Properties

Label 210.2.a.d
Level 210
Weight 2
Character orbit 210.a
Self dual yes
Analytic conductor 1.677
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.67685844245\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{7} + q^{8} + q^{9} - q^{10} + q^{12} + 2q^{13} + q^{14} - q^{15} + q^{16} - 6q^{17} + q^{18} - 4q^{19} - q^{20} + q^{21} + q^{24} + q^{25} + 2q^{26} + q^{27} + q^{28} - 6q^{29} - q^{30} - 4q^{31} + q^{32} - 6q^{34} - q^{35} + q^{36} + 2q^{37} - 4q^{38} + 2q^{39} - q^{40} + 6q^{41} + q^{42} + 8q^{43} - q^{45} - 12q^{47} + q^{48} + q^{49} + q^{50} - 6q^{51} + 2q^{52} + 6q^{53} + q^{54} + q^{56} - 4q^{57} - 6q^{58} - 12q^{59} - q^{60} + 2q^{61} - 4q^{62} + q^{63} + q^{64} - 2q^{65} + 8q^{67} - 6q^{68} - q^{70} + q^{72} + 14q^{73} + 2q^{74} + q^{75} - 4q^{76} + 2q^{78} - 16q^{79} - q^{80} + q^{81} + 6q^{82} + 12q^{83} + q^{84} + 6q^{85} + 8q^{86} - 6q^{87} + 6q^{89} - q^{90} + 2q^{91} - 4q^{93} - 12q^{94} + 4q^{95} + q^{96} + 14q^{97} + q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 −1.00000 1.00000 1.00000 1.00000 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 210.2.a.d 1
3.b odd 2 1 630.2.a.f 1
4.b odd 2 1 1680.2.a.b 1
5.b even 2 1 1050.2.a.a 1
5.c odd 4 2 1050.2.g.h 2
7.b odd 2 1 1470.2.a.m 1
7.c even 3 2 1470.2.i.d 2
7.d odd 6 2 1470.2.i.h 2
8.b even 2 1 6720.2.a.bb 1
8.d odd 2 1 6720.2.a.cc 1
12.b even 2 1 5040.2.a.ba 1
15.d odd 2 1 3150.2.a.ba 1
15.e even 4 2 3150.2.g.o 2
20.d odd 2 1 8400.2.a.cn 1
21.c even 2 1 4410.2.a.f 1
35.c odd 2 1 7350.2.a.bd 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.d 1 1.a even 1 1 trivial
630.2.a.f 1 3.b odd 2 1
1050.2.a.a 1 5.b even 2 1
1050.2.g.h 2 5.c odd 4 2
1470.2.a.m 1 7.b odd 2 1
1470.2.i.d 2 7.c even 3 2
1470.2.i.h 2 7.d odd 6 2
1680.2.a.b 1 4.b odd 2 1
3150.2.a.ba 1 15.d odd 2 1
3150.2.g.o 2 15.e even 4 2
4410.2.a.f 1 21.c even 2 1
5040.2.a.ba 1 12.b even 2 1
6720.2.a.bb 1 8.b even 2 1
6720.2.a.cc 1 8.d odd 2 1
7350.2.a.bd 1 35.c odd 2 1
8400.2.a.cn 1 20.d odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(210))\):

\( T_{11} \)
\( T_{17} + 6 \)
\( T_{19} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T \)
$3$ \( 1 - T \)
$5$ \( 1 + T \)
$7$ \( 1 - T \)
$11$ \( 1 + 11 T^{2} \)
$13$ \( 1 - 2 T + 13 T^{2} \)
$17$ \( 1 + 6 T + 17 T^{2} \)
$19$ \( 1 + 4 T + 19 T^{2} \)
$23$ \( 1 + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 + 4 T + 31 T^{2} \)
$37$ \( 1 - 2 T + 37 T^{2} \)
$41$ \( 1 - 6 T + 41 T^{2} \)
$43$ \( 1 - 8 T + 43 T^{2} \)
$47$ \( 1 + 12 T + 47 T^{2} \)
$53$ \( 1 - 6 T + 53 T^{2} \)
$59$ \( 1 + 12 T + 59 T^{2} \)
$61$ \( 1 - 2 T + 61 T^{2} \)
$67$ \( 1 - 8 T + 67 T^{2} \)
$71$ \( 1 + 71 T^{2} \)
$73$ \( 1 - 14 T + 73 T^{2} \)
$79$ \( 1 + 16 T + 79 T^{2} \)
$83$ \( 1 - 12 T + 83 T^{2} \)
$89$ \( 1 - 6 T + 89 T^{2} \)
$97$ \( 1 - 14 T + 97 T^{2} \)
show more
show less