Properties

Label 650.2.e.j.451.3
Level $650$
Weight $2$
Character 650.451
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(451,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-3,0,-3,0,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.591408.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 4x^{4} + x^{3} + 10x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 451.3
Root \(-0.740597 - 1.28275i\) of defining polynomial
Character \(\chi\) \(=\) 650.451
Dual form 650.2.e.j.601.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.837565 - 1.45071i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.837565 + 1.45071i) q^{6} +(0.903032 + 1.56410i) q^{7} +1.00000 q^{8} +(0.0969683 + 0.167954i) q^{9} +(-3.22179 + 5.58031i) q^{11} -1.67513 q^{12} +(-3.01270 + 1.98082i) q^{13} -1.80606 q^{14} +(-0.500000 + 0.866025i) q^{16} +(0.240597 + 0.416726i) q^{17} -0.193937 q^{18} +(3.14363 + 5.44492i) q^{19} +3.02539 q^{21} +(-3.22179 - 5.58031i) q^{22} +(3.55936 - 6.16499i) q^{23} +(0.837565 - 1.45071i) q^{24} +(-0.209095 - 3.59948i) q^{26} +5.35026 q^{27} +(0.903032 - 1.56410i) q^{28} +(-1.15633 + 2.00281i) q^{29} +3.25694 q^{31} +(-0.500000 - 0.866025i) q^{32} +(5.39692 + 9.34774i) q^{33} -0.481194 q^{34} +(0.0969683 - 0.167954i) q^{36} +(1.53150 - 2.65264i) q^{37} -6.28726 q^{38} +(0.350262 + 6.02961i) q^{39} +(-3.75329 + 6.50089i) q^{41} +(-1.51270 + 2.62007i) q^{42} +(-1.00000 - 1.73205i) q^{43} +6.44358 q^{44} +(3.55936 + 6.16499i) q^{46} -2.19394 q^{47} +(0.837565 + 1.45071i) q^{48} +(1.86907 - 3.23732i) q^{49} +0.806063 q^{51} +(3.22179 + 1.61866i) q^{52} +0.906679 q^{53} +(-2.67513 + 4.63346i) q^{54} +(0.903032 + 1.56410i) q^{56} +10.5320 q^{57} +(-1.15633 - 2.00281i) q^{58} +(-3.28726 - 5.69370i) q^{59} +(5.47508 + 9.48313i) q^{61} +(-1.62847 + 2.82059i) q^{62} +(-0.175131 + 0.303336i) q^{63} +1.00000 q^{64} -10.7938 q^{66} +(0.324869 - 0.562690i) q^{67} +(0.240597 - 0.416726i) q^{68} +(-5.96239 - 10.3272i) q^{69} +(-1.83146 - 3.17217i) q^{71} +(0.0969683 + 0.167954i) q^{72} +2.60720 q^{73} +(1.53150 + 2.65264i) q^{74} +(3.14363 - 5.44492i) q^{76} -11.6375 q^{77} +(-5.39692 - 2.71147i) q^{78} -2.29455 q^{79} +(4.19029 - 7.25779i) q^{81} +(-3.75329 - 6.50089i) q^{82} -13.3380 q^{83} +(-1.51270 - 2.62007i) q^{84} +2.00000 q^{86} +(1.93700 + 3.35498i) q^{87} +(-3.22179 + 5.58031i) q^{88} +(0.578163 - 1.00141i) q^{89} +(-5.81876 - 2.92340i) q^{91} -7.11871 q^{92} +(2.72790 - 4.72486i) q^{93} +(1.09697 - 1.90000i) q^{94} -1.67513 q^{96} +(6.91573 + 11.9784i) q^{97} +(1.86907 + 3.23732i) q^{98} -1.24965 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} - 3 q^{4} + 5 q^{7} + 6 q^{8} + q^{9} - 3 q^{11} - 3 q^{13} - 10 q^{14} - 3 q^{16} - 4 q^{17} - 2 q^{18} + 13 q^{19} - 12 q^{21} - 3 q^{22} + 12 q^{27} + 5 q^{28} + 14 q^{29} + 12 q^{31}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.837565 1.45071i 0.483569 0.837565i −0.516253 0.856436i \(-0.672674\pi\)
0.999822 + 0.0188705i \(0.00600703\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 0.837565 + 1.45071i 0.341935 + 0.592248i
\(7\) 0.903032 + 1.56410i 0.341314 + 0.591173i 0.984677 0.174388i \(-0.0557948\pi\)
−0.643363 + 0.765561i \(0.722461\pi\)
\(8\) 1.00000 0.353553
\(9\) 0.0969683 + 0.167954i 0.0323228 + 0.0559847i
\(10\) 0 0
\(11\) −3.22179 + 5.58031i −0.971407 + 1.68253i −0.280090 + 0.959974i \(0.590364\pi\)
−0.691317 + 0.722552i \(0.742969\pi\)
\(12\) −1.67513 −0.483569
\(13\) −3.01270 + 1.98082i −0.835572 + 0.549382i
\(14\) −1.80606 −0.482691
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.240597 + 0.416726i 0.0583534 + 0.101071i 0.893726 0.448612i \(-0.148082\pi\)
−0.835373 + 0.549684i \(0.814748\pi\)
\(18\) −0.193937 −0.0457113
\(19\) 3.14363 + 5.44492i 0.721198 + 1.24915i 0.960520 + 0.278211i \(0.0897415\pi\)
−0.239322 + 0.970940i \(0.576925\pi\)
\(20\) 0 0
\(21\) 3.02539 0.660195
\(22\) −3.22179 5.58031i −0.686888 1.18973i
\(23\) 3.55936 6.16499i 0.742177 1.28549i −0.209325 0.977846i \(-0.567127\pi\)
0.951502 0.307642i \(-0.0995401\pi\)
\(24\) 0.837565 1.45071i 0.170967 0.296124i
\(25\) 0 0
\(26\) −0.209095 3.59948i −0.0410069 0.705917i
\(27\) 5.35026 1.02966
\(28\) 0.903032 1.56410i 0.170657 0.295587i
\(29\) −1.15633 + 2.00281i −0.214724 + 0.371913i −0.953187 0.302381i \(-0.902219\pi\)
0.738463 + 0.674294i \(0.235552\pi\)
\(30\) 0 0
\(31\) 3.25694 0.584964 0.292482 0.956271i \(-0.405519\pi\)
0.292482 + 0.956271i \(0.405519\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 5.39692 + 9.34774i 0.939484 + 1.62723i
\(34\) −0.481194 −0.0825241
\(35\) 0 0
\(36\) 0.0969683 0.167954i 0.0161614 0.0279923i
\(37\) 1.53150 2.65264i 0.251777 0.436091i −0.712238 0.701938i \(-0.752318\pi\)
0.964015 + 0.265847i \(0.0856516\pi\)
\(38\) −6.28726 −1.01993
\(39\) 0.350262 + 6.02961i 0.0560868 + 0.965510i
\(40\) 0 0
\(41\) −3.75329 + 6.50089i −0.586166 + 1.01527i 0.408563 + 0.912730i \(0.366030\pi\)
−0.994729 + 0.102539i \(0.967303\pi\)
\(42\) −1.51270 + 2.62007i −0.233414 + 0.404285i
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) 6.44358 0.971407
\(45\) 0 0
\(46\) 3.55936 + 6.16499i 0.524799 + 0.908978i
\(47\) −2.19394 −0.320019 −0.160009 0.987116i \(-0.551152\pi\)
−0.160009 + 0.987116i \(0.551152\pi\)
\(48\) 0.837565 + 1.45071i 0.120892 + 0.209391i
\(49\) 1.86907 3.23732i 0.267010 0.462474i
\(50\) 0 0
\(51\) 0.806063 0.112871
\(52\) 3.22179 + 1.61866i 0.446782 + 0.224468i
\(53\) 0.906679 0.124542 0.0622710 0.998059i \(-0.480166\pi\)
0.0622710 + 0.998059i \(0.480166\pi\)
\(54\) −2.67513 + 4.63346i −0.364039 + 0.630534i
\(55\) 0 0
\(56\) 0.903032 + 1.56410i 0.120673 + 0.209011i
\(57\) 10.5320 1.39499
\(58\) −1.15633 2.00281i −0.151833 0.262982i
\(59\) −3.28726 5.69370i −0.427965 0.741256i 0.568728 0.822526i \(-0.307436\pi\)
−0.996692 + 0.0812696i \(0.974103\pi\)
\(60\) 0 0
\(61\) 5.47508 + 9.48313i 0.701013 + 1.21419i 0.968111 + 0.250521i \(0.0806018\pi\)
−0.267098 + 0.963669i \(0.586065\pi\)
\(62\) −1.62847 + 2.82059i −0.206816 + 0.358216i
\(63\) −0.175131 + 0.303336i −0.0220644 + 0.0382167i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −10.7938 −1.32863
\(67\) 0.324869 0.562690i 0.0396891 0.0687435i −0.845499 0.533978i \(-0.820697\pi\)
0.885188 + 0.465234i \(0.154030\pi\)
\(68\) 0.240597 0.416726i 0.0291767 0.0505355i
\(69\) −5.96239 10.3272i −0.717787 1.24324i
\(70\) 0 0
\(71\) −1.83146 3.17217i −0.217354 0.376468i 0.736644 0.676280i \(-0.236409\pi\)
−0.953998 + 0.299812i \(0.903076\pi\)
\(72\) 0.0969683 + 0.167954i 0.0114278 + 0.0197936i
\(73\) 2.60720 0.305150 0.152575 0.988292i \(-0.451243\pi\)
