958 + 0.633858i 0.988929 0.148387i \(-0.0474080\pi\)
−0.622971 + 0.782245i \(0.714075\pi\)
\(692\) 4.00480 2.31217i 0.152240 0.0878956i
\(693\) 1.95457 + 1.12847i 0.0742479 + 0.0428670i
\(694\) 21.1514 0.802896
\(695\) 4.60236 + 22.6538i 0.174577 + 0.859307i
\(696\) 1.93700 3.35498i 0.0734216 0.127170i
\(697\) 3.61213i 0.136819i
\(698\) 4.74054 + 2.73695i 0.179432 + 0.103595i
\(699\) 17.4792 + 30.2749i 0.661124 + 1.14510i
\(700\) −3.52377 8.31443i −0.133186 0.314256i
\(701\) 45.3742 1.71376 0.856881 0.515515i \(-0.172399\pi\)
0.856881 + 0.515515i \(0.172399\pi\)
\(702\) −19.2582 1.11871i −0.726853 0.0422231i
\(703\) 19.2579i 0.726325i
\(704\) 3.22179 + 5.58031i 0.121426 + 0.210316i
\(705\) 7.79244 + 2.60974i 0.293480 + 0.0982886i
\(706\) 15.0721 26.1056i 0.567244 0.982496i
\(707\) 17.3380i 0.652064i
\(708\) −9.53769 5.50659i −0.358448 0.206950i
\(709\) 1.98660 3.44089i 0.0746082 0.129225i −0.826308 0.563219i \(-0.809563\pi\)
0.900916 + 0.433994i \(0.142896\pi\)
\(710\) −5.42548 6.13586i −0.203615 0.230275i
\(711\) −0.222499 + 0.385379i −0.00834436 + 0.0144528i
\(712\) −1.00141 + 0.578163i −0.0375293 + 0.0216676i
\(713\) 20.0790 11.5926i 0.751964 0.434147i
\(714\) 1.45580 0.0544820
\(715\) −40.8479 + 32.0972i −1.52763 + 1.20037i
\(716\) −8.31265 −0.310658
\(717\) 22.1858 12.8090i 0.828546 0.478361i
\(718\) 7.26411 4.19394i 0.271094 0.156516i
\(719\) 22.8496 39.5766i 0.852145 1.47596i −0.0271244 0.999632i \(-0.508635\pi\)
0.879269 0.476326i \(-0.158032\pi\)
\(720\) −0.324869 + 0.287258i −0.0121072 + 0.0107055i
\(721\) −2.77702 + 4.80995i −0.103422 + 0.179132i
\(722\) −17.7792 10.2648i −0.661672 0.382016i
\(723\) 21.3888i 0.795459i
\(724\) −0.512696 + 0.888016i −0.0190542 + 0.0330029i
\(725\) 10.6466 4.51216i 0.395403 0.167577i
\(726\) 25.5623 + 44.2752i 0.948706 + 1.64321i
\(727\) 24.7948i 0.919588i 0.888026 + 0.459794i \(0.152077\pi\)
−0.888026 + 0.459794i \(0.847923\pi\)
\(728\) 2.92340 + 5.81876i 0.108349 + 0.215658i
\(729\) −28.5125 −1.05602
\(730\) 5.52810 + 1.85140i 0.204604 + 0.0685233i
\(731\) 0.481194 + 0.833453i 0.0177976 + 0.0308264i
\(732\) −15.8855 9.17148i −0.587144 0.338988i
\(733\) 45.8651i 1.69407i 0.531540 + 0.847033i \(0.321613\pi\)
−0.531540 + 0.847033i \(0.678387\pi\)
\(734\) −9.75623 + 16.8983i −0.360109 + 0.623727i
\(735\) 13.7216 2.78770i 0.506130 0.102826i
\(736\) −7.11871 −0.262399
\(737\) 3.62574 + 2.09332i 0.133556 + 0.0771085i
\(738\) 1.26076 0.727901i 0.0464093 0.0267944i
\(739\) 17.4817 + 30.2791i 0.643074 + 1.11384i 0.984743 + 0.174016i \(0.0556744\pi\)
−0.341669 + 0.939820i \(0.610992\pi\)
\(740\) −4.53690 5.13093i −0.166780 0.188617i
