Properties

Label 1008.2.df.e.929.9
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.9
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.e.689.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.930597 + 1.46082i) q^{3} +1.36828 q^{5} +(-2.64451 + 0.0810554i) q^{7} +(-1.26798 - 2.71887i) q^{9} -1.20384i q^{11} +(0.639364 - 0.369137i) q^{13} +(-1.27332 + 1.99881i) q^{15} +(-0.693066 - 1.20043i) q^{17} +(-2.81671 - 1.62623i) q^{19} +(2.34257 - 3.93858i) q^{21} -3.81129i q^{23} -3.12781 q^{25} +(5.15174 + 0.677887i) q^{27} +(-3.50030 - 2.02090i) q^{29} +(-1.02924 - 0.594230i) q^{31} +(1.75859 + 1.12029i) q^{33} +(-3.61843 + 0.110906i) q^{35} +(5.10537 - 8.84276i) q^{37} +(-0.0557487 + 1.27751i) q^{39} +(-0.670586 - 1.16149i) q^{41} +(0.490044 - 0.848782i) q^{43} +(-1.73495 - 3.72017i) q^{45} +(1.63634 + 2.83422i) q^{47} +(6.98686 - 0.428704i) q^{49} +(2.39857 + 0.104670i) q^{51} +(-5.77421 + 3.33374i) q^{53} -1.64718i q^{55} +(4.99684 - 2.60133i) q^{57} +(6.73912 - 11.6725i) q^{59} +(-4.36067 + 2.51764i) q^{61} +(3.57356 + 7.08729i) q^{63} +(0.874829 - 0.505083i) q^{65} +(2.19665 - 3.80471i) q^{67} +(5.56760 + 3.54678i) q^{69} +8.84538i q^{71} +(10.2939 - 5.94320i) q^{73} +(2.91073 - 4.56917i) q^{75} +(0.0975775 + 3.18356i) q^{77} +(-6.34799 - 10.9950i) q^{79} +(-5.78447 + 6.89492i) q^{81} +(3.14219 - 5.44243i) q^{83} +(-0.948308 - 1.64252i) q^{85} +(6.20953 - 3.23266i) q^{87} +(-6.05868 + 10.4939i) q^{89} +(-1.66088 + 1.02801i) q^{91} +(1.82587 - 0.950538i) q^{93} +(-3.85404 - 2.22513i) q^{95} +(10.9781 + 6.33821i) q^{97} +(-3.27307 + 1.52644i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.930597 + 1.46082i −0.537281 + 0.843404i
\(4\) 0 0
\(5\) 1.36828 0.611913 0.305956 0.952046i \(-0.401024\pi\)
0.305956 + 0.952046i \(0.401024\pi\)
\(6\) 0 0
\(7\) −2.64451 + 0.0810554i −0.999531 + 0.0306361i
\(8\) 0 0
\(9\) −1.26798 2.71887i −0.422659 0.906289i
\(10\) 0 0
\(11\) 1.20384i 0.362971i −0.983394 0.181485i \(-0.941910\pi\)
0.983394 0.181485i \(-0.0580905\pi\)
\(12\) 0 0
\(13\) 0.639364 0.369137i 0.177328 0.102380i −0.408709 0.912665i \(-0.634021\pi\)
0.586037 + 0.810285i \(0.300687\pi\)
\(14\) 0 0
\(15\) −1.27332 + 1.99881i −0.328769 + 0.516089i
\(16\) 0 0
\(17\) −0.693066 1.20043i −0.168093 0.291146i 0.769656 0.638459i \(-0.220428\pi\)
−0.937749 + 0.347313i \(0.887094\pi\)
\(18\) 0 0
\(19\) −2.81671 1.62623i −0.646197 0.373082i 0.140801 0.990038i \(-0.455032\pi\)
−0.786998 + 0.616956i \(0.788366\pi\)
\(20\) 0 0
\(21\) 2.34257 3.93858i 0.511190 0.859468i
\(22\) 0 0
\(23\) 3.81129i 0.794709i −0.917665 0.397355i \(-0.869928\pi\)
0.917665 0.397355i \(-0.130072\pi\)
\(24\) 0 0
\(25\) −3.12781 −0.625563
\(26\) 0 0
\(27\) 5.15174 + 0.677887i 0.991454 + 0.130459i
\(28\) 0 0
\(29\) −3.50030 2.02090i −0.649989 0.375271i 0.138463 0.990368i \(-0.455784\pi\)
−0.788452 + 0.615096i \(0.789117\pi\)
\(30\) 0 0
\(31\) −1.02924 0.594230i −0.184856 0.106727i 0.404716 0.914442i \(-0.367370\pi\)
−0.589572 + 0.807716i \(0.700704\pi\)
\(32\) 0 0
\(33\) 1.75859 + 1.12029i 0.306131 + 0.195017i
\(34\) 0 0
\(35\) −3.61843 + 0.110906i −0.611626 + 0.0187466i
\(36\) 0 0
\(37\) 5.10537 8.84276i 0.839317 1.45374i −0.0511491 0.998691i \(-0.516288\pi\)
0.890466 0.455049i \(-0.150378\pi\)
\(38\) 0 0
\(39\) −0.0557487 + 1.27751i −0.00892693 + 0.204566i
\(40\) 0 0
\(41\) −0.670586 1.16149i −0.104728 0.181394i 0.808899 0.587948i \(-0.200064\pi\)
−0.913627 + 0.406553i \(0.866731\pi\)
\(42\) 0 0
\(43\) 0.490044 0.848782i 0.0747311 0.129438i −0.826238 0.563321i \(-0.809524\pi\)
0.900969 + 0.433883i \(0.142857\pi\)
\(44\) 0 0
\(45\) −1.73495 3.72017i −0.258630 0.554570i
\(46\) 0 0
\(47\) 1.63634 + 2.83422i 0.238684 + 0.413413i 0.960337 0.278842i \(-0.0899506\pi\)
−0.721653 + 0.692255i \(0.756617\pi\)
\(48\) 0 0
\(49\) 6.98686 0.428704i 0.998123 0.0612434i
\(50\) 0 0
\(51\) 2.39857 + 0.104670i 0.335867 + 0.0146567i
\(52\) 0 0
\(53\) −5.77421 + 3.33374i −0.793148 + 0.457924i −0.841070 0.540927i \(-0.818074\pi\)
0.0479213 + 0.998851i \(0.484740\pi\)