0.152575 + 0.988292i \(0.451243\pi\)
\(74\) 1.53150 + 2.65264i 0.178033 + 0.308363i
\(75\) 0 0
\(76\) 3.14363 5.44492i 0.360599 0.624576i
\(77\) −11.6375 −1.32622
\(78\) −5.39692 2.71147i −0.611081 0.307013i
\(79\) −2.29455 −0.258157 −0.129079 0.991634i \(-0.541202\pi\)
−0.129079 + 0.991634i \(0.541202\pi\)
\(80\) 0 0
\(81\) 4.19029 7.25779i 0.465588 0.806422i
\(82\) −3.75329 6.50089i −0.414482 0.717904i
\(83\) −13.3380 −1.46404 −0.732020 0.681283i \(-0.761422\pi\)
−0.732020 + 0.681283i \(0.761422\pi\)
\(84\) −1.51270 2.62007i −0.165049 0.285873i
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 1.93700 + 3.35498i 0.207668 + 0.359691i
\(88\) −3.22179 + 5.58031i −0.343444 + 0.594863i
\(89\) 0.578163 1.00141i 0.0612851 0.106149i −0.833755 0.552135i \(-0.813813\pi\)
0.895040 + 0.445986i \(0.147147\pi\)
\(90\) 0 0
\(91\) −5.81876 2.92340i −0.609972 0.306456i
\(92\) −7.11871 −0.742177
\(93\) 2.72790 4.72486i 0.282870 0.489945i
\(94\) 1.09697 1.90000i 0.113144 0.195971i
\(95\) 0 0
\(96\) −1.67513 −0.170967
\(97\) 6.91573 + 11.9784i 0.702186 + 1.21622i 0.967698 + 0.252114i \(0.0811257\pi\)
−0.265512 + 0.964108i \(0.585541\pi\)
\(98\) 1.86907 + 3.23732i 0.188804 + 0.327019i
\(99\) −1.24965 −0.125594
\(100\) 0 0
\(101\) 4.79995 8.31376i 0.477613 0.827250i −0.522057 0.852910i \(-0.674835\pi\)
0.999671 + 0.0256599i \(0.00816868\pi\)
\(102\) −0.403032 + 0.698071i −0.0399061 + 0.0691194i
\(103\) −3.07522 −0.303011 −0.151505 0.988456i \(-0.548412\pi\)
−0.151505 + 0.988456i \(0.548412\pi\)
\(104\) −3.01270 + 1.98082i −0.295419 + 0.194236i
\(105\) 0 0
\(106\) −0.453339 + 0.785207i −0.0440322 + 0.0762660i
\(107\) −0.837565 + 1.45071i −0.0809705 + 0.140245i −0.903667 0.428236i \(-0.859135\pi\)
0.822697 + 0.568481i \(0.192469\pi\)
\(108\) −2.67513 4.63346i −0.257415 0.445855i
\(109\) 10.8872 1.04280 0.521401 0.853312i \(-0.325410\pi\)
0.521401 + 0.853312i \(0.325410\pi\)
\(110\) 0 0
\(111\) −2.56547 4.44352i −0.243503 0.421760i
\(112\) −1.80606 −0.170657
\(113\) 7.00000 + 12.1244i 0.658505 + 1.14056i 0.981003 + 0.193993i \(0.0621440\pi\)
−0.322498 + 0.946570i \(0.604523\pi\)
\(114\) −5.26599 + 9.12096i −0.493205 + 0.854256i
\(115\) 0 0
\(116\) 2.31265 0.214724
\(117\) −0.624823 0.313917i −0.0577649 0.0290217i
\(118\) 6.57452 0.605233
\(119\) −0.434534 + 0.752634i −0.0398336 + 0.0689939i
\(120\) 0 0
\(121\) −15.2599 26.4309i −1.38726 2.40281i
\(122\) −10.9502 −0.991382
\(123\) 6.28726 + 10.8898i 0.566903 + 0.981905i
\(124\) −1.62847 2.82059i −0.146241 0.253297i
\(125\) 0 0
\(126\) −0.175131 0.303336i −0.0156019 0.0270233i
\(127\) −2.59332 + 4.49176i −0.230120 + 0.398580i −0.957843 0.287291i \(-0.907245\pi\)
0.727723 + 0.685871i \(0.240579\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −3.35026 −0.294974
\(130\) 0 0
\(131\) −10.8011 −0.943700 −0.471850 0.881679i \(-0.656414\pi\)
−0.471850 + 0.881679i \(0.656414\pi\)
\(132\) 5.39692 9.34774i 0.469742 0.813617i
\(133\) −5.67759 + 9.83388i −0.492310 + 0.852706i
\(134\) 0.324869 + 0.562690i 0.0280644 + 0.0486090i
\(135\) 0 0
\(136\) 0.240597 + 0.416726i 0.0206310 + 0.0357340i
\(137\) −3.07205 5.32095i −0.262463 0.454600i 0.704433 0.709771i \(-0.251202\pi\)
−0.966896 + 0.255171i \(0.917868\pi\)
\(138\) 11.9248 1.01510
\(139\) −5.16902 8.95301i −0.438431 0.759384i 0.559138 0.829075i \(-0.311132\pi\)
−0.997569 + 0.0696904i \(0.977799\pi\)
\(140\) 0 0
\(141\) −1.83757 + 3.18276i −0.154751 + 0.268036i
\(142\) 3.66291 0.307385
\(143\) −1.34732 23.1936i −0.112669 1.93954i
\(144\) −0.193937 −0.0161614
\(145\) 0 0
\(146\) −1.30360 + 2.25790i −0.107887 + 0.186865i
\(147\) −3.13093 5.42293i −0.258235 0.447276i
\(148\) −3.06300 −0.251777
\(149\) 8.02539 + 13.9004i 0.657466 + 1.13876i 0.981270 + 0.192640i \(0.0617049\pi\)
−0.323804 + 0.946124i \(0.604962\pi\)
\(150\) 0 0
\(151\) 9.31757 0.758253 0.379127 0.925345i \(-0.376224\pi\)
0.379127 + 0.925345i \(0.376224\pi\)
\(152\) 3.14363 + 5.44492i 0.254982 + 0.441642i
\(153\) −0.0466606 + 0.0808185i −0.00377228 + 0.00653379i
\(154\) 5.81876 10.0784i 0.468889 0.812140i
\(155\) 0 0
\(156\) 5.04666 3.31814i 0.404056 0.265664i
\(157\) 14.7562 1.17768 0.588838 0.808251i \(-0.299586\pi\)
0.588838 + 0.808251i \(0.299586\pi\)
\(158\) 1.14728 1.98714i 0.0912724 0.158088i
\(159\) 0.759403 1.31532i 0.0602246 0.104312i
\(160\) 0 0
\(161\) 12.8568 1.01326
\(162\) 4.19029 + 7.25779i 0.329220 + 0.570226i
\(163\) −6.76234 11.7127i −0.529668 0.917411i −0.999401 0.0346029i \(-0.988983\pi\)
0.469734 0.882808i \(-0.344350\pi\)
\(164\) 7.50659 0.586166
\(165\) 0 0
\(166\) 6.66902 11.5511i 0.517616 0.896538i
\(167\) 11.7120 20.2858i 0.906304 1.56977i 0.0871479 0.996195i \(-0.472225\pi\)
0.819157 0.573570i \(-0.194442\pi\)
\(168\) 3.02539 0.233414
\(169\) 5.15268 11.9352i 0.396360 0.918095i
\(170\) 0 0
\(171\) −0.609665 + 1.05597i −0.0466222 + 0.0807520i
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) −2.31217 4.00480i −0.175791 0.304479i 0.764644 0.644453i \(-0.222915\pi\)
−0.940435 + 0.339974i \(0.889582\pi\)
\(174\) −3.87399 −0.293687
\(175\) 0 0
\(176\) −3.22179 5.58031i −0.242852 0.420631i
\(177\) −11.0132 −0.827801
\(178\) 0.578163 + 1.00141i 0.0433351 + 0.0750586i
\(179\) 4.15633 7.19897i 0.310658 0.538076i −0.667847 0.744299i \(-0.732784\pi\)
0.978505 + 0.206223i \(0.0661172\pi\)
\(180\) 0 0
\(181\) −1.02539 −0.0762168 −0.0381084 0.999274i \(-0.512133\pi\)
−0.0381084 + 0.999274i \(0.512133\pi\)
\(182\) 5.44112 3.57749i 0.403323 0.265181i
\(183\) 18.3430 1.35595
\(184\) 3.55936 6.16499i 0.262399 0.454489i
\(185\) 0 0
\(186\) 2.72790 + 4.72486i 0.200019 + 0.346444i
\(187\) −3.10062 −0.226739
\(188\) 1.09697 + 1.90000i 0.0800046 + 0.138572i
\(189\) 4.83146 + 8.36833i 0.351437 + 0.608706i
\(190\) 0 0
\(191\) −0.177593 0.307600i −0.0128502 0.0222572i 0.859529 0.511087i \(-0.170757\pi\)
−0.872379 + 0.488830i \(0.837424\pi\)
\(192\) 0.837565 1.45071i 0.0604461 0.104696i
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) −13.8315 −0.993041
\(195\) 0 0
\(196\) −3.73813 −0.267010
\(197\) −7.05325 + 12.2166i −0.502523 + 0.870396i 0.497473 + 0.867480i \(0.334261\pi\)
−0.999996 + 0.00291585i \(0.999072\pi\)
\(198\) 0.624823 1.08223i 0.0444042 0.0769104i
\(199\) 1.57452 + 2.72714i 0.111614 + 0.193322i 0.916421 0.400215i \(-0.131065\pi\)
−0.804807 + 0.593537i \(0.797731\pi\)
\(200\) 0 0
\(201\) −0.544198 0.942579i −0.0383848 0.0664844i
\(202\) 4.79995 + 8.31376i 0.337724 + 0.584954i
\(203\) −4.17679 −0.293153
\(204\) −0.403032 0.698071i −0.0282179 0.0488748i
\(205\) 0 0
\(206\) 1.53761 2.66322i 0.107130 0.185555i
