Properties

Label 1050.2.a.j
Level 1050
Weight 2
Character orbit 1050.a
Self dual yes
Analytic conductor 8.384
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} + 6q^{11} + q^{12} - q^{13} - q^{14} + q^{16} + 3q^{17} - q^{18} - 4q^{19} + q^{21} - 6q^{22} - 3q^{23} - q^{24} + q^{26} + q^{27} + q^{28} + 3q^{29} + 5q^{31} - q^{32} + 6q^{33} - 3q^{34} + q^{36} - 10q^{37} + 4q^{38} - q^{39} + 9q^{41} - q^{42} - q^{43} + 6q^{44} + 3q^{46} + q^{48} + q^{49} + 3q^{51} - q^{52} + 9q^{53} - q^{54} - q^{56} - 4q^{57} - 3q^{58} + 9q^{59} + 11q^{61} - 5q^{62} + q^{63} + q^{64} - 6q^{66} - 4q^{67} + 3q^{68} - 3q^{69} - 12q^{71} - q^{72} - 10q^{73} + 10q^{74} - 4q^{76} + 6q^{77} + q^{78} - 10q^{79} + q^{81} - 9q^{82} + 9q^{83} + q^{84} + q^{86} + 3q^{87} - 6q^{88} - 6q^{89} - q^{91} - 3q^{92} + 5q^{93} - q^{96} + 14q^{97} - q^{98} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 1.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.a.j 1
3.b odd 2 1 3150.2.a.bg 1
4.b odd 2 1 8400.2.a.a 1
5.b even 2 1 1050.2.a.l yes 1
5.c odd 4 2 1050.2.g.e 2
7.b odd 2 1 7350.2.a.r 1
15.d odd 2 1 3150.2.a.a 1
15.e even 4 2 3150.2.g.a 2
20.d odd 2 1 8400.2.a.ci 1
35.c odd 2 1 7350.2.a.cz 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.a.j 1 1.a even 1 1 trivial
1050.2.a.l yes 1 5.b even 2 1
1050.2.g.e 2 5.c odd 4 2
3150.2.a.a 1 15.d odd 2 1
3150.2.a.bg 1 3.b odd 2 1
3150.2.g.a 2 15.e even 4 2
7350.2.a.r 1 7.b odd 2 1
7350.2.a.cz 1 35.c odd 2 1
8400.2.a.a 1 4.b odd 2 1
8400.2.a.ci 1 20.d odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\):

\( T_{11} - 6 \)
\( T_{13} + 1 \)
\( T_{17} - 3 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( 1 - T \)
$5$ 1
$7$ \( 1 - T \)
$11$ \( 1 - 6 T + 11 T^{2} \)
$13$ \( 1 + T + 13 T^{2} \)
$17$ \( 1 - 3 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 3 T + 23 T^{2} \)
$29$ \( 1 - 3 T + 29 T^{2} \)
$31$ \( 1 - 5 T + 31 T^{2} \)
$37$ \( 1 + 10 T + 37 T^{2} \)
$41$ \( 1 - 9 T + 41 T^{2} \)
$43$ \( 1 + T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 - 9 T + 53 T^{2} \)
$59$ \( 1 - 9 T + 59 T^{2} \)
$61$ \( 1 - 11 T + 61 T^{2} \)
$67$ \( 1 + 4 T + 67 T^{2} \)
$71$ \( 1 + 12 T + 71 T^{2} \)
$73$ \( 1 + 10 T + 73 T^{2} \)
$79$ \( 1 + 10 T + 79 T^{2} \)
$83$ \( 1 - 9 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 - 14 T + 97 T^{2} \)
show more
show less