\(54\) 0 0
\(55\) 1.64718i 0.222106i
\(56\) 0 0
\(57\) 4.99684 2.60133i 0.661848 0.344555i
\(58\) 0 0
\(59\) 6.73912 11.6725i 0.877359 1.51963i 0.0231309 0.999732i \(-0.492637\pi\)
0.854228 0.519898i \(-0.174030\pi\)
\(60\) 0 0
\(61\) −4.36067 + 2.51764i −0.558327 + 0.322350i −0.752474 0.658622i \(-0.771140\pi\)
0.194147 + 0.980972i \(0.437806\pi\)
\(62\) 0 0
\(63\) 3.57356 + 7.08729i 0.450226 + 0.892915i
\(64\) 0 0
\(65\) 0.874829 0.505083i 0.108509 0.0626478i
\(66\) 0 0
\(67\) 2.19665 3.80471i 0.268364 0.464819i −0.700076 0.714069i \(-0.746850\pi\)
0.968439 + 0.249249i \(0.0801838\pi\)
\(68\) 0 0
\(69\) 5.56760 + 3.54678i 0.670261 + 0.426982i
\(70\) 0 0
\(71\) 8.84538i 1.04975i 0.851178 + 0.524877i \(0.175889\pi\)
−0.851178 + 0.524877i \(0.824111\pi\)
\(72\) 0 0
\(73\) 10.2939 5.94320i 1.20481 0.695599i 0.243191 0.969978i \(-0.421806\pi\)
0.961621 + 0.274380i \(0.0884726\pi\)
\(74\) 0 0
\(75\) 2.91073 4.56917i 0.336103 0.527602i
\(76\) 0 0
\(77\) 0.0975775 + 3.18356i 0.0111200 + 0.362800i
\(78\) 0 0
\(79\) −6.34799 10.9950i −0.714205 1.23704i −0.963265 0.268551i \(-0.913455\pi\)
0.249060 0.968488i \(-0.419878\pi\)
\(80\) 0 0
\(81\) −5.78447 + 6.89492i −0.642719 + 0.766102i
\(82\) 0 0
\(83\) 3.14219 5.44243i 0.344900 0.597384i −0.640436 0.768012i \(-0.721246\pi\)
0.985336 + 0.170628i \(0.0545795\pi\)
\(84\) 0 0
\(85\) −0.948308 1.64252i −0.102858 0.178156i
\(86\) 0 0
\(87\) 6.20953 3.23266i 0.665732 0.346577i
\(88\) 0 0
\(89\) −6.05868 + 10.4939i −0.642219 + 1.11236i 0.342718 + 0.939438i \(0.388653\pi\)
−0.984936 + 0.172917i \(0.944681\pi\)
\(90\) 0 0
\(91\) −1.66088 + 1.02801i −0.174108 + 0.107765i
\(92\) 0 0
\(93\) 1.82587 0.950538i 0.189334 0.0985662i
\(94\) 0 0
\(95\) −3.85404 2.22513i −0.395416 0.228294i
\(96\) 0 0
\(97\) 10.9781 + 6.33821i 1.11466 + 0.643548i 0.940032 0.341087i \(-0.110795\pi\)
0.174626 + 0.984635i \(0.444128\pi\)
\(98\) 0 0
\(99\) −3.27307 + 1.52644i −0.328956 + 0.153413i
\(100\) 0 0
\(101\) −13.2437 −1.31779 −0.658897 0.752233i \(-0.728977\pi\)
−0.658897 + 0.752233i \(0.728977\pi\)
\(102\) 0 0
\(103\) 13.1827i 1.29893i −0.760391 0.649465i \(-0.774993\pi\)
0.760391 0.649465i \(-0.225007\pi\)
\(104\) 0 0
\(105\) 3.20528 5.38907i 0.312804 0.525919i
\(106\) 0 0
\(107\) −15.8800 9.16833i −1.53518 0.886336i −0.999111 0.0421621i \(-0.986575\pi\)
−0.536069 0.844174i \(-0.680091\pi\)
\(108\) 0 0
\(109\) −8.74665 15.1496i −0.837777 1.45107i −0.891749 0.452531i \(-0.850521\pi\)
0.0539715 0.998542i \(-0.482812\pi\)
\(110\) 0 0
\(111\) 8.16661 + 15.6871i 0.775141 + 1.48895i
\(112\) 0 0
\(113\) −4.13627 + 2.38808i −0.389108 + 0.224652i −0.681774 0.731563i \(-0.738791\pi\)
0.292666 + 0.956215i \(0.405458\pi\)
\(114\) 0 0
\(115\) 5.21491i 0.486293i
\(116\) 0 0
\(117\) −1.81433 1.27029i −0.167735 0.117438i
\(118\) 0 0
\(119\) 1.93012 + 3.11836i 0.176934 + 0.285860i
\(120\) 0 0
\(121\) 9.55078 0.868252
\(122\) 0 0
\(123\) 2.32077 + 0.101275i 0.209257 + 0.00913164i
\(124\) 0 0
\(125\) −11.1211 −0.994703
\(126\) 0 0
\(127\) 4.81674 0.427416 0.213708 0.976898i \(-0.431446\pi\)
0.213708 + 0.976898i \(0.431446\pi\)
\(128\) 0 0
\(129\) 0.783881 + 1.50574i 0.0690169 + 0.132573i
\(130\) 0 0
\(131\) 6.14127 0.536566 0.268283 0.963340i \(-0.413544\pi\)
0.268283 + 0.963340i \(0.413544\pi\)
\(132\) 0 0
\(133\) 7.58063 + 4.07226i 0.657324 + 0.353110i
\(134\) 0 0
\(135\) 7.04902 + 0.927538i 0.606683 + 0.0798298i
\(136\) 0 0
\(137\) 3.51935i 0.300678i 0.988634 + 0.150339i \(0.0480366\pi\)
−0.988634 + 0.150339i \(0.951963\pi\)
\(138\) 0 0
\(139\) 12.6807 7.32119i 1.07556 0.620975i 0.145865 0.989304i \(-0.453403\pi\)
0.929695 + 0.368329i \(0.120070\pi\)
\(140\) 0 0
\(141\) −5.66304 0.247126i −0.476914 0.0208118i
\(142\) 0 0
\(143\) −0.444381 0.769691i −0.0371610 0.0643648i
\(144\) 0 0
\(145\) −4.78939 2.76515i −0.397737 0.229633i
\(146\) 0 0
\(147\) −5.87570 + 10.6055i −0.484619 + 0.874725i
\(148\) 0 0
\(149\) 14.8374i 1.21553i 0.794118 + 0.607763i \(0.207933\pi\)
−0.794118 + 0.607763i \(0.792067\pi\)