\(741\) −31.7297 20.8620i −1.16562 0.766384i
\(742\) 1.63752i 0.0601152i
\(743\) −5.94673 + 3.43335i −0.218165 + 0.125957i −0.605100 0.796149i \(-0.706867\pi\)
0.386936 + 0.922107i \(0.373534\pi\)
\(744\) −2.72790 4.72486i −0.100010 0.173222i
\(745\) −7.14559 35.1721i −0.261794 1.28861i
\(746\) −8.51388 −0.311715
\(747\) −2.24018 1.29337i −0.0819638 0.0473218i
\(748\) −2.68521 1.55031i −0.0981811 0.0566849i
\(749\) 3.02539 0.110545
\(750\) 18.6720 1.45373i 0.681806 0.0530828i
\(751\) −2.40009 4.15708i −0.0875806 0.151694i 0.818907 0.573926i \(-0.194580\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(752\) −1.90000 + 1.09697i −0.0692860 + 0.0400023i
\(753\) 7.05571i 0.257124i
\(754\) −7.45088 + 3.74339i −0.271345 + 0.136326i
\(755\) −15.6082 + 13.8011i −0.568039 + 0.502275i
\(756\) 4.83146 + 8.36833i 0.175718 + 0.304353i
\(757\) 24.0541 13.8876i 0.874261 0.504755i 0.00549931 0.999985i \(-0.498250\pi\)
0.868762 + 0.495230i \(0.164916\pi\)
\(758\) −17.0768 9.85931i −0.620258 0.358106i
\(759\) −76.8383 −2.78905
\(760\) −13.7773 + 2.79900i −0.499755 + 0.101530i
\(761\) 1.58110 2.73855i 0.0573149 0.0992723i −0.835944 0.548814i \(-0.815079\pi\)
0.893259 + 0.449542i \(0.148413\pi\)
\(762\) 8.68830i 0.314744i
\(763\) −17.0286 9.83146i −0.616476 0.355923i
\(764\) 0.177593 + 0.307600i 0.00642509 + 0.0111286i
\(765\) 0.0662682 0.197870i 0.00239593 0.00715402i
\(766\) 27.7196 1.00155
\(767\) 10.6419 + 21.1817i 0.384257 + 0.764828i
\(768\) 1.67513i 0.0604461i
\(769\) 4.07816 + 7.06358i 0.147062 + 0.254719i 0.930140 0.367204i \(-0.119685\pi\)
−0.783078 + 0.621923i \(0.786352\pi\)
\(770\) 24.6752 + 8.26390i 0.889234 + 0.297810i
\(771\) −15.5999 + 27.0198i −0.561817 + 0.973096i
\(772\) 14.0000i 0.503871i
\(773\) −5.09129 2.93946i −0.183121 0.105725i 0.405637 0.914034i \(-0.367050\pi\)
−0.588758 + 0.808309i \(0.700383\pi\)
\(774\) −0.193937 + 0.335908i −0.00697091 + 0.0120740i
\(775\) 1.99366 16.1622i 0.0716144 0.580564i
\(776\) 6.91573 11.9784i 0.248260 0.429999i
\(777\) −8.02528 + 4.63339i −0.287905 + 0.166222i
\(778\) −7.92535 + 4.57570i −0.284137 + 0.164047i
\(779\) 47.1958 1.69097
\(780\) −13.3686 + 1.91677i −0.478674 + 0.0686313i
\(781\) 23.6023 0.844556
\(782\) 2.96656 1.71274i 0.106084 0.0612475i
\(783\) −10.7156 + 6.18664i −0.382944 + 0.221093i
\(784\) −1.86907 + 3.23732i −0.0667524 + 0.115619i
\(785\) −21.8568 24.7186i −0.780104 0.882245i
\(786\) −9.04666 + 15.6693i −0.322684 + 0.558905i
\(787\) 20.5261 + 11.8507i 0.731676 + 0.422433i 0.819035 0.573744i \(-0.194509\pi\)
−0.0873591 + 0.996177i \(0.527843\pi\)
\(788\) 14.1065i 0.502523i
\(789\) −19.2811 + 33.3959i −0.686427 + 1.18893i
