Properties

Label 210.2.a.e
Level 210
Weight 2
Character orbit 210.a
Self dual Yes
Analytic conductor 1.677
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 210.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(1.67685844245\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 4q^{11} + q^{12} - 2q^{13} - q^{14} + q^{15} + q^{16} + 2q^{17} + q^{18} + 4q^{19} + q^{20} - q^{21} - 4q^{22} - 8q^{23} + q^{24} + q^{25} - 2q^{26} + q^{27} - q^{28} - 2q^{29} + q^{30} + q^{32} - 4q^{33} + 2q^{34} - q^{35} + q^{36} + 6q^{37} + 4q^{38} - 2q^{39} + q^{40} - 6q^{41} - q^{42} - 4q^{43} - 4q^{44} + q^{45} - 8q^{46} + q^{48} + q^{49} + q^{50} + 2q^{51} - 2q^{52} - 10q^{53} + q^{54} - 4q^{55} - q^{56} + 4q^{57} - 2q^{58} + 12q^{59} + q^{60} + 14q^{61} - q^{63} + q^{64} - 2q^{65} - 4q^{66} - 12q^{67} + 2q^{68} - 8q^{69} - q^{70} - 8q^{71} + q^{72} + 10q^{73} + 6q^{74} + q^{75} + 4q^{76} + 4q^{77} - 2q^{78} + 16q^{79} + q^{80} + q^{81} - 6q^{82} - 12q^{83} - q^{84} + 2q^{85} - 4q^{86} - 2q^{87} - 4q^{88} + 10q^{89} + q^{90} + 2q^{91} - 8q^{92} + 4q^{95} + q^{96} + 2q^{97} + q^{98} - 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 1.00000 1.00000 −1.00000 1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(7\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(210))\):

\( T_{11} + 4 \)
\( T_{17} - 2 \)
\( T_{19} - 4 \)