\(150\) 0 0
\(151\) −2.92894 −0.238354 −0.119177 0.992873i \(-0.538026\pi\)
−0.119177 + 0.992873i \(0.538026\pi\)
\(152\) 0 0
\(153\) −2.38501 + 3.40647i −0.192816 + 0.275396i
\(154\) 0 0
\(155\) −1.40828 0.813072i −0.113116 0.0653075i
\(156\) 0 0
\(157\) −16.8177 9.70973i −1.34220 0.774920i −0.355071 0.934839i \(-0.615543\pi\)
−0.987130 + 0.159919i \(0.948877\pi\)
\(158\) 0 0
\(159\) 0.503476 11.5374i 0.0399282 0.914978i
\(160\) 0 0
\(161\) 0.308926 + 10.0790i 0.0243468 + 0.794336i
\(162\) 0 0
\(163\) −4.94115 + 8.55832i −0.387021 + 0.670340i −0.992047 0.125866i \(-0.959829\pi\)
0.605027 + 0.796205i \(0.293162\pi\)
\(164\) 0 0
\(165\) 2.40624 + 1.53287i 0.187325 + 0.119333i
\(166\) 0 0
\(167\) 9.58375 + 16.5995i 0.741613 + 1.28451i 0.951761 + 0.306841i \(0.0992721\pi\)
−0.210148 + 0.977670i \(0.567395\pi\)
\(168\) 0 0
\(169\) −6.22748 + 10.7863i −0.479037 + 0.829716i
\(170\) 0 0
\(171\) −0.849974 + 9.72027i −0.0649991 + 0.743328i
\(172\) 0 0
\(173\) 1.88299 + 3.26143i 0.143161 + 0.247962i 0.928685 0.370869i \(-0.120940\pi\)
−0.785524 + 0.618831i \(0.787607\pi\)
\(174\) 0 0
\(175\) 8.27153 0.253526i 0.625269 0.0191648i
\(176\) 0 0
\(177\) 10.7800 + 20.7070i 0.810274 + 1.55644i
\(178\) 0 0
\(179\) −22.7425 + 13.1304i −1.69986 + 0.981412i −0.753971 + 0.656908i \(0.771864\pi\)
−0.945884 + 0.324504i \(0.894802\pi\)
\(180\) 0 0
\(181\) 7.60186i 0.565042i 0.959261 + 0.282521i \(0.0911706\pi\)
−0.959261 + 0.282521i \(0.908829\pi\)
\(182\) 0 0
\(183\) 0.380224 8.71305i 0.0281070 0.644087i
\(184\) 0 0
\(185\) 6.98557 12.0994i 0.513589 0.889562i
\(186\) 0 0
\(187\) −1.44512 + 0.834339i −0.105677 + 0.0610129i
\(188\) 0 0
\(189\) −13.6788 1.37510i −0.994985 0.100024i
\(190\) 0 0
\(191\) −16.2060 + 9.35655i −1.17263 + 0.677016i −0.954297 0.298859i \(-0.903394\pi\)
−0.218329 + 0.975875i \(0.570061\pi\)
\(192\) 0 0
\(193\) −6.82526 + 11.8217i −0.491293 + 0.850945i −0.999950 0.0100249i \(-0.996809\pi\)
0.508657 + 0.860969i \(0.330142\pi\)
\(194\) 0 0
\(195\) −0.0762797 + 1.74799i −0.00546250 + 0.125176i
\(196\) 0 0
\(197\) 16.3308i 1.16352i −0.813361 0.581760i \(-0.802364\pi\)
0.813361 0.581760i \(-0.197636\pi\)
\(198\) 0 0
\(199\) −10.3429 + 5.97146i −0.733186 + 0.423305i −0.819587 0.572955i \(-0.805797\pi\)
0.0864004 + 0.996260i \(0.472464\pi\)
\(200\) 0 0
\(201\) 3.51379 + 6.74956i 0.247844 + 0.476077i
\(202\) 0 0
\(203\) 9.42038 + 5.06057i 0.661181 + 0.355182i
\(204\) 0 0
\(205\) −0.917549 1.58924i −0.0640844 0.110997i
\(206\) 0 0
\(207\) −10.3624 + 4.83263i −0.720236 + 0.335891i
\(208\) 0 0
\(209\) −1.95771 + 3.39086i −0.135418 + 0.234551i
\(210\) 0 0
\(211\) 8.33236 + 14.4321i 0.573623 + 0.993544i 0.996190 + 0.0872125i \(0.0277959\pi\)
−0.422567 + 0.906332i \(0.638871\pi\)
\(212\) 0 0
\(213\) −12.9215 8.23149i −0.885366 0.564012i
\(214\) 0 0
\(215\) 0.670517 1.16137i 0.0457289 0.0792048i
\(216\) 0 0
\(217\) 2.76999 + 1.48802i 0.188039 + 0.101014i
\(218\) 0 0
\(219\) −0.897567 + 20.5683i −0.0606519 + 1.38987i
\(220\) 0 0
\(221\) −0.886244 0.511673i −0.0596152 0.0344188i
\(222\) 0 0
\(223\) −2.30524 1.33093i −0.154370 0.0891258i 0.420825 0.907142i \(-0.361741\pi\)
−0.575195 + 0.818016i \(0.695074\pi\)
\(224\) 0 0
\(225\) 3.96600 + 8.50411i 0.264400 + 0.566940i
\(226\) 0 0
\(227\) −4.68069 −0.310669 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(228\) 0 0
\(229\) 4.29143i 0.283586i −0.989896 0.141793i \(-0.954713\pi\)
0.989896 0.141793i \(-0.0452867\pi\)
\(230\) 0 0
\(231\) −4.74140 2.82007i −0.311961 0.185547i
\(232\) 0 0
\(233\) 3.00156 + 1.73295i 0.196639 + 0.113530i 0.595087 0.803661i \(-0.297118\pi\)
−0.398448 + 0.917191i \(0.630451\pi\)
\(234\) 0 0
\(235\) 2.23896 + 3.87800i 0.146054 + 0.252973i
\(236\) 0 0
\(237\) 21.9692 + 0.958701i 1.42705 + 0.0622743i
\(238\) 0 0
\(239\) −22.5074 + 12.9946i −1.45588 + 0.840554i −0.998805 0.0488730i \(-0.984437\pi\)
−0.457077 + 0.889427i \(0.651104\pi\)
\(240\) 0 0
\(241\) 14.7470i 0.949939i −0.880002 0.474970i \(-0.842459\pi\)
0.880002 0.474970i \(-0.157541\pi\)