\(790\) −1.62938 + 4.86518i −0.0579708 + 0.173095i
\(791\) −12.6424 21.8974i −0.449514 0.778580i
\(792\) 1.24965i 0.0444042i
\(793\) 17.7246 + 35.2792i 0.629419 + 1.25280i
\(794\) −1.43041 −0.0507633
\(795\) 3.22035 + 1.07852i 0.114214 + 0.0382511i
\(796\) 1.57452 + 2.72714i 0.0558072 + 0.0966609i
\(797\) −42.0193 24.2599i −1.48840 0.859329i −0.488489 0.872570i \(-0.662452\pi\)
−0.999912 + 0.0132409i \(0.995785\pi\)
\(798\) 19.0214i 0.673351i
\(799\) 0.527855 0.914271i 0.0186742 0.0323446i
\(800\) −3.01131 + 3.99149i −0.106466 + 0.141121i
\(801\) 0.224254 0.00792362
\(802\) −18.7669 10.8351i −0.662684 0.382601i
\(803\) −14.5490 + 8.39986i −0.513423 + 0.296425i
\(804\) 0.544198 + 0.942579i 0.0191924 + 0.0332422i
\(805\) −21.5369 + 19.0435i −0.759076 + 0.671195i
\(806\) −0.681010 + 11.7233i −0.0239876 + 0.412936i
\(807\) 22.5705i 0.794521i
\(808\) 8.31376 4.79995i 0.292477 0.168862i
\(809\) −8.55936 14.8252i −0.300931 0.521228i 0.675416 0.737437i \(-0.263964\pi\)
−0.976347 + 0.216209i \(0.930631\pi\)
\(810\) −18.3644 + 3.73092i −0.645259 + 0.131091i
\(811\) −7.67372 −0.269461 −0.134730 0.990882i \(-0.543017\pi\)
−0.134730 + 0.990882i \(0.543017\pi\)
\(812\) 3.61721 + 2.08840i 0.126939 + 0.0732884i
\(813\) 25.9681 + 14.9927i 0.910742 + 0.525817i
\(814\) 19.7367 0.691772
\(815\) −29.6367 + 6.02101i −1.03813 + 0.210907i
\(816\) −0.403032 0.698071i −0.0141089 0.0244374i
\(817\) −10.8898 + 6.28726i −0.380988 + 0.219963i
\(818\) 9.08110i 0.317513i
\(819\) 0.0732380 1.26076i 0.00255914 0.0440546i
\(820\) 12.5745 11.1187i 0.439121 0.388282i
\(821\) 26.8933 + 46.5805i 0.938582 + 1.62567i 0.768119 + 0.640307i \(0.221193\pi\)
0.170463 + 0.985364i \(0.445474\pi\)
\(822\) −8.91329 + 5.14609i −0.310887 + 0.179491i
\(823\) −8.46604 4.88787i −0.295108 0.170381i 0.345135 0.938553i \(-0.387833\pi\)
−0.640243 + 0.768172i \(0.721166\pi\)
\(824\) 3.07522 0.107130
\(825\) −32.5036 + 43.0835i −1.13163 + 1.49998i
\(826\) 5.93700 10.2832i 0.206575 0.357798i
\(827\) 28.1598i 0.979213i −0.871943 0.489607i \(-0.837140\pi\)
0.871943 0.489607i \(-0.162860\pi\)
\(828\) 1.19562 + 0.690289i 0.0415505 + 0.0239892i
\(829\) 10.1065 + 17.5050i 0.351013 + 0.607972i 0.986427 0.164199i \(-0.0525039\pi\)
−0.635414 + 0.772172i \(0.719171\pi\)
\(830\) −28.2809 9.47146i −0.981644 0.328759i
\(831\) 14.2193 0.493263
\(832\) 1.98082 3.01270i 0.0686727 0.104446i
\(833\) 1.79877i 0.0623237i
\(834\) −8.65879 14.9975i −0.299829 0.519320i
\(835\) 16.6336 49.6665i 0.575631 1.71878i
\(836\) 20.2562 35.0848i 0.700576 1.21343i
\(837\) 17.4255i 0.602313i
\(838\) −13.4604 7.77139i −0.464983 0.268458i