\(207\) 1.38058 0.0959569
\(208\) −0.209095 3.59948i −0.0144981 0.249579i
\(209\) −40.5125 −2.80231
\(210\) 0 0
\(211\) −1.54666 + 2.67889i −0.106477 + 0.184423i −0.914340 0.404946i \(-0.867290\pi\)
0.807864 + 0.589369i \(0.200624\pi\)
\(212\) −0.453339 0.785207i −0.0311355 0.0539282i
\(213\) −6.13586 −0.420422
\(214\) −0.837565 1.45071i −0.0572548 0.0991682i
\(215\) 0 0
\(216\) 5.35026 0.364039
\(217\) 2.94112 + 5.09417i 0.199656 + 0.345815i
\(218\) −5.44358 + 9.42856i −0.368686 + 0.638583i
\(219\) 2.18370 3.78228i 0.147561 0.255583i
\(220\) 0 0
\(221\) −1.55031 0.778890i −0.104285 0.0523938i
\(222\) 5.13093 0.344366
\(223\) 11.0970 19.2205i 0.743108 1.28710i −0.207966 0.978136i \(-0.566684\pi\)
0.951074 0.308965i \(-0.0999825\pi\)
\(224\) 0.903032 1.56410i 0.0603363 0.104506i
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) −6.66784 11.5490i −0.442560 0.766536i 0.555319 0.831638i \(-0.312596\pi\)
−0.997879 + 0.0651014i \(0.979263\pi\)
\(228\) −5.26599 9.12096i −0.348749 0.604050i
\(229\) 26.1744 1.72965 0.864827 0.502069i \(-0.167428\pi\)
0.864827 + 0.502069i \(0.167428\pi\)
\(230\) 0 0
\(231\) −9.74718 + 16.8826i −0.641318 + 1.11079i
\(232\) −1.15633 + 2.00281i −0.0759165 + 0.131491i
\(233\) −20.8691 −1.36718 −0.683589 0.729867i \(-0.739582\pi\)
−0.683589 + 0.729867i \(0.739582\pi\)
\(234\) 0.584272 0.384154i 0.0381951 0.0251129i
\(235\) 0 0
\(236\) −3.28726 + 5.69370i −0.213982 + 0.370628i
\(237\) −1.92184 + 3.32872i −0.124837 + 0.216224i
\(238\) −0.434534 0.752634i −0.0281666 0.0487860i
\(239\) −15.2931 −0.989231 −0.494615 0.869112i \(-0.664691\pi\)
−0.494615 + 0.869112i \(0.664691\pi\)
\(240\) 0 0
\(241\) 6.38423 + 11.0578i 0.411244 + 0.712296i 0.995026 0.0996147i \(-0.0317610\pi\)
−0.583782 + 0.811910i \(0.698428\pi\)
\(242\) 30.5198 1.96188
\(243\) 1.00611 + 1.74263i 0.0645419 + 0.111790i
\(244\) 5.47508 9.48313i 0.350506 0.607095i
\(245\) 0 0
\(246\) −12.5745 −0.801722
\(247\) −20.2562 10.1769i −1.28887 0.647543i
\(248\) 3.25694 0.206816
\(249\) −11.1715 + 19.3496i −0.707964 + 1.22623i
\(250\) 0 0
\(251\) 2.10602 + 3.64773i 0.132931 + 0.230243i 0.924805 0.380441i \(-0.124228\pi\)
−0.791874 + 0.610684i \(0.790895\pi\)
\(252\) 0.350262 0.0220644
\(253\) 22.9350 + 39.7246i 1.44191 + 2.49746i
\(254\) −2.59332 4.49176i −0.162719 0.281838i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 9.31265 16.1300i 0.580907 1.00616i −0.414465 0.910065i \(-0.636031\pi\)
0.995372 0.0960955i \(-0.0306354\pi\)
\(258\) 1.67513 2.90141i 0.104289 0.180634i
\(259\) 5.53198 0.343740
\(260\) 0 0
\(261\) −0.448507 −0.0277619
\(262\) 5.40057 9.35406i 0.333648 0.577896i
\(263\) −11.5102 + 19.9363i −0.709751 + 1.22933i 0.255198 + 0.966889i \(0.417859\pi\)
−0.964949 + 0.262437i \(0.915474\pi\)
\(264\) 5.39692 + 9.34774i 0.332158 + 0.575314i
\(265\) 0 0
\(266\) −5.67759 9.83388i −0.348116 0.602954i
\(267\) −0.968498 1.67749i −0.0592711 0.102661i
\(268\) −0.649738 −0.0396891
\(269\) 6.73695 + 11.6687i 0.410759 + 0.711456i 0.994973 0.100144i \(-0.0319304\pi\)
−0.584214 + 0.811600i \(0.698597\pi\)
\(270\) 0 0
\(271\) 8.95017 15.5021i 0.543684 0.941688i −0.455004 0.890489i \(-0.650362\pi\)
0.998688 0.0511993i \(-0.0163044\pi\)
\(272\) −0.481194 −0.0291767
\(273\) −9.11459 + 5.99277i −0.551640 + 0.362699i
\(274\) 6.14411 0.371179
\(275\) 0 0
\(276\) −5.96239 + 10.3272i −0.358894 + 0.621622i
\(277\) 4.24424 + 7.35125i 0.255012 + 0.441694i 0.964899 0.262622i \(-0.0845873\pi\)
−0.709887 + 0.704316i \(0.751254\pi\)
\(278\) 10.3380 0.620035
\(279\) 0.315820 + 0.547016i 0.0189076 + 0.0327490i
\(280\) 0 0
\(281\) −16.5296 −0.986074 −0.493037 0.870008i \(-0.664113\pi\)
−0.493037 + 0.870008i \(0.664113\pi\)
\(282\) −1.83757 3.18276i −0.109425 0.189530i
\(283\) 0.768452 1.33100i 0.0456797 0.0791196i −0.842282 0.539038i \(-0.818788\pi\)
0.887961 + 0.459918i \(0.152121\pi\)
\(284\) −1.83146 + 3.17217i −0.108677 + 0.188234i
\(285\) 0 0
\(286\) 20.7599 + 10.4300i 1.22756 + 0.616737i
\(287\) −13.5574 −0.800266
\(288\) 0.0969683 0.167954i 0.00571391 0.00989678i
\(289\) 8.38423 14.5219i 0.493190 0.854230i
\(290\) 0 0
\(291\) 23.1695 1.35822
\(292\) −1.30360 2.25790i −0.0762875 0.132134i
\(293\) 2.96485 + 5.13527i 0.173208 + 0.300006i 0.939540 0.342440i \(-0.111253\pi\)
−0.766331 + 0.642446i \(0.777920\pi\)
\(294\) 6.26187 0.365199
\(295\) 0 0
\(296\) 1.53150 2.65264i 0.0890167 0.154182i
\(297\) −17.2374 + 29.8561i −1.00022 + 1.73243i
\(298\) −16.0508 −0.929797
\(299\) 1.48849 + 25.6237i 0.0860815 + 1.48186i
\(300\) 0 0
\(301\) 1.80606 3.12819i 0.104100 0.180306i
\(302\) −4.65879 + 8.06926i −0.268083 + 0.464334i
\(303\) −8.04055 13.9266i −0.461918 0.800065i
\(304\) −6.28726 −0.360599
\(305\) 0 0
\(306\) −0.0466606 0.0808185i −0.00266741 0.00462009i
\(307\) −17.9756 −1.02592 −0.512960 0.858413i \(-0.671451\pi\)
−0.512960 + 0.858413i \(0.671451\pi\)
\(308\) 5.81876 + 10.0784i 0.331555 + 0.574269i
\(309\) −2.57570 + 4.46124i −0.146526 + 0.253791i
\(310\) 0 0
\(311\) 15.9575 0.904865 0.452432 0.891799i \(-0.350556\pi\)
0.452432 + 0.891799i \(0.350556\pi\)
\(312\) 0.350262 + 6.02961i 0.0198297 + 0.341359i
\(313\) −23.4372 −1.32475 −0.662376 0.749172i \(-0.730452\pi\)
−0.662376 + 0.749172i \(0.730452\pi\)
\(314\) −7.37812 + 12.7793i −0.416371 + 0.721176i
\(315\) 0 0
\(316\) 1.14728 + 1.98714i 0.0645393 + 0.111785i
\(317\) −20.6507 −1.15986 −0.579929 0.814667i \(-0.696920\pi\)
−0.579929 + 0.814667i \(0.696920\pi\)
\(318\) 0.759403 + 1.31532i 0.0425852 + 0.0737597i
\(319\) −7.45088 12.9053i −0.417169 0.722558i
\(320\) 0 0
\(321\) 1.40303 + 2.43012i 0.0783096 + 0.135636i
\(322\) −6.42842 + 11.1344i −0.358242 + 0.620493i
\(323\) −1.51270 + 2.62007i −0.0841687 + 0.145784i
\(324\) −8.38058 −0.465588
\(325\) 0 0
\(326\) 13.5247 0.749063
\(327\) 9.11871 15.7941i 0.504266 0.873414i
\(328\) −3.75329 + 6.50089i −0.207241 + 0.358952i
\(329\) −1.98119 3.43153i −0.109227 0.189186i
\(330\) 0 0
\(331\) 13.3380 + 23.1022i 0.733125 + 1.26981i 0.955541 + 0.294858i \(0.0952724\pi\)
−0.222416 + 0.974952i \(0.571394\pi\)
\(332\) 6.66902 + 11.5511i 0.366010 + 0.633948i
\(333\) 0.594028 0.0325526
\(334\) 11.7120 + 20.2858i 0.640854 + 1.10999i
\(335\) 0 0
\(336\) −1.51270 + 2.62007i −0.0825243 + 0.142936i
\(337\) −8.40597 −0.457902 −0.228951 0.973438i \(-0.573530\pi\)
−0.228951 + 0.973438i \(0.573530\pi\)
\(338\) 7.75988 + 10.4300i 0.422082 + 0.567316i
\(339\) 23.4518 1.27373
\(340\) 0 0
\(341\) −10.4932 + 18.1747i −0.568238 + 0.984217i
\(342\) −0.609665 1.05597i −0.0329669 0.0571003i
\(343\) 19.3938 1.04716
\(344\) −1.00000 1.73205i −0.0539164 0.0933859i
