Properties

Label 1050.2.a
Level $1050$
Weight $2$
Character orbit 1050.a
Rep. character $\chi_{1050}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $18$
Sturm bound $480$
Trace bound $13$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 18 \)
Sturm bound: \(480\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(11\), \(13\), \(17\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1050))\).

Total New Old
Modular forms 264 18 246
Cusp forms 217 18 199
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(12\)\(1\)\(11\)\(10\)\(1\)\(9\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(18\)\(2\)\(16\)\(15\)\(2\)\(13\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(19\)\(1\)\(18\)\(16\)\(1\)\(15\)\(3\)\(0\)\(3\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(16\)\(1\)\(15\)\(13\)\(1\)\(12\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(18\)\(2\)\(16\)\(15\)\(2\)\(13\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(18\)\(1\)\(17\)\(15\)\(1\)\(14\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(15\)\(1\)\(14\)\(12\)\(1\)\(11\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(16\)\(1\)\(15\)\(13\)\(1\)\(12\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(18\)\(2\)\(16\)\(15\)\(2\)\(13\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(15\)\(0\)\(15\)\(12\)\(0\)\(12\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(16\)\(0\)\(16\)\(13\)\(0\)\(13\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(18\)\(2\)\(16\)\(15\)\(2\)\(13\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(18\)\(0\)\(18\)\(15\)\(0\)\(15\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(15\)\(2\)\(13\)\(12\)\(2\)\(10\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(16\)\(2\)\(14\)\(13\)\(2\)\(11\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(16\)\(0\)\(16\)\(13\)\(0\)\(13\)\(3\)\(0\)\(3\)
Plus space\(+\)\(126\)\(4\)\(122\)\(103\)\(4\)\(99\)\(23\)\(0\)\(23\)
Minus space\(-\)\(138\)\(14\)\(124\)\(114\)\(14\)\(100\)\(24\)\(0\)\(24\)

Trace form

\( 18 q - 2 q^{2} + 18 q^{4} - 2 q^{8} + 18 q^{9} + 8 q^{11} - 4 q^{13} + 18 q^{16} + 12 q^{17} - 2 q^{18} - 2 q^{21} + 16 q^{23} + 36 q^{26} + 28 q^{29} + 16 q^{31} - 2 q^{32} + 20 q^{34} + 18 q^{36} + 12 q^{37}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
1050.2.a.a 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.a.d \(-1\) \(-1\) \(0\) \(-1\) $+$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
1050.2.a.b 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.b \(-1\) \(-1\) \(0\) \(-1\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+\cdots\)
1050.2.a.c 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.a.e \(-1\) \(-1\) \(0\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+q^{7}-q^{8}+\cdots\)
1050.2.a.d 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.g.b \(-1\) \(-1\) \(0\) \(1\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+q^{7}-q^{8}+\cdots\)
1050.2.a.e 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.e \(-1\) \(-1\) \(0\) \(1\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+q^{7}-q^{8}+\cdots\)
1050.2.a.f 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.f \(-1\) \(1\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
1050.2.a.g 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.g.a \(-1\) \(1\) \(0\) \(-1\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
1050.2.a.h 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.a.c \(-1\) \(1\) \(0\) \(-1\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}-q^{8}+\cdots\)
1050.2.a.i 1050.a 1.a $1$ $8.384$ \(\Q\) None 42.2.a.a \(-1\) \(1\) \(0\) \(1\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+q^{7}-q^{8}+\cdots\)
1050.2.a.j 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.j \(-1\) \(1\) \(0\) \(1\) $+$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+q^{7}-q^{8}+\cdots\)
1050.2.a.k 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.a.b \(1\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-q^{7}+q^{8}+\cdots\)
1050.2.a.l 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.j \(1\) \(-1\) \(0\) \(-1\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}-q^{7}+q^{8}+\cdots\)
1050.2.a.m 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.g.a \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
1050.2.a.n 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.f \(1\) \(-1\) \(0\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{7}+q^{8}+\cdots\)
1050.2.a.o 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.e \(1\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-q^{7}+q^{8}+\cdots\)
1050.2.a.p 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.g.b \(1\) \(1\) \(0\) \(-1\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}-q^{7}+q^{8}+\cdots\)
1050.2.a.q 1050.a 1.a $1$ $8.384$ \(\Q\) None 210.2.a.a \(1\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)
1050.2.a.r 1050.a 1.a $1$ $8.384$ \(\Q\) None 1050.2.a.b \(1\) \(1\) \(0\) \(1\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{7}+q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1050))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1050)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 2}\)