\(242\) 0 0
\(243\) −4.68921 14.8664i −0.300813 0.953683i
\(244\) 0 0
\(245\) 9.55997 0.586586i 0.610764 0.0374756i
\(246\) 0 0
\(247\) −2.40120 −0.152785
\(248\) 0 0
\(249\) 5.02628 + 9.65487i 0.318528 + 0.611853i
\(250\) 0 0
\(251\) 13.2564 0.836734 0.418367 0.908278i \(-0.362603\pi\)
0.418367 + 0.908278i \(0.362603\pi\)
\(252\) 0 0
\(253\) −4.58818 −0.288456
\(254\) 0 0
\(255\) 3.28191 + 0.143217i 0.205521 + 0.00896862i
\(256\) 0 0
\(257\) 24.9917 1.55894 0.779471 0.626438i \(-0.215488\pi\)
0.779471 + 0.626438i \(0.215488\pi\)
\(258\) 0 0
\(259\) −12.7844 + 23.7986i −0.794386 + 1.47877i
\(260\) 0 0
\(261\) −1.05625 + 12.0793i −0.0653805 + 0.747690i
\(262\) 0 0
\(263\) 14.5621i 0.897940i −0.893547 0.448970i \(-0.851791\pi\)
0.893547 0.448970i \(-0.148209\pi\)
\(264\) 0 0
\(265\) −7.90073 + 4.56149i −0.485338 + 0.280210i
\(266\) 0 0
\(267\) −9.69154 18.6163i −0.593113 1.13930i
\(268\) 0 0
\(269\) −8.64288 14.9699i −0.526966 0.912731i −0.999506 0.0314225i \(-0.989996\pi\)
0.472540 0.881309i \(-0.343337\pi\)
\(270\) 0 0
\(271\) −3.37299 1.94740i −0.204895 0.118296i 0.394042 0.919092i \(-0.371076\pi\)
−0.598936 + 0.800797i \(0.704410\pi\)
\(272\) 0 0
\(273\) 0.0438785 3.38291i 0.00265565 0.204743i
\(274\) 0 0
\(275\) 3.76538i 0.227061i
\(276\) 0 0
\(277\) 19.7457 1.18641 0.593203 0.805053i \(-0.297863\pi\)
0.593203 + 0.805053i \(0.297863\pi\)
\(278\) 0 0
\(279\) −0.310584 + 3.55183i −0.0185942 + 0.212642i
\(280\) 0 0
\(281\) −1.41396 0.816352i −0.0843499 0.0486994i 0.457232 0.889348i \(-0.348841\pi\)
−0.541582 + 0.840648i \(0.682174\pi\)
\(282\) 0 0
\(283\) 23.1548 + 13.3684i 1.37641 + 0.794671i 0.991726 0.128376i \(-0.0409765\pi\)
0.384686 + 0.923048i \(0.374310\pi\)
\(284\) 0 0
\(285\) 6.83707 3.55935i 0.404993 0.210838i
\(286\) 0 0
\(287\) 1.86752 + 3.01722i 0.110236 + 0.178101i
\(288\) 0 0
\(289\) 7.53932 13.0585i 0.443489 0.768146i
\(290\) 0 0
\(291\) −19.4752 + 10.1387i −1.14166 + 0.594341i
\(292\) 0 0
\(293\) −5.68847 9.85271i −0.332324 0.575602i 0.650643 0.759383i \(-0.274499\pi\)
−0.982967 + 0.183782i \(0.941166\pi\)
\(294\) 0 0
\(295\) 9.22100 15.9712i 0.536867 0.929882i
\(296\) 0 0
\(297\) 0.816065 6.20186i 0.0473529 0.359868i
\(298\) 0 0
\(299\) −1.40689 2.43681i −0.0813626 0.140924i
\(300\) 0 0
\(301\) −1.22713 + 2.28433i −0.0707305 + 0.131667i
\(302\) 0 0
\(303\) 12.3245 19.3466i 0.708026 1.11143i
\(304\) 0 0
\(305\) −5.96662 + 3.44483i −0.341647 + 0.197250i
\(306\) 0 0
\(307\) 19.4683i 1.11111i −0.831479 0.555556i \(-0.812505\pi\)
0.831479 0.555556i \(-0.187495\pi\)
\(308\) 0 0
\(309\) 19.2575 + 12.2678i 1.09552 + 0.697890i
\(310\) 0 0
\(311\) −11.0992 + 19.2243i −0.629375 + 1.09011i 0.358302 + 0.933606i \(0.383356\pi\)
−0.987677 + 0.156504i \(0.949978\pi\)
\(312\) 0 0
\(313\) −12.1557 + 7.01812i −0.687083 + 0.396688i −0.802518 0.596627i \(-0.796507\pi\)
0.115435 + 0.993315i \(0.463174\pi\)
\(314\) 0 0
\(315\) 4.88962 + 9.69739i 0.275499 + 0.546386i
\(316\) 0 0
\(317\) 11.2557 6.49848i 0.632183 0.364991i −0.149414 0.988775i \(-0.547739\pi\)
0.781597 + 0.623784i \(0.214405\pi\)
\(318\) 0 0
\(319\) −2.43283 + 4.21379i −0.136212 + 0.235927i
\(320\) 0 0
\(321\) 28.1712 14.6658i 1.57236 0.818564i
\(322\) 0 0
\(323\) 4.50833i 0.250850i
\(324\) 0 0
\(325\) −1.99981 + 1.15459i −0.110930 + 0.0640453i
\(326\) 0 0
\(327\) 30.2705 + 1.32096i 1.67396 + 0.0730491i
\(328\) 0 0
\(329\) −4.55703 7.36248i −0.251237 0.405906i
\(330\) 0 0
\(331\) 6.26139 + 10.8451i 0.344157 + 0.596098i 0.985200 0.171407i \(-0.0548313\pi\)
−0.641043 + 0.767505i \(0.721498\pi\)
\(332\) 0 0
\(333\) −30.5158 2.66840i −1.67225 0.146227i
\(334\) 0 0
\(335\) 3.00563 5.20590i 0.164215 0.284429i
\(336\) 0 0
\(337\) −10.9647 18.9915i −0.597287 1.03453i −0.993220 0.116251i \(-0.962912\pi\)
0.395933 0.918279i \(-0.370421\pi\)
\(338\) 0 0
\(339\) 0.360658 8.26468i 0.0195882 0.448876i
\(340\) 0 0
\(341\) −0.715356 + 1.23903i −0.0387387 + 0.0670974i
\(342\) 0 0
\(343\) −18.4421 + 1.70003i −0.995778 + 0.0917932i
\(344\) 0 0