\(345\) 0 0
\(346\) 4.62435 0.248606
\(347\) 10.5757 + 18.3177i 0.567733 + 0.983343i 0.996790 + 0.0800652i \(0.0255129\pi\)
−0.429056 + 0.903278i \(0.641154\pi\)
\(348\) 1.93700 3.35498i 0.103834 0.179846i
\(349\) −2.73695 + 4.74054i −0.146506 + 0.253755i −0.929934 0.367727i \(-0.880136\pi\)
0.783428 + 0.621482i \(0.213469\pi\)
\(350\) 0 0
\(351\) −16.1187 + 10.5979i −0.860353 + 0.565675i
\(352\) 6.44358 0.343444
\(353\) 15.0721 26.1056i 0.802204 1.38946i −0.115958 0.993254i \(-0.536994\pi\)
0.918162 0.396205i \(-0.129673\pi\)
\(354\) 5.50659 9.53769i 0.292672 0.506922i
\(355\) 0 0
\(356\) −1.15633 −0.0612851
\(357\) 0.727901 + 1.26076i 0.0385246 + 0.0667266i
\(358\) 4.15633 + 7.19897i 0.219669 + 0.380477i
\(359\) −8.38787 −0.442695 −0.221348 0.975195i \(-0.571046\pi\)
−0.221348 + 0.975195i \(0.571046\pi\)
\(360\) 0 0
\(361\) −10.2648 + 17.7792i −0.540253 + 0.935745i
\(362\) 0.512696 0.888016i 0.0269467 0.0466731i
\(363\) −51.1246 −2.68335
\(364\) 0.377639 + 6.50089i 0.0197937 + 0.340739i
\(365\) 0 0
\(366\) −9.17148 + 15.8855i −0.479401 + 0.830347i
\(367\) 9.75623 16.8983i 0.509271 0.882084i −0.490671 0.871345i \(-0.663248\pi\)
0.999942 0.0107388i \(-0.00341833\pi\)
\(368\) 3.55936 + 6.16499i 0.185544 + 0.321372i
\(369\) −1.45580 −0.0757860
\(370\) 0 0
\(371\) 0.818760 + 1.41813i 0.0425079 + 0.0736258i
\(372\) −5.45580 −0.282870
\(373\) 4.25694 + 7.37324i 0.220416 + 0.381772i 0.954934 0.296817i \(-0.0959252\pi\)
−0.734518 + 0.678589i \(0.762592\pi\)
\(374\) 1.55031 2.68521i 0.0801645 0.138849i
\(375\) 0 0
\(376\) −2.19394 −0.113144
\(377\) −0.483564 8.32435i −0.0249048 0.428726i
\(378\) −9.66291 −0.497007
\(379\) 9.85931 17.0768i 0.506439 0.877178i −0.493533 0.869727i \(-0.664295\pi\)
0.999972 0.00745089i \(-0.00237172\pi\)
\(380\) 0 0
\(381\) 4.34415 + 7.52429i 0.222558 + 0.385481i
\(382\) 0.355186 0.0181729
\(383\) −13.8598 24.0059i −0.708202 1.22664i −0.965523 0.260316i \(-0.916173\pi\)
0.257321 0.966326i \(-0.417160\pi\)
\(384\) 0.837565 + 1.45071i 0.0427418 + 0.0740310i
\(385\) 0 0
\(386\) 7.00000 + 12.1244i 0.356291 + 0.617113i
\(387\) 0.193937 0.335908i 0.00985835 0.0170752i
\(388\) 6.91573 11.9784i 0.351093 0.608111i
\(389\) 9.15140 0.463994 0.231997 0.972716i \(-0.425474\pi\)
0.231997 + 0.972716i \(0.425474\pi\)
\(390\) 0 0
\(391\) 3.42548 0.173234
\(392\) 1.86907 3.23732i 0.0944022 0.163509i
\(393\) −9.04666 + 15.6693i −0.456344 + 0.790410i
\(394\) −7.05325 12.2166i −0.355337 0.615463i
\(395\) 0 0
\(396\) 0.624823 + 1.08223i 0.0313985 + 0.0543839i
\(397\) −0.715205 1.23877i −0.0358951 0.0621721i 0.847520 0.530764i \(-0.178095\pi\)
−0.883415 + 0.468592i \(0.844762\pi\)
\(398\) −3.14903 −0.157847
\(399\) 9.51071 + 16.4730i 0.476131 + 0.824683i
\(400\) 0 0
\(401\) −10.8351 + 18.7669i −0.541079 + 0.937177i 0.457763 + 0.889074i \(0.348651\pi\)
−0.998842 + 0.0481025i \(0.984683\pi\)
\(402\) 1.08840 0.0542843
\(403\) −9.81217 + 6.45142i −0.488779 + 0.321368i
\(404\) −9.59991 −0.477613
\(405\) 0 0
\(406\) 2.08840 3.61721i 0.103645 0.179519i
\(407\) 9.86836 + 17.0925i 0.489156 + 0.847244i
\(408\) 0.806063 0.0399061
\(409\) −4.54055 7.86447i −0.224516 0.388873i 0.731658 0.681672i \(-0.238747\pi\)
−0.956174 + 0.292799i \(0.905413\pi\)
\(410\) 0 0
\(411\) −10.2922 −0.507676
\(412\) 1.53761 + 2.66322i 0.0757527 + 0.131207i
\(413\) 5.93700 10.2832i 0.292140 0.506002i
\(414\) −0.690289 + 1.19562i −0.0339259 + 0.0587613i
\(415\) 0 0
\(416\) 3.22179 + 1.61866i 0.157961 + 0.0793613i
\(417\) −17.3176 −0.848045
\(418\) 20.2562 35.0848i 0.990765 1.71605i
\(419\) 7.77139 13.4604i 0.379657 0.657586i −0.611355 0.791356i \(-0.709375\pi\)
0.991012 + 0.133771i \(0.0427086\pi\)
\(420\) 0 0
\(421\) −4.96476 −0.241968 −0.120984 0.992654i \(-0.538605\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(422\) −1.54666 2.67889i −0.0752903 0.130407i
\(423\) −0.212742 0.368480i −0.0103439 0.0179161i
\(424\) 0.906679 0.0440322
\(425\) 0 0
\(426\) 3.06793 5.31381i 0.148642 0.257455i
\(427\) −9.88835 + 17.1271i −0.478531 + 0.828840i
\(428\) 1.67513 0.0809705
\(429\) −34.7755 17.4716i −1.67898 0.843535i
\(430\) 0 0
\(431\) 16.4853 28.5534i 0.794070 1.37537i −0.129358 0.991598i \(-0.541292\pi\)
0.923428 0.383771i \(-0.125375\pi\)
\(432\) −2.67513 + 4.63346i −0.128707 + 0.222928i
\(433\) 8.05571 + 13.9529i 0.387133 + 0.670534i 0.992063 0.125745i \(-0.0401322\pi\)
−0.604930 + 0.796279i \(0.706799\pi\)
\(434\) −5.88224 −0.282357
\(435\) 0 0
\(436\) −5.44358 9.42856i −0.260700 0.451546i
\(437\) 44.7572 2.14103
\(438\) 2.18370 + 3.78228i 0.104341 + 0.180725i
\(439\) 0.0417360 0.0722889i 0.00199195 0.00345016i −0.865028 0.501724i \(-0.832699\pi\)
0.867020 + 0.498274i \(0.166033\pi\)
\(440\) 0 0
\(441\) 0.724961 0.0345220
\(442\) 1.44969 0.953161i 0.0689548 0.0453372i
\(443\) 40.9135 1.94386 0.971930 0.235271i \(-0.0755977\pi\)
0.971930 + 0.235271i \(0.0755977\pi\)
\(444\) −2.56547 + 4.44352i −0.121752 + 0.210880i
\(445\) 0 0
\(446\) 11.0970 + 19.2205i 0.525457 + 0.910118i
\(447\) 26.8872 1.27172
\(448\) 0.903032 + 1.56410i 0.0426642 + 0.0738966i
\(449\) 14.5659 + 25.2290i 0.687409 + 1.19063i 0.972673 + 0.232179i \(0.0745855\pi\)
−0.285264 + 0.958449i \(0.592081\pi\)
\(450\) 0 0
\(451\) −24.1847 41.8891i −1.13881 1.97248i
\(452\) 7.00000 12.1244i 0.329252 0.570282i
\(453\) 7.80408 13.5171i 0.366668 0.635087i
\(454\) 13.3357 0.625874
\(455\) 0 0
\(456\) 10.5320 0.493205
\(457\) 16.3339 28.2912i 0.764068 1.32341i −0.176669 0.984270i \(-0.556532\pi\)
0.940738 0.339135i \(-0.110134\pi\)
\(458\) −13.0872 + 22.6677i −0.611525 + 1.05919i
\(459\) 1.28726 + 2.22960i 0.0600840 + 0.104069i
\(460\) 0 0
\(461\) 9.55031 + 16.5416i 0.444802 + 0.770420i 0.998038 0.0626044i \(-0.0199407\pi\)
−0.553236 + 0.833024i \(0.686607\pi\)
\(462\) −9.74718 16.8826i −0.453480 0.785450i
\(463\) 8.29218 0.385370 0.192685 0.981261i \(-0.438280\pi\)
0.192685 + 0.981261i \(0.438280\pi\)
\(464\) −1.15633 2.00281i −0.0536810 0.0929783i
\(465\) 0 0
\(466\) 10.4345 18.0731i 0.483370 0.837222i
\(467\) −23.5369 −1.08916 −0.544579 0.838710i \(-0.683311\pi\)
−0.544579 + 0.838710i \(0.683311\pi\)
\(468\) 0.0405512 + 0.698071i 0.00187448 + 0.0322684i
\(469\) 1.17347 0.0541857
\(470\) 0 0
\(471\) 12.3593 21.4070i 0.569487 0.986380i
\(472\) −3.28726 5.69370i −0.151308 0.262074i
\(473\) 12.8872 0.592553
\(474\) −1.92184 3.32872i −0.0882729 0.152893i
\(475\) 0 0
\(476\) 0.869067 0.0398336
\(477\) 0.0879191 + 0.152280i 0.00402554 + 0.00697244i
\(478\) 7.64657 13.2442i 0.349746 0.605778i
\(479\) −3.27821 + 5.67802i −0.149785 + 0.259436i −0.931148 0.364642i \(-0.881192\pi\)
