# Properties

 Label 1050.2.a.p Level $1050$ Weight $2$ Character orbit 1050.a Self dual yes Analytic conductor $8.384$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1050.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$8.38429221223$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 210) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + O(q^{10})$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} - q^{7} + q^{8} + q^{9} + 2q^{11} + q^{12} + 6q^{13} - q^{14} + q^{16} + 4q^{17} + q^{18} - 6q^{19} - q^{21} + 2q^{22} - 8q^{23} + q^{24} + 6q^{26} + q^{27} - q^{28} + 6q^{29} - 2q^{31} + q^{32} + 2q^{33} + 4q^{34} + q^{36} + 4q^{37} - 6q^{38} + 6q^{39} + 2q^{41} - q^{42} + 4q^{43} + 2q^{44} - 8q^{46} + 8q^{47} + q^{48} + q^{49} + 4q^{51} + 6q^{52} + 6q^{53} + q^{54} - q^{56} - 6q^{57} + 6q^{58} - 8q^{59} - 10q^{61} - 2q^{62} - q^{63} + q^{64} + 2q^{66} + 8q^{67} + 4q^{68} - 8q^{69} - 6q^{71} + q^{72} - 14q^{73} + 4q^{74} - 6q^{76} - 2q^{77} + 6q^{78} - 12q^{79} + q^{81} + 2q^{82} - 8q^{83} - q^{84} + 4q^{86} + 6q^{87} + 2q^{88} - 10q^{89} - 6q^{91} - 8q^{92} - 2q^{93} + 8q^{94} + q^{96} - 10q^{97} + q^{98} + 2q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 0 1.00000 −1.00000 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.a.p 1
3.b odd 2 1 3150.2.a.d 1
4.b odd 2 1 8400.2.a.w 1
5.b even 2 1 1050.2.a.d 1
5.c odd 4 2 210.2.g.b 2
7.b odd 2 1 7350.2.a.bz 1
15.d odd 2 1 3150.2.a.bk 1
15.e even 4 2 630.2.g.c 2
20.d odd 2 1 8400.2.a.bp 1
20.e even 4 2 1680.2.t.e 2
35.c odd 2 1 7350.2.a.bk 1
35.f even 4 2 1470.2.g.b 2
35.k even 12 4 1470.2.n.f 4
35.l odd 12 4 1470.2.n.b 4
60.l odd 4 2 5040.2.t.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.g.b 2 5.c odd 4 2
630.2.g.c 2 15.e even 4 2
1050.2.a.d 1 5.b even 2 1
1050.2.a.p 1 1.a even 1 1 trivial
1470.2.g.b 2 35.f even 4 2
1470.2.n.b 4 35.l odd 12 4
1470.2.n.f 4 35.k even 12 4
1680.2.t.e 2 20.e even 4 2
3150.2.a.d 1 3.b odd 2 1
3150.2.a.bk 1 15.d odd 2 1
5040.2.t.h 2 60.l odd 4 2
7350.2.a.bk 1 35.c odd 2 1
7350.2.a.bz 1 7.b odd 2 1
8400.2.a.w 1 4.b odd 2 1
8400.2.a.bp 1 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1050))$$:

 $$T_{11} - 2$$ $$T_{13} - 6$$ $$T_{17} - 4$$ $$T_{19} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$1 + T$$
$11$ $$-2 + T$$
$13$ $$-6 + T$$
$17$ $$-4 + T$$
$19$ $$6 + T$$
$23$ $$8 + T$$
$29$ $$-6 + T$$
$31$ $$2 + T$$
$37$ $$-4 + T$$
$41$ $$-2 + T$$
$43$ $$-4 + T$$
$47$ $$-8 + T$$
$53$ $$-6 + T$$
$59$ $$8 + T$$
$61$ $$10 + T$$
$67$ $$-8 + T$$
$71$ $$6 + T$$
$73$ $$14 + T$$
$79$ $$12 + T$$
$83$ $$8 + T$$
$89$ $$10 + T$$
$97$ $$10 + T$$