\(345\) 7.61803 + 4.85298i 0.410141 + 0.261276i
\(346\) 0 0
\(347\) 1.33668 + 0.771734i 0.0717569 + 0.0414288i 0.535449 0.844567i \(-0.320142\pi\)
−0.463692 + 0.885996i \(0.653476\pi\)
\(348\) 0 0
\(349\) 5.10876 + 2.94954i 0.273465 + 0.157885i 0.630461 0.776221i \(-0.282866\pi\)
−0.356996 + 0.934106i \(0.616199\pi\)
\(350\) 0 0
\(351\) 3.54408 1.46828i 0.189169 0.0783712i
\(352\) 0 0
\(353\) 12.3268 0.656091 0.328046 0.944662i \(-0.393610\pi\)
0.328046 + 0.944662i \(0.393610\pi\)
\(354\) 0 0
\(355\) 12.1030i 0.642358i
\(356\) 0 0
\(357\) −6.35152 0.0823832i −0.336158 0.00436018i
\(358\) 0 0
\(359\) 4.03896 + 2.33189i 0.213168 + 0.123073i 0.602783 0.797905i \(-0.294059\pi\)
−0.389615 + 0.920978i \(0.627392\pi\)
\(360\) 0 0
\(361\) −4.21077 7.29327i −0.221619 0.383856i
\(362\) 0 0
\(363\) −8.88793 + 13.9519i −0.466495 + 0.732287i
\(364\) 0 0
\(365\) 14.0850 8.13195i 0.737240 0.425646i
\(366\) 0 0
\(367\) 23.4243i 1.22274i −0.791345 0.611370i \(-0.790619\pi\)
0.791345 0.611370i \(-0.209381\pi\)
\(368\) 0 0
\(369\) −2.30765 + 3.29598i −0.120131 + 0.171582i
\(370\) 0 0
\(371\) 14.9997 9.28414i 0.778747 0.482008i
\(372\) 0 0
\(373\) −12.0306 −0.622923 −0.311461 0.950259i \(-0.600818\pi\)
−0.311461 + 0.950259i \(0.600818\pi\)
\(374\) 0 0
\(375\) 10.3493 16.2459i 0.534435 0.838936i
\(376\) 0 0
\(377\) −2.98396 −0.153682
\(378\) 0 0
\(379\) 31.6065 1.62352 0.811758 0.583994i \(-0.198511\pi\)
0.811758 + 0.583994i \(0.198511\pi\)
\(380\) 0 0
\(381\) −4.48244 + 7.03637i −0.229642 + 0.360484i
\(382\) 0 0
\(383\) 22.2570 1.13728 0.568641 0.822586i \(-0.307470\pi\)
0.568641 + 0.822586i \(0.307470\pi\)
\(384\) 0 0
\(385\) 0.133513 + 4.35600i 0.00680447 + 0.222002i
\(386\) 0 0
\(387\) −2.92909 0.256129i −0.148894 0.0130198i
\(388\) 0 0
\(389\) 35.5575i 1.80283i −0.432951 0.901417i \(-0.642528\pi\)
0.432951 0.901417i \(-0.357472\pi\)
\(390\) 0 0
\(391\) −4.57517 + 2.64148i −0.231376 + 0.133585i
\(392\) 0 0
\(393\) −5.71505 + 8.97128i −0.288286 + 0.452541i
\(394\) 0 0
\(395\) −8.68582 15.0443i −0.437031 0.756960i
\(396\) 0 0
\(397\) −5.16204 2.98030i −0.259075 0.149577i 0.364837 0.931071i \(-0.381125\pi\)
−0.623913 + 0.781494i \(0.714458\pi\)
\(398\) 0 0
\(399\) −13.0033 + 7.28428i −0.650982 + 0.364670i
\(400\) 0 0
\(401\) 19.1472i 0.956165i 0.878315 + 0.478083i \(0.158668\pi\)
−0.878315 + 0.478083i \(0.841332\pi\)
\(402\) 0 0
\(403\) −0.877410 −0.0437069
\(404\) 0 0
\(405\) −7.91477 + 9.43417i −0.393288 + 0.468788i
\(406\) 0 0
\(407\) −10.6452 6.14603i −0.527665 0.304647i
\(408\) 0 0
\(409\) −8.83357 5.10006i −0.436792 0.252182i 0.265444 0.964126i \(-0.414481\pi\)
−0.702236 + 0.711944i \(0.747815\pi\)
\(410\) 0 0
\(411\) −5.14113 3.27510i −0.253593 0.161549i
\(412\) 0 0
\(413\) −16.8756 + 31.4143i −0.830392 + 1.54580i
\(414\) 0 0
\(415\) 4.29939 7.44676i 0.211049 0.365547i
\(416\) 0 0
\(417\) −1.10568 + 25.3372i −0.0541453 + 1.24077i
\(418\) 0 0
\(419\) −3.14385 5.44530i −0.153587 0.266021i 0.778957 0.627078i \(-0.215749\pi\)
−0.932544 + 0.361057i \(0.882416\pi\)
\(420\) 0 0
\(421\) −1.14723 + 1.98705i −0.0559123 + 0.0968430i −0.892627 0.450796i \(-0.851140\pi\)
0.836714 + 0.547639i \(0.184473\pi\)
\(422\) 0 0
\(423\) 5.63102 8.04270i 0.273790 0.391049i
\(424\) 0 0
\(425\) 2.16778 + 3.75471i 0.105153 + 0.182130i
\(426\) 0 0
\(427\) 11.3278 7.01137i 0.548189 0.339304i
\(428\) 0 0
\(429\) 1.53792 + 0.0671123i 0.0742514 + 0.00324021i
\(430\) 0 0
\(431\) −19.3251 + 11.1574i −0.930859 + 0.537432i −0.887083 0.461610i \(-0.847272\pi\)
−0.0437761 + 0.999041i \(0.513939\pi\)
\(432\) 0 0
\(433\) 36.2306i 1.74113i 0.492053 + 0.870565i \(0.336247\pi\)
−0.492053 + 0.870565i \(0.663753\pi\)
\(434\) 0 0
\(435\) 8.49637 4.42317i 0.407370 0.212075i
\(436\) 0 0
\(437\) −6.19803 + 10.7353i −0.296492 + 0.513539i
\(438\) 0 0
\(439\) 15.6320 9.02511i 0.746072 0.430745i −0.0782007 0.996938i \(-0.524917\pi\)
0.824273 + 0.566193i \(0.191584\pi\)
\(440\) 0 0
\(441\) −10.0248 18.4528i −0.477370 0.878702i
\(442\) 0 0