0.781363 + 0.624077i \(0.214525\pi\)
\(480\) 0 0
\(481\) 0.640459 + 11.0252i 0.0292024 + 0.502707i
\(482\) −12.7685 −0.581587
\(483\) 10.7685 18.6515i 0.489982 0.848673i
\(484\) −15.2599 + 26.4309i −0.693631 + 1.20140i
\(485\) 0 0
\(486\) −2.01222 −0.0912761
\(487\) 6.77996 + 11.7432i 0.307229 + 0.532137i 0.977755 0.209749i \(-0.0672648\pi\)
−0.670526 + 0.741886i \(0.733931\pi\)
\(488\) 5.47508 + 9.48313i 0.247845 + 0.429281i
\(489\) −22.6556 −1.02452
\(490\) 0 0
\(491\) −2.47873 + 4.29329i −0.111864 + 0.193753i −0.916522 0.399985i \(-0.869015\pi\)
0.804658 + 0.593739i \(0.202349\pi\)
\(492\) 6.28726 10.8898i 0.283451 0.490952i
\(493\) −1.11283 −0.0501195
\(494\) 18.9416 12.4539i 0.852223 0.560330i
\(495\) 0 0
\(496\) −1.62847 + 2.82059i −0.0731205 + 0.126648i
\(497\) 3.30773 5.72915i 0.148372 0.256987i
\(498\) −11.1715 19.3496i −0.500606 0.867075i
\(499\) −13.8700 −0.620907 −0.310454 0.950588i \(-0.600481\pi\)
−0.310454 + 0.950588i \(0.600481\pi\)
\(500\) 0 0
\(501\) −19.6192 33.9814i −0.876521 1.51818i
\(502\) −4.21203 −0.187992
\(503\) 1.72425 + 2.98650i 0.0768807 + 0.133161i 0.901903 0.431940i \(-0.142171\pi\)
−0.825022 + 0.565101i \(0.808837\pi\)
\(504\) −0.175131 + 0.303336i −0.00780095 + 0.0135116i
\(505\) 0 0
\(506\) −45.8700 −2.03917
\(507\) −12.9988 17.4716i −0.577298 0.775939i
\(508\) 5.18664 0.230120
\(509\) 15.4812 26.8142i 0.686192 1.18852i −0.286869 0.957970i \(-0.592614\pi\)
0.973061 0.230549i \(-0.0740523\pi\)
\(510\) 0 0
\(511\) 2.35439 + 4.07792i 0.104152 + 0.180396i
\(512\) 1.00000 0.0441942
\(513\) 16.8192 + 29.1318i 0.742587 + 1.28620i
\(514\) 9.31265 + 16.1300i 0.410763 + 0.711463i
\(515\) 0 0
\(516\) 1.67513 + 2.90141i 0.0737435 + 0.127728i
\(517\) 7.06841 12.2428i 0.310868 0.538439i
\(518\) −2.76599 + 4.79083i −0.121531 + 0.210497i
\(519\) −7.74638 −0.340029
\(520\) 0 0
\(521\) 14.2506 0.624330 0.312165 0.950028i \(-0.398946\pi\)
0.312165 + 0.950028i \(0.398946\pi\)
\(522\) 0.224254 0.388419i 0.00981532 0.0170006i
\(523\) −5.25694 + 9.10529i −0.229870 + 0.398146i −0.957769 0.287537i \(-0.907163\pi\)
0.727899 + 0.685684i \(0.240497\pi\)
\(524\) 5.40057 + 9.35406i 0.235925 + 0.408634i
\(525\) 0 0
\(526\) −11.5102 19.9363i −0.501870 0.869264i
\(527\) 0.783611 + 1.35725i 0.0341346 + 0.0591229i
\(528\) −10.7938 −0.469742
\(529\) −13.8380 23.9682i −0.601654 1.04210i
\(530\) 0 0
\(531\) 0.637519 1.10422i 0.0276660 0.0479189i
\(532\) 11.3552 0.492310
\(533\) −1.56959 27.0198i −0.0679865 1.17036i
\(534\) 1.93700 0.0838220
\(535\) 0 0
\(536\) 0.324869 0.562690i 0.0140322 0.0243045i
\(537\) −6.96239 12.0592i −0.300449 0.520393i
\(538\) −13.4739 −0.580901
\(539\) 12.0435 + 20.8599i 0.518750 + 0.898501i
\(540\) 0 0
\(541\) 15.5345 0.667882 0.333941 0.942594i \(-0.391621\pi\)
0.333941 + 0.942594i \(0.391621\pi\)
\(542\) 8.95017 + 15.5021i 0.384443 + 0.665874i
\(543\) −0.858833 + 1.48754i −0.0368561 + 0.0638366i
\(544\) 0.240597 0.416726i 0.0103155 0.0178670i
\(545\) 0 0
\(546\) −0.632595 10.8898i −0.0270726 0.466043i
\(547\) 23.5515 1.00699 0.503495 0.863998i \(-0.332047\pi\)
0.503495 + 0.863998i \(0.332047\pi\)
\(548\) −3.07205 + 5.32095i −0.131232 + 0.227300i
\(549\) −1.06182 + 1.83912i −0.0453173 + 0.0784919i
\(550\) 0 0
\(551\) −14.5402 −0.619435
\(552\) −5.96239 10.3272i −0.253776 0.439553i
\(553\) −2.07205 3.58890i −0.0881127 0.152616i
\(554\) −8.48849 −0.360641
\(555\) 0 0
\(556\) −5.16902 + 8.95301i −0.219215 + 0.379692i
\(557\) 10.0229 17.3602i 0.424685 0.735576i −0.571706 0.820459i \(-0.693718\pi\)
0.996391 + 0.0848824i \(0.0270515\pi\)
\(558\) −0.631640 −0.0267394
\(559\) 6.44358 + 3.23732i 0.272535 + 0.136924i
\(560\) 0 0
\(561\) −2.59697 + 4.49808i −0.109644 + 0.189909i
\(562\) 8.26480 14.3151i 0.348630 0.603844i
\(563\) −6.28726 10.8898i −0.264976 0.458952i 0.702581 0.711604i \(-0.252031\pi\)
−0.967557 + 0.252651i \(0.918697\pi\)
\(564\) 3.67513 0.154751
\(565\) 0 0
\(566\) 0.768452 + 1.33100i 0.0323004 + 0.0559460i
\(567\) 15.1359 0.635646
\(568\) −1.83146 3.17217i −0.0768462 0.133102i
\(569\) −2.14481 + 3.71493i −0.0899153 + 0.155738i −0.907475 0.420106i \(-0.861993\pi\)
0.817560 + 0.575844i \(0.195326\pi\)
\(570\) 0 0
\(571\) 6.39280 0.267530 0.133765 0.991013i \(-0.457293\pi\)
0.133765 + 0.991013i \(0.457293\pi\)
\(572\) −19.4126 + 12.7636i −0.811680 + 0.533673i
\(573\) −0.594984 −0.0248558
\(574\) 6.77869 11.7410i 0.282937 0.490061i
\(575\) 0 0
\(576\) 0.0969683 + 0.167954i 0.00404035 + 0.00699808i
\(577\) −37.8169 −1.57434 −0.787168 0.616738i \(-0.788454\pi\)
−0.787168 + 0.616738i \(0.788454\pi\)
\(578\) 8.38423 + 14.5219i 0.348738 + 0.604032i
\(579\) −11.7259 20.3099i −0.487312 0.844050i
\(580\) 0 0
\(581\) −12.0447 20.8620i −0.499697 0.865501i
\(582\) −11.5847 + 20.0654i −0.480203 + 0.831737i
\(583\) −2.92113 + 5.05955i −0.120981 + 0.209545i
\(584\) 2.60720 0.107887
\(585\) 0 0
\(586\) −5.92970 −0.244954
\(587\) −11.2750 + 19.5289i −0.465371 + 0.806046i −0.999218 0.0395351i \(-0.987412\pi\)
0.533848 + 0.845581i \(0.320746\pi\)
\(588\) −3.13093 + 5.42293i −0.129117 + 0.223638i
\(589\) 10.2386 + 17.7338i 0.421875 + 0.730708i
\(590\) 0 0
\(591\) 11.8151 + 20.4644i 0.486009 + 0.841792i
\(592\) 1.53150 + 2.65264i 0.0629443 + 0.109023i
\(593\) 8.38787 0.344449 0.172224 0.985058i \(-0.444905\pi\)
0.172224 + 0.985058i \(0.444905\pi\)
\(594\) −17.2374 29.8561i −0.707260 1.22501i
\(595\) 0 0
\(596\) 8.02539 13.9004i 0.328733 0.569382i
\(597\) 5.27504 0.215893
\(598\) −22.9350 11.5228i −0.937882 0.471201i
\(599\) 29.0884 1.18852 0.594260 0.804273i \(-0.297445\pi\)
0.594260 + 0.804273i \(0.297445\pi\)
\(600\) 0 0
\(601\) 21.5059 37.2493i 0.877243 1.51943i 0.0228892 0.999738i \(-0.492713\pi\)
0.854354 0.519692i \(-0.173953\pi\)
\(602\) 1.80606 + 3.12819i 0.0736097 + 0.127496i
\(603\) 0.126008 0.00513144
\(604\) −4.65879 8.06926i −0.189563 0.328333i
\(605\) 0 0
\(606\) 16.0811 0.653250
\(607\) −10.8757 18.8372i −0.441429 0.764578i 0.556367 0.830937i \(-0.312195\pi\)
−0.997796 + 0.0663591i \(0.978862\pi\)
\(608\) 3.14363 5.44492i 0.127491 0.220821i
\(609\) −3.49834 + 6.05930i −0.141760 + 0.245535i
\(610\) 0 0
\(611\) 6.60966 4.34580i 0.267398 0.175812i
\(612\) 0.0933212 0.00377228
\(613\) −15.4064 + 26.6848i −0.622261 + 1.07779i 0.366803 + 0.930299i \(0.380452\pi\)
−0.989064 + 0.147488i \(0.952881\pi\)
\(614\) 8.98778 15.5673i 0.362717 0.628245i
\(615\) 0 0
\(616\) −11.6375 −0.468889
\(617\) 23.0435 + 39.9125i 0.927696 + 1.60682i 0.787167 + 0.616740i \(0.211547\pi\)
0.140529 + 0.990077i \(0.455120\pi\)
