Defining parameters
Level: | \( N \) | \(=\) | \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1050.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(480\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(11\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1050))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 18 | 246 |
Cusp forms | 217 | 18 | 199 |
Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(1\) | \(11\) | \(10\) | \(1\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(19\) | \(1\) | \(18\) | \(16\) | \(1\) | \(15\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(16\) | \(1\) | \(15\) | \(13\) | \(1\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(18\) | \(1\) | \(17\) | \(15\) | \(1\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(15\) | \(1\) | \(14\) | \(12\) | \(1\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(16\) | \(1\) | \(15\) | \(13\) | \(1\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(15\) | \(0\) | \(15\) | \(12\) | \(0\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(16\) | \(0\) | \(16\) | \(13\) | \(0\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(18\) | \(2\) | \(16\) | \(15\) | \(2\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(18\) | \(0\) | \(18\) | \(15\) | \(0\) | \(15\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(15\) | \(2\) | \(13\) | \(12\) | \(2\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(16\) | \(2\) | \(14\) | \(13\) | \(2\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(16\) | \(0\) | \(16\) | \(13\) | \(0\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(126\) | \(4\) | \(122\) | \(103\) | \(4\) | \(99\) | \(23\) | \(0\) | \(23\) | ||||||
Minus space | \(-\) | \(138\) | \(14\) | \(124\) | \(114\) | \(14\) | \(100\) | \(24\) | \(0\) | \(24\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1050))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1050)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(175))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(210))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(350))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(525))\)\(^{\oplus 2}\)