\(443\) −10.7590 + 6.21170i −0.511174 + 0.295127i −0.733316 0.679888i \(-0.762029\pi\)
0.222142 + 0.975014i \(0.428695\pi\)
\(444\) 0 0
\(445\) −8.28996 + 14.3586i −0.392982 + 0.680665i
\(446\) 0 0
\(447\) −21.6747 13.8076i −1.02518 0.653079i
\(448\) 0 0
\(449\) 19.5762i 0.923858i −0.886917 0.461929i \(-0.847158\pi\)
0.886917 0.461929i \(-0.152842\pi\)
\(450\) 0 0
\(451\) −1.39824 + 0.807277i −0.0658407 + 0.0380132i
\(452\) 0 0
\(453\) 2.72567 4.27865i 0.128063 0.201029i
\(454\) 0 0
\(455\) −2.27255 + 1.40661i −0.106539 + 0.0659427i
\(456\) 0 0
\(457\) −11.8799 20.5765i −0.555717 0.962530i −0.997847 0.0655789i \(-0.979111\pi\)
0.442131 0.896951i \(-0.354223\pi\)
\(458\) 0 0
\(459\) −2.75675 6.65411i −0.128674 0.310587i
\(460\) 0 0
\(461\) 10.6541 18.4535i 0.496213 0.859466i −0.503778 0.863833i \(-0.668057\pi\)
0.999990 + 0.00436764i \(0.00139027\pi\)
\(462\) 0 0
\(463\) −8.72943 15.1198i −0.405691 0.702677i 0.588711 0.808344i \(-0.299636\pi\)
−0.994402 + 0.105667i \(0.966302\pi\)
\(464\) 0 0
\(465\) 2.49829 1.30060i 0.115856 0.0603139i
\(466\) 0 0
\(467\) −5.11806 + 8.86473i −0.236835 + 0.410211i −0.959804 0.280669i \(-0.909444\pi\)
0.722969 + 0.690880i \(0.242777\pi\)
\(468\) 0 0
\(469\) −5.50067 + 10.2396i −0.253997 + 0.472823i
\(470\) 0 0
\(471\) 29.8347 15.5318i 1.37471 0.715668i
\(472\) 0 0
\(473\) −1.02179 0.589933i −0.0469822 0.0271252i
\(474\) 0 0
\(475\) 8.81014 + 5.08654i 0.404237 + 0.233386i
\(476\) 0 0
\(477\) 16.3856 + 11.4722i 0.750243 + 0.525276i
\(478\) 0 0
\(479\) −15.1247 −0.691063 −0.345531 0.938407i \(-0.612301\pi\)
−0.345531 + 0.938407i \(0.612301\pi\)
\(480\) 0 0
\(481\) 7.53832i 0.343718i
\(482\) 0 0
\(483\) −15.0111 8.92821i −0.683027 0.406247i
\(484\) 0 0
\(485\) 15.0211 + 8.67244i 0.682074 + 0.393795i
\(486\) 0 0
\(487\) 17.3450 + 30.0425i 0.785979 + 1.36136i 0.928412 + 0.371551i \(0.121174\pi\)
−0.142433 + 0.989804i \(0.545493\pi\)
\(488\) 0 0
\(489\) −7.90393 15.1825i −0.357428 0.686575i
\(490\) 0 0
\(491\) 11.2050 6.46922i 0.505676 0.291952i −0.225379 0.974271i \(-0.572362\pi\)
0.731054 + 0.682319i \(0.239029\pi\)
\(492\) 0 0
\(493\) 5.60247i 0.252322i
\(494\) 0 0
\(495\) −4.47847 + 2.08859i −0.201292 + 0.0938752i
\(496\) 0 0
\(497\) −0.716966 23.3917i −0.0321603 1.04926i
\(498\) 0 0
\(499\) 7.04669 0.315453 0.157727 0.987483i \(-0.449584\pi\)
0.157727 + 0.987483i \(0.449584\pi\)
\(500\) 0 0
\(501\) −33.1675 1.44738i −1.48182 0.0646641i
\(502\) 0 0
\(503\) 36.3853 1.62234 0.811170 0.584810i \(-0.198831\pi\)
0.811170 + 0.584810i \(0.198831\pi\)
\(504\) 0 0
\(505\) −18.1210 −0.806376
\(506\) 0 0
\(507\) −9.96155 19.1349i −0.442408 0.849811i
\(508\) 0 0
\(509\) 36.7611 1.62941 0.814704 0.579877i \(-0.196899\pi\)
0.814704 + 0.579877i \(0.196899\pi\)
\(510\) 0 0
\(511\) −26.7406 + 16.5512i −1.18294 + 0.732183i
\(512\) 0 0
\(513\) −13.4086 10.2873i −0.592003 0.454196i
\(514\) 0 0
\(515\) 18.0376i 0.794832i
\(516\) 0 0
\(517\) 3.41193 1.96988i 0.150057 0.0866353i
\(518\) 0 0
\(519\) −6.51666 0.284377i −0.286050 0.0124828i
\(520\) 0 0
\(521\) 13.9686 + 24.1943i 0.611976 + 1.05997i 0.990907 + 0.134548i \(0.0429583\pi\)
−0.378931 + 0.925425i \(0.623708\pi\)
\(522\) 0 0
\(523\) −15.0082 8.66497i −0.656261 0.378893i 0.134590 0.990901i \(-0.457028\pi\)
−0.790851 + 0.612009i \(0.790362\pi\)
\(524\) 0 0
\(525\) −7.32711 + 12.3191i −0.319781 + 0.537651i
\(526\) 0 0
\(527\) 1.64736i 0.0717603i
\(528\) 0 0
\(529\) 8.47405 0.368437
\(530\) 0 0
\(531\) −40.2810 3.52231i −1.74805 0.152855i
\(532\) 0 0
\(533\) −0.857498 0.495077i −0.0371424 0.0214442i
\(534\) 0 0
\(535\) −21.7283 12.5448i −0.939396 0.542361i
\(536\) 0 0
\(537\) 1.98301 45.4418i 0.0855731 1.96096i
\(538\) 0 0
\(539\) −0.516089 8.41104i −0.0222295 0.362289i
\(540\) 0 0
\(541\) 5.30043 9.18061i 0.227883 0.394705i −0.729297 0.684197i \(-0.760153\pi\)
0.957181 + 0.289491i \(0.0934862\pi\)
\(542\) 0 0
\(543\) −11.1049 7.07427i −0.476558 0.303586i
\(544\) 0 0
\(545\) −11.9679 20.7289i −0.512647 0.887930i
\(546\) 0 0
