# Properties

 Label 1050.2.a.e Level $1050$ Weight $2$ Character orbit 1050.a Self dual yes Analytic conductor $8.384$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1050.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$8.38429221223$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} + O(q^{10})$$ $$q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} + 2q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} - q^{18} + 4q^{19} - q^{21} - 2q^{22} - 7q^{23} + q^{24} + q^{26} - q^{27} + q^{28} + q^{29} + 3q^{31} - q^{32} - 2q^{33} - q^{34} + q^{36} + 6q^{37} - 4q^{38} + q^{39} - 3q^{41} + q^{42} + q^{43} + 2q^{44} + 7q^{46} + 12q^{47} - q^{48} + q^{49} - q^{51} - q^{52} - 11q^{53} + q^{54} - q^{56} - 4q^{57} - q^{58} - 3q^{59} + 5q^{61} - 3q^{62} + q^{63} + q^{64} + 2q^{66} + 12q^{67} + q^{68} + 7q^{69} + 4q^{71} - q^{72} + 14q^{73} - 6q^{74} + 4q^{76} + 2q^{77} - q^{78} - 2q^{79} + q^{81} + 3q^{82} + 3q^{83} - q^{84} - q^{86} - q^{87} - 2q^{88} + 10q^{89} - q^{91} - 7q^{92} - 3q^{93} - 12q^{94} + q^{96} + 10q^{97} - q^{98} + 2q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.a.e 1
3.b odd 2 1 3150.2.a.bl 1
4.b odd 2 1 8400.2.a.bt 1
5.b even 2 1 1050.2.a.o yes 1
5.c odd 4 2 1050.2.g.j 2
7.b odd 2 1 7350.2.a.bj 1
15.d odd 2 1 3150.2.a.c 1
15.e even 4 2 3150.2.g.g 2
20.d odd 2 1 8400.2.a.t 1
35.c odd 2 1 7350.2.a.ca 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.a.e 1 1.a even 1 1 trivial
1050.2.a.o yes 1 5.b even 2 1
1050.2.g.j 2 5.c odd 4 2
3150.2.a.c 1 15.d odd 2 1
3150.2.a.bl 1 3.b odd 2 1
3150.2.g.g 2 15.e even 4 2
7350.2.a.bj 1 7.b odd 2 1
7350.2.a.ca 1 35.c odd 2 1
8400.2.a.t 1 20.d odd 2 1
8400.2.a.bt 1 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1050))$$:

 $$T_{11} - 2$$ $$T_{13} + 1$$ $$T_{17} - 1$$ $$T_{19} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T$$
$3$ $$1 + T$$
$5$ $$T$$
$7$ $$-1 + T$$
$11$ $$-2 + T$$
$13$ $$1 + T$$
$17$ $$-1 + T$$
$19$ $$-4 + T$$
$23$ $$7 + T$$
$29$ $$-1 + T$$
$31$ $$-3 + T$$
$37$ $$-6 + T$$
$41$ $$3 + T$$
$43$ $$-1 + T$$
$47$ $$-12 + T$$
$53$ $$11 + T$$
$59$ $$3 + T$$
$61$ $$-5 + T$$
$67$ $$-12 + T$$
$71$ $$-4 + T$$
$73$ $$-14 + T$$
$79$ $$2 + T$$
$83$ $$-3 + T$$
$89$ $$-10 + T$$
$97$ $$-10 + T$$