\(839\) 6.29631 10.9055i 0.217373 0.376500i −0.736631 0.676295i \(-0.763585\pi\)
0.954004 + 0.299794i \(0.0969180\pi\)
\(840\) 4.48119 + 5.06793i 0.154616 + 0.174860i
\(841\) 11.8258 20.4829i 0.407787 0.706308i
\(842\) −4.29961 + 2.48238i −0.148174 + 0.0855484i
\(843\) −23.9796 + 13.8446i −0.825901 + 0.476834i
\(844\) −3.09332 −0.106477
\(845\) 26.3098 + 12.3610i 0.905085 + 0.425230i
\(846\) 0.425485 0.0146285
\(847\) −47.7359 + 27.5603i −1.64022 + 0.946984i
\(848\) −0.785207 + 0.453339i −0.0269641 + 0.0155677i
\(849\) 1.28726 2.22960i 0.0441786 0.0765195i
\(850\) 0.294552 2.38787i 0.0101030 0.0819034i
\(851\) −10.9023 + 18.8834i −0.373727 + 0.647314i
\(852\) 5.31381 + 3.06793i 0.182048 + 0.105106i
\(853\) 45.7704i 1.56715i −0.621299 0.783574i \(-0.713395\pi\)
0.621299 0.783574i \(-0.286605\pi\)
\(854\) 9.88835 17.1271i 0.338372 0.586078i
\(855\) 2.58536 + 0.865856i 0.0884176 + 0.0296117i
\(856\) −0.837565 1.45071i −0.0286274 0.0495841i
\(857\) 27.8169i 0.950206i 0.879930 + 0.475103i \(0.157589\pi\)
−0.879930 + 0.475103i \(0.842411\pi\)
\(858\) 21.3807 32.5186i 0.729925 1.11017i
\(859\) −25.9706 −0.886107 −0.443053 0.896495i \(-0.646105\pi\)
−0.443053 + 0.896495i \(0.646105\pi\)
\(860\) −1.42022 + 4.24063i −0.0484290 + 0.144604i
\(861\) −11.3552 19.6678i −0.386984 0.670275i
\(862\) 28.5534 + 16.4853i 0.972533 + 0.561492i
\(863\) 18.7210i 0.637270i 0.947877 + 0.318635i \(0.103224\pi\)
−0.947877 + 0.318635i \(0.896776\pi\)
\(864\) 2.67513 4.63346i 0.0910098 0.157634i
\(865\) −10.1333 + 2.05870i −0.344544 + 0.0699978i
\(866\) −16.1114 −0.547488
\(867\) −24.3261 14.0447i −0.826157 0.476982i
\(868\) 5.09417 2.94112i 0.172907 0.0998281i
\(869\) −7.39257 12.8043i −0.250776 0.434356i
\(870\) −6.48944 + 5.73813i −0.220013 + 0.194541i
\(871\) 0.135857 2.33872i 0.00460334 0.0792446i
\(872\) 10.8872i 0.368686i
\(873\) −2.32305 + 1.34121i −0.0786233 + 0.0453932i
\(874\) 22.3786 + 38.7609i 0.756967 + 1.31111i
\(875\) 1.56736 + 20.1315i 0.0529865 + 0.680568i
\(876\) −4.36741 −0.147561
\(877\) −19.6466 11.3430i −0.663418 0.383025i 0.130160 0.991493i \(-0.458451\pi\)
−0.793578 + 0.608468i \(0.791784\pi\)
\(878\) −0.0722889 0.0417360i −0.00243963 0.00140852i
\(879\) −9.93303 −0.335033
\(880\) −2.86860 14.1198i −0.0967003 0.475980i
\(881\) 1.23813 + 2.14451i 0.0417138 + 0.0722505i 0.886129 0.463440i \(-0.153385\pi\)
−0.844415 + 0.535690i \(0.820052\pi\)
\(882\) 0.627835 0.362481i 0.0211403 0.0122054i
\(883\) 31.4641i 1.05885i −0.848357 0.529425i \(-0.822408\pi\)
0.848357 0.529425i \(-0.177592\pi\)
\(884\) −0.100615 + 1.73205i −0.00338406 + 0.0582552i
\(885\) 16.3127 + 18.4485i 0.548344 + 0.620140i