\(618\) −2.57570 4.46124i −0.103610 0.179458i
\(619\) −13.5564 −0.544878 −0.272439 0.962173i \(-0.587830\pi\)
−0.272439 + 0.962173i \(0.587830\pi\)
\(620\) 0 0
\(621\) 19.0435 32.9843i 0.764189 1.32361i
\(622\) −7.97873 + 13.8196i −0.319918 + 0.554114i
\(623\) 2.08840 0.0836698
\(624\) −5.39692 2.71147i −0.216050 0.108546i
\(625\) 0 0
\(626\) 11.7186 20.2972i 0.468370 0.811241i
\(627\) −33.9318 + 58.7717i −1.35511 + 2.34711i
\(628\) −7.37812 12.7793i −0.294419 0.509949i
\(629\) 1.47390 0.0587682
\(630\) 0 0
\(631\) 2.67513 + 4.63346i 0.106495 + 0.184455i 0.914348 0.404929i \(-0.132704\pi\)
−0.807853 + 0.589384i \(0.799370\pi\)
\(632\) −2.29455 −0.0912724
\(633\) 2.59086 + 4.48750i 0.102977 + 0.178362i
\(634\) 10.3253 17.8840i 0.410072 0.710265i
\(635\) 0 0
\(636\) −1.51881 −0.0602246
\(637\) 0.781626 + 13.4554i 0.0309691 + 0.533121i
\(638\) 14.9018 0.589966
\(639\) 0.355186 0.615201i 0.0140510 0.0243370i
\(640\) 0 0
\(641\) −6.19029 10.7219i −0.244502 0.423489i 0.717490 0.696569i \(-0.245291\pi\)
−0.961991 + 0.273080i \(0.911958\pi\)
\(642\) −2.80606 −0.110746
\(643\) −5.76234 9.98067i −0.227245 0.393599i 0.729746 0.683718i \(-0.239638\pi\)
−0.956991 + 0.290119i \(0.906305\pi\)
\(644\) −6.42842 11.1344i −0.253315 0.438755i
\(645\) 0 0
\(646\) −1.51270 2.62007i −0.0595162 0.103085i
\(647\) 1.83510 3.17849i 0.0721453 0.124959i −0.827696 0.561177i \(-0.810349\pi\)
0.899841 + 0.436217i \(0.143682\pi\)
\(648\) 4.19029 7.25779i 0.164610 0.285113i
\(649\) 42.3634 1.66291
\(650\) 0 0
\(651\) 9.85352 0.386190
\(652\) −6.76234 + 11.7127i −0.264834 + 0.458706i
\(653\) 4.05325 7.02043i 0.158616 0.274731i −0.775754 0.631036i \(-0.782630\pi\)
0.934370 + 0.356305i \(0.115964\pi\)
\(654\) 9.11871 + 15.7941i 0.356570 + 0.617597i
\(655\) 0 0
\(656\) −3.75329 6.50089i −0.146541 0.253817i
\(657\) 0.252816 + 0.437890i 0.00986329 + 0.0170837i
\(658\) 3.96239 0.154470
\(659\) −9.27210 16.0597i −0.361190 0.625599i 0.626967 0.779046i \(-0.284296\pi\)
−0.988157 + 0.153447i \(0.950963\pi\)
\(660\) 0 0
\(661\) −23.2059 + 40.1938i −0.902606 + 1.56336i −0.0785068 + 0.996914i \(0.525015\pi\)
−0.824099 + 0.566446i \(0.808318\pi\)
\(662\) −26.6761 −1.03680
\(663\) −2.42842 + 1.59667i −0.0943122 + 0.0620095i
\(664\) −13.3380 −0.517616
\(665\) 0 0
\(666\) −0.297014 + 0.514444i −0.0115091 + 0.0199343i
\(667\) 8.23155 + 14.2575i 0.318727 + 0.552051i
\(668\) −23.4241 −0.906304
\(669\) −18.5889 32.1969i −0.718687 1.24480i
\(670\) 0 0
\(671\) −70.5583 −2.72387
\(672\) −1.51270 2.62007i −0.0583535 0.101071i
\(673\) −20.2047 + 34.9956i −0.778836 + 1.34898i 0.153778 + 0.988105i \(0.450856\pi\)
−0.932613 + 0.360877i \(0.882477\pi\)
\(674\) 4.20299 7.27978i 0.161893 0.280407i
\(675\) 0 0
\(676\) −12.9126 + 1.50527i −0.496637 + 0.0578950i
\(677\) 14.2473 0.547567 0.273784 0.961791i \(-0.411725\pi\)
0.273784 + 0.961791i \(0.411725\pi\)
\(678\) −11.7259 + 20.3099i −0.450331 + 0.779996i
\(679\) −12.4902 + 21.6337i −0.479332 + 0.830227i
\(680\) 0 0
\(681\) −22.3390 −0.856032
\(682\) −10.4932 18.1747i −0.401805 0.695946i
\(683\) 2.90175 + 5.02599i 0.111033 + 0.192314i 0.916187 0.400751i \(-0.131251\pi\)
−0.805154 + 0.593065i \(0.797918\pi\)
\(684\) 1.21933 0.0466222
\(685\) 0 0
\(686\) −9.69688 + 16.7955i −0.370228 + 0.641255i
\(687\) 21.9228 37.9714i 0.836407 1.44870i
\(688\) 2.00000 0.0762493
\(689\) −2.73155 + 1.79597i −0.104064 + 0.0684210i
\(690\) 0 0
\(691\) 9.61990 16.6622i 0.365958 0.633858i −0.622971 0.782245i \(-0.714075\pi\)
0.988929 + 0.148387i \(0.0474080\pi\)
\(692\) −2.31217 + 4.00480i −0.0878956 + 0.152240i
\(693\) −1.12847 1.95457i −0.0428670 0.0742479i
\(694\) −21.1514 −0.802896
\(695\) 0 0
\(696\) 1.93700 + 3.35498i 0.0734216 + 0.127170i
\(697\) −3.61213 −0.136819
\(698\) −2.73695 4.74054i −0.103595 0.179432i
\(699\) −17.4792 + 30.2749i −0.661124 + 1.14510i
\(700\) 0 0
\(701\) 45.3742 1.71376 0.856881 0.515515i \(-0.172399\pi\)
0.856881 + 0.515515i \(0.172399\pi\)
\(702\) −1.11871 19.2582i −0.0422231 0.726853i
\(703\) 19.2579 0.726325
\(704\) −3.22179 + 5.58031i −0.121426 + 0.210316i
\(705\) 0 0
\(706\) 15.0721 + 26.1056i 0.567244 + 0.982496i
\(707\) 17.3380 0.652064
\(708\) 5.50659 + 9.53769i 0.206950 + 0.358448i
\(709\) −1.98660 3.44089i −0.0746082 0.129225i 0.826308 0.563219i \(-0.190437\pi\)
−0.900916 + 0.433994i \(0.857104\pi\)
\(710\) 0 0
\(711\) −0.222499 0.385379i −0.00834436 0.0144528i
\(712\) 0.578163 1.00141i 0.0216676 0.0375293i
\(713\) 11.5926 20.0790i 0.434147 0.751964i
\(714\) −1.45580 −0.0544820
\(715\) 0 0
\(716\) −8.31265 −0.310658
\(717\) −12.8090 + 22.1858i −0.478361 + 0.828546i
\(718\) 4.19394 7.26411i 0.156516 0.271094i
\(719\) −22.8496 39.5766i −0.852145 1.47596i −0.879269 0.476326i \(-0.841968\pi\)
0.0271244 0.999632i \(-0.491365\pi\)
\(720\) 0 0
\(721\) −2.77702 4.80995i −0.103422 0.179132i
\(722\) −10.2648 17.7792i −0.382016 0.661672i
\(723\) 21.3888 0.795459
\(724\) 0.512696 + 0.888016i 0.0190542 + 0.0330029i
\(725\) 0 0
\(726\) 25.5623 44.2752i 0.948706 1.64321i
\(727\) 24.7948 0.919588 0.459794 0.888026i \(-0.347923\pi\)
0.459794 + 0.888026i \(0.347923\pi\)
\(728\) −5.81876 2.92340i −0.215658 0.108349i
\(729\) 28.5125 1.05602
\(730\) 0 0
\(731\) 0.481194 0.833453i 0.0177976 0.0308264i
\(732\) −9.17148 15.8855i −0.338988 0.587144i
\(733\) −45.8651 −1.69407 −0.847033 0.531540i \(-0.821613\pi\)
−0.847033 + 0.531540i \(0.821613\pi\)
\(734\) 9.75623 + 16.8983i 0.360109 + 0.623727i
\(735\) 0 0
\(736\) −7.11871 −0.262399
\(737\) 2.09332 + 3.62574i 0.0771085 + 0.133556i
\(738\) 0.727901 1.26076i 0.0267944 0.0464093i
\(739\) −17.4817 + 30.2791i −0.643074 + 1.11384i 0.341669 + 0.939820i \(0.389008\pi\)
−0.984743 + 0.174016i \(0.944326\pi\)
\(740\) 0 0
\(741\) −31.7297 + 20.8620i −1.16562 + 0.766384i
\(742\) −1.63752 −0.0601152
\(743\) −3.43335 + 5.94673i −0.125957 + 0.218165i −0.922107 0.386936i \(-0.873534\pi\)
0.796149 + 0.605100i \(0.206867\pi\)
\(744\) 2.72790 4.72486i 0.100010 0.173222i
\(745\) 0 0
\(746\) −8.51388 −0.311715
\(747\) −1.29337 2.24018i −0.0473218 0.0819638i
\(748\) 1.55031 + 2.68521i 0.0566849 + 0.0981811i
\(749\) −3.02539 −0.110545
\(750\) 0 0
\(751\) −2.40009 + 4.15708i −0.0875806 + 0.151694i −0.906488 0.422232i \(-0.861247\pi\)
0.818907 + 0.573926i \(0.194580\pi\)
\(752\) 1.09697 1.90000i 0.0400023 0.0692860i
\(753\) 7.05571 0.257124
\(754\) 7.45088 + 3.74339i 0.271345 + 0.136326i
\(755\) 0 0
\(756\) 4.83146 8.36833i 0.175718 0.304353i
\(757\) −13.8876 + 24.0541i −0.504755 + 0.874261i 0.495230 + 0.868762i \(0.335084\pi\)
−0.999985 + 0.00549931i \(0.998250\pi\)