\(547\) 8.55403 14.8160i 0.365744 0.633487i −0.623151 0.782101i \(-0.714148\pi\)
0.988895 + 0.148614i \(0.0474813\pi\)
\(548\) 0 0
\(549\) 12.3743 + 8.66378i 0.528124 + 0.369761i
\(550\) 0 0
\(551\) 6.57288 + 11.3846i 0.280014 + 0.484999i
\(552\) 0 0
\(553\) 17.6785 + 28.5620i 0.751768 + 1.21458i
\(554\) 0 0
\(555\) 11.1742 + 21.4643i 0.474318 + 0.911107i
\(556\) 0 0
\(557\) 2.02890 1.17139i 0.0859673 0.0496333i −0.456400 0.889775i \(-0.650861\pi\)
0.542367 + 0.840141i \(0.317528\pi\)
\(558\) 0 0
\(559\) 0.723574i 0.0306039i
\(560\) 0 0
\(561\) 0.126005 2.88749i 0.00531995 0.121910i
\(562\) 0 0
\(563\) 21.0507 36.4608i 0.887180 1.53664i 0.0439857 0.999032i \(-0.485994\pi\)
0.843194 0.537609i \(-0.180672\pi\)
\(564\) 0 0
\(565\) −5.65958 + 3.26756i −0.238100 + 0.137467i
\(566\) 0 0
\(567\) 14.7382 18.7025i 0.618947 0.785433i
\(568\) 0 0
\(569\) −35.0375 + 20.2289i −1.46885 + 0.848040i −0.999390 0.0349152i \(-0.988884\pi\)
−0.469458 + 0.882955i \(0.655551\pi\)
\(570\) 0 0
\(571\) 0.160538 0.278060i 0.00671832 0.0116365i −0.862647 0.505807i \(-0.831195\pi\)
0.869365 + 0.494170i \(0.164528\pi\)
\(572\) 0 0
\(573\) 1.41307 32.3812i 0.0590317 1.35275i
\(574\) 0 0
\(575\) 11.9210i 0.497141i
\(576\) 0 0
\(577\) 20.9395 12.0894i 0.871721 0.503288i 0.00380123 0.999993i \(-0.498790\pi\)
0.867920 + 0.496704i \(0.165457\pi\)
\(578\) 0 0
\(579\) −10.9178 20.9717i −0.453727 0.871554i
\(580\) 0 0
\(581\) −7.86841 + 14.6472i −0.326436 + 0.607670i
\(582\) 0 0
\(583\) 4.01328 + 6.95120i 0.166213 + 0.287889i
\(584\) 0 0
\(585\) −2.48251 1.73811i −0.102639 0.0718620i
\(586\) 0 0
\(587\) 14.4257 24.9860i 0.595411 1.03128i −0.398077 0.917352i \(-0.630322\pi\)
0.993489 0.113931i \(-0.0363442\pi\)
\(588\) 0 0
\(589\) 1.93271 + 3.34755i 0.0796358 + 0.137933i
\(590\) 0 0
\(591\) 23.8563 + 15.1974i 0.981317 + 0.625137i
\(592\) 0 0
\(593\) 1.07472 1.86147i 0.0441335 0.0764414i −0.843115 0.537734i \(-0.819281\pi\)
0.887248 + 0.461292i \(0.152614\pi\)
\(594\) 0 0
\(595\) 2.64094 + 4.26679i 0.108268 + 0.174921i
\(596\) 0 0
\(597\) 0.901835 20.6661i 0.0369096 0.845806i
\(598\) 0 0
\(599\) 5.58798 + 3.22622i 0.228319 + 0.131820i 0.609796 0.792558i \(-0.291251\pi\)
−0.381477 + 0.924378i \(0.624585\pi\)
\(600\) 0 0
\(601\) 10.6341 + 6.13960i 0.433774 + 0.250439i 0.700953 0.713207i \(-0.252758\pi\)
−0.267179 + 0.963647i \(0.586092\pi\)
\(602\) 0 0
\(603\) −13.1298 1.14811i −0.534687 0.0467548i
\(604\) 0 0
\(605\) 13.0681 0.531295
\(606\) 0 0
\(607\) 38.3682i 1.55732i 0.627448 + 0.778658i \(0.284099\pi\)
−0.627448 + 0.778658i \(0.715901\pi\)
\(608\) 0 0
\(609\) −16.1591 + 9.05211i −0.654802 + 0.366810i
\(610\) 0 0
\(611\) 2.09243 + 1.20806i 0.0846506 + 0.0488731i
\(612\) 0 0
\(613\) 6.96098 + 12.0568i 0.281151 + 0.486969i 0.971669 0.236347i \(-0.0759503\pi\)
−0.690517 + 0.723316i \(0.742617\pi\)
\(614\) 0 0
\(615\) 3.17546 + 0.138572i 0.128047 + 0.00558777i
\(616\) 0 0
\(617\) 15.0193 8.67142i 0.604656 0.349098i −0.166215 0.986090i \(-0.553155\pi\)
0.770871 + 0.636991i \(0.219821\pi\)
\(618\) 0 0
\(619\) 29.6508i 1.19177i −0.803071 0.595884i \(-0.796802\pi\)
0.803071 0.595884i \(-0.203198\pi\)
\(620\) 0 0
\(621\) 2.58362 19.6348i 0.103677 0.787918i
\(622\) 0 0
\(623\) 15.1716 28.2424i 0.607839 1.13151i
\(624\) 0 0
\(625\) 0.422282 0.0168913
\(626\) 0 0
\(627\) −3.13158 6.01538i −0.125063 0.240231i
\(628\) 0 0
\(629\) −14.1534 −0.564334
\(630\) 0 0
\(631\) 16.6402 0.662437 0.331218 0.943554i \(-0.392540\pi\)
0.331218 + 0.943554i \(0.392540\pi\)
\(632\) 0 0
\(633\) −28.8367 1.25839i −1.14616 0.0500164i
\(634\) 0 0
\(635\) 6.59064 0.261541
\(636\) 0 0
\(637\) 4.30890 2.85321i 0.170725 0.113048i
\(638\) 0 0
\(639\) 24.0494 11.2157i 0.951380 0.443688i
\(640\) 0 0
\(641\) 15.5930i 0.615888i −0.951404 0.307944i \(-0.900359\pi\)
0.951404 0.307944i \(-0.0996410\pi\)
\(642\) 0 0
\(643\) −13.7474 + 7.93708i −0.542146 + 0.313008i −0.745948 0.666004i \(-0.768003\pi\)
0.203802 + 0.979012i \(0.434670\pi\)
\(644\) 0 0
\(645\) 1.07257 + 2.06027i 0.0422323 + 0.0811231i
\(646\) 0 0