\(886\) −20.4568 35.4321i −0.687258 1.19037i
\(887\) −34.3953 + 19.8581i −1.15488 + 0.666771i −0.950072 0.312031i \(-0.898991\pi\)
−0.204809 + 0.978802i \(0.565657\pi\)
\(888\) 4.44352 + 2.56547i 0.149115 + 0.0860914i
\(889\) 9.36741 0.314173
\(890\) 2.53386 0.514780i 0.0849351 0.0172555i
\(891\) 27.0005 46.7662i 0.904550 1.56673i
\(892\) 22.1939i 0.743108i
\(893\) 11.9458 + 6.89692i 0.399752 + 0.230797i
\(894\) 13.4436 + 23.2850i 0.449621 + 0.778766i
\(895\) 17.6255 + 5.90289i 0.589154 + 0.197312i
\(896\) −1.80606 −0.0603363
\(897\) 19.3022 + 38.4191i 0.644480 + 1.28278i
\(898\) 29.1319i 0.972144i
\(899\) 3.76608 + 6.52305i 0.125606 + 0.217556i
\(900\) 0.892810 0.378385i 0.0297603 0.0126128i
\(901\) 0.218144 0.377837i 0.00726744 0.0125876i
\(902\) 48.3693i 1.61052i
\(903\) 5.24013 + 3.02539i 0.174381 + 0.100679i
\(904\) −7.00000 + 12.1244i −0.232817 + 0.403250i
\(905\) 1.71767 1.51881i 0.0570972 0.0504868i
\(906\) 7.80408 13.5171i 0.259273 0.449074i
\(907\) 46.3977 26.7877i 1.54061 0.889472i 0.541811 0.840500i \(-0.317739\pi\)
0.998800 0.0489717i \(-0.0155944\pi\)
\(908\) −11.5490 + 6.66784i −0.383268 + 0.221280i
\(909\) −1.86177 −0.0617511
\(910\) −2.06659 14.4136i −0.0685067 0.477805i
\(911\) 14.6253 0.484558 0.242279 0.970207i \(-0.422105\pi\)
0.242279 + 0.970207i \(0.422105\pi\)
\(912\) 9.12096 5.26599i 0.302025 0.174374i
\(913\) 74.4304 42.9724i 2.46329 1.42218i
\(914\) −16.3339 + 28.2912i −0.540278 + 0.935789i
\(915\) 27.1695 + 30.7269i 0.898196 + 1.01580i
\(916\) −13.0872 + 22.6677i −0.432414 + 0.748962i
\(917\) −16.8940 9.75377i −0.557890 0.322098i
\(918\) 2.57452i 0.0849717i
\(919\) 26.5247 45.9421i 0.874969 1.51549i 0.0181725 0.999835i \(-0.494215\pi\)
0.856796 0.515655i \(-0.172451\pi\)
\(920\) 15.0939 + 5.05506i 0.497632 + 0.166660i
\(921\) −15.0557 26.0773i −0.496103 0.859275i
\(922\) 19.1006i 0.629045i
\(923\) −5.92901 11.8011i −0.195156 0.388439i
\(924\) −19.4944 −0.641318
\(925\) 5.97616 + 14.1009i 0.196495 + 0.463635i
\(926\) −4.14609 7.18124i −0.136249 0.235990i
\(927\) −0.516496 0.298199i −0.0169640 0.00979414i
\(928\) 2.31265i 0.0759165i
\(929\) −5.22521 + 9.05033i −0.171434 + 0.296932i −0.938921 0.344132i \(-0.888173\pi\)
0.767488 + 0.641064i \(0.221507\pi\)
\(930\) 2.42885 + 11.9553i 0.0796451 + 0.392030i
\(931\) 23.5026 0.770267
\(932\) 18.0731 + 10.4345i 0.592005 + 0.341795i
\(933\) 23.1496 13.3654i 0.757883 0.437564i
\(934\) −11.7685 20.3836i −0.385076 0.666970i
\(935\) 4.59261 + 5.19394i 0.150195 + 0.169860i
\(936\) −0.624823 + 0.313917i −0.0204230 + 0.0102607i
\(937\) 10.5745i 0.345454i −0.984970 0.172727i \(-0.944742\pi\)