\(758\) 9.85931 + 17.0768i 0.358106 + 0.620258i
\(759\) 76.8383 2.78905
\(760\) 0 0
\(761\) 1.58110 + 2.73855i 0.0573149 + 0.0992723i 0.893259 0.449542i \(-0.148413\pi\)
−0.835944 + 0.548814i \(0.815079\pi\)
\(762\) −8.68830 −0.314744
\(763\) 9.83146 + 17.0286i 0.355923 + 0.616476i
\(764\) −0.177593 + 0.307600i −0.00642509 + 0.0111286i
\(765\) 0 0
\(766\) 27.7196 1.00155
\(767\) 21.1817 + 10.6419i 0.764828 + 0.384257i
\(768\) −1.67513 −0.0604461
\(769\) −4.07816 + 7.06358i −0.147062 + 0.254719i −0.930140 0.367204i \(-0.880315\pi\)
0.783078 + 0.621923i \(0.213648\pi\)
\(770\) 0 0
\(771\) −15.5999 27.0198i −0.561817 0.973096i
\(772\) −14.0000 −0.503871
\(773\) 2.93946 + 5.09129i 0.105725 + 0.183121i 0.914034 0.405637i \(-0.132950\pi\)
−0.808309 + 0.588758i \(0.799617\pi\)
\(774\) 0.193937 + 0.335908i 0.00697091 + 0.0120740i
\(775\) 0 0
\(776\) 6.91573 + 11.9784i 0.248260 + 0.429999i
\(777\) 4.63339 8.02528i 0.166222 0.287905i
\(778\) −4.57570 + 7.92535i −0.164047 + 0.284137i
\(779\) −47.1958 −1.69097
\(780\) 0 0
\(781\) 23.6023 0.844556
\(782\) −1.71274 + 2.96656i −0.0612475 + 0.106084i
\(783\) −6.18664 + 10.7156i −0.221093 + 0.382944i
\(784\) 1.86907 + 3.23732i 0.0667524 + 0.115619i
\(785\) 0 0
\(786\) −9.04666 15.6693i −0.322684 0.558905i
\(787\) 11.8507 + 20.5261i 0.422433 + 0.731676i 0.996177 0.0873591i \(-0.0278428\pi\)
−0.573744 + 0.819035i \(0.694509\pi\)
\(788\) 14.1065 0.502523
\(789\) 19.2811 + 33.3959i 0.686427 + 1.18893i
\(790\) 0 0
\(791\) −12.6424 + 21.8974i −0.449514 + 0.778580i
\(792\) −1.24965 −0.0444042
\(793\) −35.2792 17.7246i −1.25280 0.629419i
\(794\) 1.43041 0.0507633
\(795\) 0 0
\(796\) 1.57452 2.72714i 0.0558072 0.0966609i
\(797\) −24.2599 42.0193i −0.859329 1.48840i −0.872570 0.488489i \(-0.837548\pi\)
0.0132409 0.999912i \(-0.495785\pi\)
\(798\) −19.0214 −0.673351
\(799\) −0.527855 0.914271i −0.0186742 0.0323446i
\(800\) 0 0
\(801\) 0.224254 0.00792362
\(802\) −10.8351 18.7669i −0.382601 0.662684i
\(803\) −8.39986 + 14.5490i −0.296425 + 0.513423i
\(804\) −0.544198 + 0.942579i −0.0191924 + 0.0332422i
\(805\) 0 0
\(806\) −0.681010 11.7233i −0.0239876 0.412936i
\(807\) 22.5705 0.794521
\(808\) 4.79995 8.31376i 0.168862 0.292477i
\(809\) 8.55936 14.8252i 0.300931 0.521228i −0.675416 0.737437i \(-0.736036\pi\)
0.976347 + 0.216209i \(0.0693693\pi\)
\(810\) 0 0
\(811\) −7.67372 −0.269461 −0.134730 0.990882i \(-0.543017\pi\)
−0.134730 + 0.990882i \(0.543017\pi\)
\(812\) 2.08840 + 3.61721i 0.0732884 + 0.126939i
\(813\) −14.9927 25.9681i −0.525817 0.910742i
\(814\) −19.7367 −0.691772
\(815\) 0 0
\(816\) −0.403032 + 0.698071i −0.0141089 + 0.0244374i
\(817\) 6.28726 10.8898i 0.219963 0.380988i
\(818\) 9.08110 0.317513
\(819\) −0.0732380 1.26076i −0.00255914 0.0440546i
\(820\) 0 0
\(821\) 26.8933 46.5805i 0.938582 1.62567i 0.170463 0.985364i \(-0.445474\pi\)
0.768119 0.640307i \(-0.221193\pi\)
\(822\) 5.14609 8.91329i 0.179491 0.310887i
\(823\) 4.88787 + 8.46604i 0.170381 + 0.295108i 0.938553 0.345135i \(-0.112167\pi\)
−0.768172 + 0.640243i \(0.778834\pi\)
\(824\) −3.07522 −0.107130
\(825\) 0 0
\(826\) 5.93700 + 10.2832i 0.206575 + 0.357798i
\(827\) −28.1598 −0.979213 −0.489607 0.871943i \(-0.662860\pi\)
−0.489607 + 0.871943i \(0.662860\pi\)
\(828\) −0.690289 1.19562i −0.0239892 0.0415505i
\(829\) −10.1065 + 17.5050i −0.351013 + 0.607972i −0.986427 0.164199i \(-0.947496\pi\)
0.635414 + 0.772172i \(0.280829\pi\)
\(830\) 0 0
\(831\) 14.2193 0.493263
\(832\) −3.01270 + 1.98082i −0.104446 + 0.0686727i
\(833\) 1.79877 0.0623237
\(834\) 8.65879 14.9975i 0.299829 0.519320i
\(835\) 0 0
\(836\) 20.2562 + 35.0848i 0.700576 + 1.21343i
\(837\) 17.4255 0.602313
\(838\) 7.77139 + 13.4604i 0.268458 + 0.464983i
\(839\) −6.29631 10.9055i −0.217373 0.376500i 0.736631 0.676295i \(-0.236415\pi\)
−0.954004 + 0.299794i \(0.903082\pi\)
\(840\) 0 0
\(841\) 11.8258 + 20.4829i 0.407787 + 0.706308i
\(842\) 2.48238 4.29961i 0.0855484 0.148174i
\(843\) −13.8446 + 23.9796i −0.476834 + 0.825901i
\(844\) 3.09332 0.106477
\(845\) 0 0
\(846\) 0.425485 0.0146285
\(847\) 27.5603 47.7359i 0.946984 1.64022i
\(848\) −0.453339 + 0.785207i −0.0155677 + 0.0269641i
\(849\) −1.28726 2.22960i −0.0441786 0.0765195i
\(850\) 0 0
\(851\) −10.9023 18.8834i −0.373727 0.647314i
\(852\) 3.06793 + 5.31381i 0.105106 + 0.182048i
\(853\) 45.7704 1.56715 0.783574 0.621299i \(-0.213395\pi\)
0.783574 + 0.621299i \(0.213395\pi\)
\(854\) −9.88835 17.1271i −0.338372 0.586078i
\(855\) 0 0
\(856\) −0.837565 + 1.45071i −0.0286274 + 0.0495841i
\(857\) 27.8169 0.950206 0.475103 0.879930i \(-0.342411\pi\)
0.475103 + 0.879930i \(0.342411\pi\)
\(858\) 32.5186 21.3807i 1.11017 0.729925i
\(859\) 25.9706 0.886107 0.443053 0.896495i \(-0.353895\pi\)
0.443053 + 0.896495i \(0.353895\pi\)
\(860\) 0 0
\(861\) −11.3552 + 19.6678i −0.386984 + 0.670275i
\(862\) 16.4853 + 28.5534i 0.561492 + 0.972533i
\(863\) −18.7210 −0.637270 −0.318635 0.947877i \(-0.603224\pi\)
−0.318635 + 0.947877i \(0.603224\pi\)
\(864\) −2.67513 4.63346i −0.0910098 0.157634i
\(865\) 0 0
\(866\) −16.1114 −0.547488
\(867\) −14.0447 24.3261i −0.476982 0.826157i
\(868\) 2.94112 5.09417i 0.0998281 0.172907i
\(869\) 7.39257 12.8043i 0.250776 0.434356i
\(870\) 0 0
\(871\) 0.135857 + 2.33872i 0.00460334 + 0.0792446i
\(872\) 10.8872 0.368686
\(873\) −1.34121 + 2.32305i −0.0453932 + 0.0786233i
\(874\) −22.3786 + 38.7609i −0.756967 + 1.31111i
\(875\) 0 0
\(876\) −4.36741 −0.147561
\(877\) −11.3430 19.6466i −0.383025 0.663418i 0.608468 0.793578i \(-0.291784\pi\)
−0.991493 + 0.130160i \(0.958451\pi\)
\(878\) 0.0417360 + 0.0722889i 0.00140852 + 0.00243963i
\(879\) 9.93303 0.335033
\(880\) 0 0
\(881\) 1.23813 2.14451i 0.0417138 0.0722505i −0.844415 0.535690i \(-0.820052\pi\)
0.886129 + 0.463440i \(0.153385\pi\)
\(882\) −0.362481 + 0.627835i −0.0122054 + 0.0211403i
\(883\) 31.4641 1.05885 0.529425 0.848357i \(-0.322408\pi\)
0.529425 + 0.848357i \(0.322408\pi\)
\(884\) 0.100615 + 1.73205i 0.00338406 + 0.0582552i
\(885\) 0 0
\(886\) −20.4568 + 35.4321i −0.687258 + 1.19037i
\(887\) 19.8581 34.3953i 0.666771 1.15488i −0.312031 0.950072i \(-0.601009\pi\)
0.978802 0.204809i \(-0.0656573\pi\)
\(888\) −2.56547 4.44352i −0.0860914 0.149115i
\(889\) −9.36741 −0.314173
\(890\) 0 0
\(891\) 27.0005 + 46.7662i 0.904550 + 1.56673i
\(892\) −22.1939 −0.743108
\(893\) −6.89692 11.9458i −0.230797 0.399752i
\(894\) −13.4436 + 23.2850i −0.449621 + 0.778766i
\(895\) 0 0
\(896\) −1.80606 −0.0603363
\(897\) 38.4191 + 19.3022i 1.28278 + 0.644480i
\(898\) −29.1319 −0.972144
\(899\) −3.76608 + 6.52305i −0.125606 + 0.217556i