0.984970 0.172727i \(-0.0552579\pi\)
\(938\) −1.01625 + 0.586734i −0.0331819 + 0.0191576i
\(939\) 19.6302 + 34.0005i 0.640608 + 1.10957i
\(940\) 4.80758 0.976711i 0.156806 0.0318568i
\(941\) −16.6107 −0.541494 −0.270747 0.962651i \(-0.587271\pi\)
−0.270747 + 0.962651i \(0.587271\pi\)
\(942\) 21.4070 + 12.3593i 0.697476 + 0.402688i
\(943\) −46.2780 26.7186i −1.50702 0.870078i
\(944\) −6.57452 −0.213982
\(945\) −4.30180 21.1744i −0.139937 0.688802i
\(946\) −6.44358 11.1606i −0.209499 0.362863i
\(947\) 36.7949 21.2435i 1.19567 0.690322i 0.236086 0.971732i \(-0.424135\pi\)
0.959588 + 0.281410i \(0.0908021\pi\)
\(948\) 3.84367i 0.124837i
\(949\) 7.85471 + 5.16441i 0.254975 + 0.167644i
\(950\) 31.1998 + 3.84860i 1.01226 + 0.124865i
\(951\) −17.2963 29.9581i −0.560871 0.971457i
\(952\) 0.752634 0.434534i 0.0243930 0.0140833i
\(953\) 38.9897 + 22.5107i 1.26300 + 0.729193i 0.973654 0.228031i \(-0.0732288\pi\)
0.289346 + 0.957224i \(0.406562\pi\)
\(954\) 0.175838 0.00569297
\(955\) −0.158124 0.778321i −0.00511678 0.0251859i
\(956\) 7.64657 13.2442i 0.247308 0.428350i
\(957\) 24.9624i 0.806919i
\(958\) 5.67802 + 3.27821i 0.183449 + 0.105914i
\(959\) −5.54832 9.60998i −0.179165 0.310322i
\(960\) 1.18953 3.55181i 0.0383918 0.114634i
\(961\) −20.3923 −0.657817
\(962\) −4.95796 9.86836i −0.159851 0.318169i
\(963\) 0.324869i 0.0104688i
\(964\) −6.38423 11.0578i −0.205622 0.356148i
\(965\) −9.94152 + 29.6844i −0.320029 + 0.955576i
\(966\) 10.7685 18.6515i 0.346469 0.600102i
\(967\) 24.4763i 0.787104i −0.919302 0.393552i \(-0.871246\pi\)
0.919302 0.393552i \(-0.128754\pi\)
\(968\) 26.4309 + 15.2599i 0.849521 + 0.490471i
\(969\) −2.53396 + 4.38895i −0.0814027 + 0.140994i
\(970\) −23.1695 + 20.4871i −0.743928 + 0.657800i
\(971\) 28.2023 48.8478i 0.905054 1.56760i 0.0842097 0.996448i \(-0.473163\pi\)
0.820844 0.571152i \(-0.193503\pi\)
\(972\) −1.74263 + 1.00611i −0.0558950 + 0.0322710i
\(973\) 16.1697 9.33558i 0.518377 0.299285i
\(974\) 13.5599 0.434488
\(975\) 29.7068 + 5.42902i 0.951380 + 0.173868i
\(976\) −10.9502 −0.350506
\(977\) −11.7021 + 6.75623i −0.374385 + 0.216151i −0.675372 0.737477i \(-0.736017\pi\)
0.300988 + 0.953628i \(0.402684\pi\)
\(978\) 19.6203 11.3278i 0.627389 0.362223i
\(979\) −3.72544 + 6.45265i −0.119066 + 0.206228i
\(980\) 6.26187 5.53690i 0.200028 0.176870i
\(981\) 1.05571 1.82854i 0.0337062 0.0583809i
\(982\) −4.29329 2.47873i −0.137004 0.0790995i
\(983\) 30.1187i 0.960638i 0.877094 + 0.480319i \(0.159479\pi\)
−0.877094 + 0.480319i \(0.840521\pi\)
\(984\) −6.28726 + 10.8898i −0.200430 + 0.347156i
\(985\) −10.0171 + 29.9102i −0.319173 + 0.953020i
\(986\) 0.556417 + 0.963743i 0.0177199 + 0.0306918i
\(987\) 6.63752i 0.211275i
\(988\) −22.6309 1.31464i −0.719984 0.0418241i
\(989\) 14.2374 0.452724
\(990\) −0.887385 + 2.64965i −0.0282029 + 0.0842113i
\(991\) −17.6629 30.5931i −0.561081 0.971821i −0.997402 0.0720298i \(-0.977052\pi\)
0.436322 0.899791i \(-0.356281\pi\)
\(992\) −2.82059 1.62847i −0.0895539 0.0517040i
\(993\) 44.6859i 1.41807i
\(994\) −3.30773 + 5.72915i −0.104915 + 0.181718i
\(995\) −1.40191 6.90048i −0.0444434 0.218760i
\(996\) 22.3430 0.707964
\(997\) 14.5638 + 8.40843i 0.461241 + 0.266298i 0.712566 0.701605i \(-0.247533\pi\)
−0.251325 + 0.967903i \(0.580866\pi\)
\(998\) 12.0118 6.93501i 0.380227 0.219524i
\(999\) −8.19394 14.1923i −0.259245 0.449025i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.n.a.29.6 yes 12
3.2 odd 2 1170.2.bp.h.289.3 12
4.3 odd 2 1040.2.dh.b.289.2 12
5.2 odd 4 650.2.e.k.601.1 6
5.3 odd 4 650.2.e.j.601.3 6
5.4 even 2 inner 130.2.n.a.29.1 yes 12
13.2 odd 12 1690.2.c.c.1689.5 6
13.3 even 3 1690.2.b.c.339.6 6
13.9 even 3 inner 130.2.n.a.9.1 12
13.10 even 6 1690.2.b.b.339.3 6
13.11 odd 12 1690.2.c.b.1689.5 6
15.14 odd 2 1170.2.bp.h.289.6 12
20.19 odd 2 1040.2.dh.b.289.5 12
39.35 odd 6 1170.2.bp.h.919.6 12
52.35 odd 6 1040.2.dh.b.529.5 12
65.3 odd 12 8450.2.a.cb.1.1 3
65.9 even 6 inner 130.2.n.a.9.6 yes 12
65.22 odd 12 650.2.e.k.451.1 6
65.23 odd 12 8450.2.a.bt.1.1 3
65.24 odd 12 1690.2.c.c.1689.2 6
65.29 even 6 1690.2.b.c.339.1 6
65.42 odd 12 8450.2.a.bu.1.3 3
65.48 odd 12 650.2.e.j.451.3 6
65.49 even 6 1690.2.b.b.339.4 6
65.54 odd 12 1690.2.c.b.1689.2 6
65.62 odd 12 8450.2.a.ca.1.3 3
195.74 odd 6 1170.2.bp.h.919.3 12
260.139 odd 6 1040.2.dh.b.529.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.1 12 13.9 even 3 inner
130.2.n.a.9.6 yes 12 65.9 even 6 inner
130.2.n.a.29.1 yes 12 5.4 even 2 inner
130.2.n.a.29.6 yes 12 1.1 even 1 trivial
650.2.e.j.451.3 6 65.48 odd 12
650.2.e.j.601.3 6 5.3 odd 4
650.2.e.k.451.1 6 65.22 odd 12
650.2.e.k.601.1 6 5.2 odd 4
1040.2.dh.b.289.2 12 4.3 odd 2
1040.2.dh.b.289.5 12 20.19 odd 2
1040.2.dh.b.529.2 12 260.139 odd 6
1040.2.dh.b.529.5 12 52.35 odd 6
1170.2.bp.h.289.3 12 3.2 odd 2
1170.2.bp.h.289.6 12 15.14 odd 2
1170.2.bp.h.919.3 12 195.74 odd 6
1170.2.bp.h.919.6 12 39.35 odd 6
1690.2.b.b.339.3 6 13.10 even 6
1690.2.b.b.339.4 6 65.49 even 6
1690.2.b.c.339.1 6 65.29 even 6
1690.2.b.c.339.6 6 13.3 even 3
1690.2.c.b.1689.2 6 65.54 odd 12
1690.2.c.b.1689.5 6 13.11 odd 12
1690.2.c.c.1689.2 6 65.24 odd 12
1690.2.c.c.1689.5 6 13.2 odd 12
8450.2.a.bt.1.1 3 65.23 odd 12
8450.2.a.bu.1.3 3 65.42 odd 12
8450.2.a.ca.1.3 3 65.62 odd 12
8450.2.a.cb.1.1 3 65.3 odd 12