\(900\) 0 0
\(901\) 0.218144 + 0.377837i 0.00726744 + 0.0125876i
\(902\) 48.3693 1.61052
\(903\) −3.02539 5.24013i −0.100679 0.174381i
\(904\) 7.00000 + 12.1244i 0.232817 + 0.403250i
\(905\) 0 0
\(906\) 7.80408 + 13.5171i 0.259273 + 0.449074i
\(907\) −26.7877 + 46.3977i −0.889472 + 1.54061i −0.0489717 + 0.998800i \(0.515594\pi\)
−0.840500 + 0.541811i \(0.817739\pi\)
\(908\) −6.66784 + 11.5490i −0.221280 + 0.383268i
\(909\) 1.86177 0.0617511
\(910\) 0 0
\(911\) 14.6253 0.484558 0.242279 0.970207i \(-0.422105\pi\)
0.242279 + 0.970207i \(0.422105\pi\)
\(912\) −5.26599 + 9.12096i −0.174374 + 0.302025i
\(913\) 42.9724 74.4304i 1.42218 2.46329i
\(914\) 16.3339 + 28.2912i 0.540278 + 0.935789i
\(915\) 0 0
\(916\) −13.0872 22.6677i −0.432414 0.748962i
\(917\) −9.75377 16.8940i −0.322098 0.557890i
\(918\) −2.57452 −0.0849717
\(919\) −26.5247 45.9421i −0.874969 1.51549i −0.856796 0.515655i \(-0.827549\pi\)
−0.0181725 0.999835i \(-0.505785\pi\)
\(920\) 0 0
\(921\) −15.0557 + 26.0773i −0.496103 + 0.859275i
\(922\) −19.1006 −0.629045
\(923\) 11.8011 + 5.92901i 0.388439 + 0.195156i
\(924\) 19.4944 0.641318
\(925\) 0 0
\(926\) −4.14609 + 7.18124i −0.136249 + 0.235990i
\(927\) −0.298199 0.516496i −0.00979414 0.0169640i
\(928\) 2.31265 0.0759165
\(929\) 5.22521 + 9.05033i 0.171434 + 0.296932i 0.938921 0.344132i \(-0.111827\pi\)
−0.767488 + 0.641064i \(0.778493\pi\)
\(930\) 0 0
\(931\) 23.5026 0.770267
\(932\) 10.4345 + 18.0731i 0.341795 + 0.592005i
\(933\) 13.3654 23.1496i 0.437564 0.757883i
\(934\) 11.7685 20.3836i 0.385076 0.666970i
\(935\) 0 0
\(936\) −0.624823 0.313917i −0.0204230 0.0102607i
\(937\) −10.5745 −0.345454 −0.172727 0.984970i \(-0.555258\pi\)
−0.172727 + 0.984970i \(0.555258\pi\)
\(938\) −0.586734 + 1.01625i −0.0191576 + 0.0331819i
\(939\) −19.6302 + 34.0005i −0.640608 + 1.10957i
\(940\) 0 0
\(941\) −16.6107 −0.541494 −0.270747 0.962651i \(-0.587271\pi\)
−0.270747 + 0.962651i \(0.587271\pi\)
\(942\) 12.3593 + 21.4070i 0.402688 + 0.697476i
\(943\) 26.7186 + 46.2780i 0.870078 + 1.50702i
\(944\) 6.57452 0.213982
\(945\) 0 0
\(946\) −6.44358 + 11.1606i −0.209499 + 0.362863i
\(947\) −21.2435 + 36.7949i −0.690322 + 1.19567i 0.281410 + 0.959588i \(0.409198\pi\)
−0.971732 + 0.236086i \(0.924135\pi\)
\(948\) 3.84367 0.124837
\(949\) −7.85471 + 5.16441i −0.254975 + 0.167644i
\(950\) 0 0
\(951\) −17.2963 + 29.9581i −0.560871 + 0.971457i
\(952\) −0.434534 + 0.752634i −0.0140833 + 0.0243930i
\(953\) −22.5107 38.9897i −0.729193 1.26300i −0.957224 0.289346i \(-0.906562\pi\)
0.228031 0.973654i \(-0.426771\pi\)
\(954\) −0.175838 −0.00569297
\(955\) 0 0
\(956\) 7.64657 + 13.2442i 0.247308 + 0.428350i
\(957\) −24.9624 −0.806919
\(958\) −3.27821 5.67802i −0.105914 0.183449i
\(959\) 5.54832 9.60998i 0.179165 0.310322i
\(960\) 0 0
\(961\) −20.3923 −0.657817
\(962\) −9.86836 4.95796i −0.318169 0.159851i
\(963\) −0.324869 −0.0104688
\(964\) 6.38423 11.0578i 0.205622 0.356148i
\(965\) 0 0
\(966\) 10.7685 + 18.6515i 0.346469 + 0.600102i
\(967\) −24.4763 −0.787104 −0.393552 0.919302i \(-0.628754\pi\)
−0.393552 + 0.919302i \(0.628754\pi\)
\(968\) −15.2599 26.4309i −0.490471 0.849521i
\(969\) 2.53396 + 4.38895i 0.0814027 + 0.140994i
\(970\) 0 0
\(971\) 28.2023 + 48.8478i 0.905054 + 1.56760i 0.820844 + 0.571152i \(0.193503\pi\)
0.0842097 + 0.996448i \(0.473163\pi\)
\(972\) 1.00611 1.74263i 0.0322710 0.0558950i
\(973\) 9.33558 16.1697i 0.299285 0.518377i
\(974\) −13.5599 −0.434488
\(975\) 0 0
\(976\) −10.9502 −0.350506
\(977\) 6.75623 11.7021i 0.216151 0.374385i −0.737477 0.675372i \(-0.763983\pi\)
0.953628 + 0.300988i \(0.0973163\pi\)
\(978\) 11.3278 19.6203i 0.362223 0.627389i
\(979\) 3.72544 + 6.45265i 0.119066 + 0.206228i
\(980\) 0 0
\(981\) 1.05571 + 1.82854i 0.0337062 + 0.0583809i
\(982\) −2.47873 4.29329i −0.0790995 0.137004i
\(983\) −30.1187 −0.960638 −0.480319 0.877094i \(-0.659479\pi\)
−0.480319 + 0.877094i \(0.659479\pi\)
\(984\) 6.28726 + 10.8898i 0.200430 + 0.347156i
\(985\) 0 0
\(986\) 0.556417 0.963743i 0.0177199 0.0306918i
\(987\) −6.63752 −0.211275
\(988\) 1.31464 + 22.6309i 0.0418241 + 0.719984i
\(989\) −14.2374 −0.452724
\(990\) 0 0
\(991\) −17.6629 + 30.5931i −0.561081 + 0.971821i 0.436322 + 0.899791i \(0.356281\pi\)
−0.997402 + 0.0720298i \(0.977052\pi\)
\(992\) −1.62847 2.82059i −0.0517040 0.0895539i
\(993\) 44.6859 1.41807
\(994\) 3.30773 + 5.72915i 0.104915 + 0.181718i
\(995\) 0 0
\(996\) 22.3430 0.707964
\(997\) 8.40843 + 14.5638i 0.266298 + 0.461241i 0.967903 0.251325i \(-0.0808662\pi\)
−0.701605 + 0.712566i \(0.747533\pi\)
\(998\) 6.93501 12.0118i 0.219524 0.380227i
\(999\) 8.19394 14.1923i 0.259245 0.449025i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.e.j.451.3 6
5.2 odd 4 130.2.n.a.9.1 12
5.3 odd 4 130.2.n.a.9.6 yes 12
5.4 even 2 650.2.e.k.451.1 6
13.3 even 3 inner 650.2.e.j.601.3 6
13.4 even 6 8450.2.a.bt.1.1 3
13.9 even 3 8450.2.a.cb.1.1 3
15.2 even 4 1170.2.bp.h.919.6 12
15.8 even 4 1170.2.bp.h.919.3 12
20.3 even 4 1040.2.dh.b.529.2 12
20.7 even 4 1040.2.dh.b.529.5 12
65.3 odd 12 130.2.n.a.29.1 yes 12
65.4 even 6 8450.2.a.ca.1.3 3
65.7 even 12 1690.2.c.b.1689.5 6
65.9 even 6 8450.2.a.bu.1.3 3
65.17 odd 12 1690.2.b.b.339.3 6
65.22 odd 12 1690.2.b.c.339.6 6
65.29 even 6 650.2.e.k.601.1 6
65.32 even 12 1690.2.c.c.1689.5 6
65.33 even 12 1690.2.c.c.1689.2 6
65.42 odd 12 130.2.n.a.29.6 yes 12
65.43 odd 12 1690.2.b.b.339.4 6
65.48 odd 12 1690.2.b.c.339.1 6
65.58 even 12 1690.2.c.b.1689.2 6
195.68 even 12 1170.2.bp.h.289.6 12
195.107 even 12 1170.2.bp.h.289.3 12
260.3 even 12 1040.2.dh.b.289.5 12
260.107 even 12 1040.2.dh.b.289.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.n.a.9.1 12 5.2 odd 4
130.2.n.a.9.6 yes 12 5.3 odd 4
130.2.n.a.29.1 yes 12 65.3 odd 12
130.2.n.a.29.6 yes 12 65.42 odd 12
650.2.e.j.451.3 6 1.1 even 1 trivial
650.2.e.j.601.3 6 13.3 even 3 inner
650.2.e.k.451.1 6 5.4 even 2
650.2.e.k.601.1 6 65.29 even 6
1040.2.dh.b.289.2 12 260.107 even 12
1040.2.dh.b.289.5 12 260.3 even 12
1040.2.dh.b.529.2 12 20.3 even 4
1040.2.dh.b.529.5 12 20.7 even 4
1170.2.bp.h.289.3 12 195.107 even 12
1170.2.bp.h.289.6 12 195.68 even 12
1170.2.bp.h.919.3 12 15.8 even 4
1170.2.bp.h.919.6 12 15.2 even 4
1690.2.b.b.339.3 6 65.17 odd 12
1690.2.b.b.339.4 6 65.43 odd 12
1690.2.b.c.339.1 6 65.48 odd 12
1690.2.b.c.339.6 6 65.22 odd 12
1690.2.c.b.1689.2 6 65.58 even 12
1690.2.c.b.1689.5 6 65.7 even 12
1690.2.c.c.1689.2 6 65.33 even 12
1690.2.c.c.1689.5 6 65.32 even 12
8450.2.a.bt.1.1 3 13.4 even 6
8450.2.a.bu.1.3 3 65.9 even 6
8450.2.a.ca.1.3 3 65.4 even 6
8450.2.a.cb.1.1 3 13.9 even 3