\(647\) −1.18164 2.04666i −0.0464549 0.0804623i 0.841863 0.539691i \(-0.181459\pi\)
−0.888318 + 0.459229i \(0.848126\pi\)
\(648\) 0 0
\(649\) −14.0518 8.11281i −0.551581 0.318455i
\(650\) 0 0
\(651\) −4.75148 + 2.66170i −0.186225 + 0.104320i
\(652\) 0 0
\(653\) 18.6821i 0.731088i 0.930794 + 0.365544i \(0.119117\pi\)
−0.930794 + 0.365544i \(0.880883\pi\)
\(654\) 0 0
\(655\) 8.40297 0.328331
\(656\) 0 0
\(657\) −29.2112 20.4520i −1.13964 0.797907i
\(658\) 0 0
\(659\) 17.5543 + 10.1350i 0.683819 + 0.394803i 0.801293 0.598273i \(-0.204146\pi\)
−0.117473 + 0.993076i \(0.537479\pi\)
\(660\) 0 0
\(661\) 27.1506 + 15.6754i 1.05604 + 0.609703i 0.924333 0.381586i \(-0.124622\pi\)
0.131704 + 0.991289i \(0.457955\pi\)
\(662\) 0 0
\(663\) 1.57220 0.818479i 0.0610591 0.0317871i
\(664\) 0 0
\(665\) 10.3724 + 5.57199i 0.402225 + 0.216073i
\(666\) 0 0
\(667\) −7.70224 + 13.3407i −0.298232 + 0.516553i
\(668\) 0 0
\(669\) 4.08950 2.12898i 0.158109 0.0823110i
\(670\) 0 0
\(671\) 3.03082 + 5.24954i 0.117004 + 0.202656i
\(672\) 0 0
\(673\) 9.49210 16.4408i 0.365893 0.633746i −0.623026 0.782201i \(-0.714097\pi\)
0.988919 + 0.148455i \(0.0474301\pi\)
\(674\) 0 0
\(675\) −16.1137 2.12030i −0.620216 0.0816105i
\(676\) 0 0
\(677\) −12.8417 22.2424i −0.493545 0.854845i 0.506427 0.862283i \(-0.330966\pi\)
−0.999972 + 0.00743750i \(0.997633\pi\)
\(678\) 0 0
\(679\) −29.5455 15.8716i −1.13385 0.609097i
\(680\) 0 0
\(681\) 4.35584 6.83764i 0.166916 0.262019i
\(682\) 0 0
\(683\) 32.2147 18.5992i 1.23266 0.711677i 0.265078 0.964227i \(-0.414602\pi\)
0.967584 + 0.252550i \(0.0812691\pi\)
\(684\) 0 0
\(685\) 4.81545i 0.183989i
\(686\) 0 0
\(687\) 6.26900 + 3.99360i 0.239177 + 0.152365i
\(688\) 0 0
\(689\) −2.46122 + 4.26295i −0.0937648 + 0.162405i
\(690\) 0 0
\(691\) −38.8499 + 22.4300i −1.47792 + 0.853277i −0.999689 0.0249572i \(-0.992055\pi\)
−0.478231 + 0.878234i \(0.658722\pi\)
\(692\) 0 0
\(693\) 8.53194 4.30198i 0.324102 0.163419i
\(694\) 0 0
\(695\) 17.3507 10.0174i 0.658150 0.379983i
\(696\) 0 0
\(697\) −0.929521 + 1.60998i −0.0352081 + 0.0609823i
\(698\) 0 0
\(699\) −5.32478 + 2.77206i −0.201402 + 0.104849i
\(700\) 0 0
\(701\) 26.0630i 0.984387i −0.870486 0.492194i \(-0.836195\pi\)
0.870486 0.492194i \(-0.163805\pi\)
\(702\) 0 0
\(703\) −28.7607 + 16.6050i −1.08473 + 0.626269i
\(704\) 0 0
\(705\) −7.74862 0.338138i −0.291830 0.0127350i
\(706\) 0 0
\(707\) 35.0230 1.07347i 1.31718 0.0403721i
\(708\) 0 0
\(709\) −16.6461 28.8319i −0.625158 1.08281i −0.988510 0.151154i \(-0.951701\pi\)
0.363352 0.931652i \(-0.381632\pi\)
\(710\) 0 0
\(711\) −21.8450 + 31.2008i −0.819250 + 1.17012i
\(712\) 0 0
\(713\) −2.26478 + 3.92272i −0.0848169 + 0.146907i
\(714\) 0 0
\(715\) −0.608037 1.05315i −0.0227393 0.0393856i
\(716\) 0 0
\(717\) 1.96251 44.9720i 0.0732912 1.67951i
\(718\) 0 0
\(719\) −24.3474 + 42.1709i −0.908003 + 1.57271i −0.0911690 + 0.995835i \(0.529060\pi\)
−0.816834 + 0.576872i \(0.804273\pi\)
\(720\) 0 0
\(721\) 1.06853 + 34.8618i 0.0397941 + 1.29832i
\(722\) 0 0
\(723\) 21.5427 + 13.7235i 0.801182 + 0.510384i
\(724\) 0 0
\(725\) 10.9483 + 6.32099i 0.406609 + 0.234756i
\(726\) 0 0
\(727\) 8.76540 + 5.06071i 0.325091 + 0.187691i 0.653659 0.756789i \(-0.273233\pi\)
−0.328569 + 0.944480i \(0.606566\pi\)
\(728\) 0 0
\(729\) 26.0809 + 6.98460i 0.965961 + 0.258689i
\(730\) 0 0
\(731\) −1.35853 −0.0502471
\(732\) 0 0
\(733\) 18.6611i 0.689262i 0.938738 + 0.344631i \(0.111996\pi\)
−0.938738 + 0.344631i \(0.888004\pi\)
\(734\) 0 0
\(735\) −8.03959 + 14.5113i −0.296545 + 0.535256i
\(736\) 0 0
\(737\) −4.58025 2.64441i −0.168716 0.0974081i
\(738\) 0 0
\(739\) 13.5646 + 23.4946i 0.498983 + 0.864264i 0.999999 0.00117395i \(-0.000373681\pi\)
−0.501016 + 0.865438i \(0.667040\pi\)
\(740\) 0 0
\(741\) 2.23455 3.50772i 0.0820884 0.128859i
\(742\) 0 0
\(743\) −13.9378 + 8.04698i −0.511328 + 0.295215i −0.733379 0.679820i \(-0.762058\pi\)
0.222052 + 0.975035i \(0.428725\pi\)
\(744\) 0 0
\(745\) 20.3017i 0.743796i
\(746\) 0 0
\(747\) −18.7815 1.64231i −0.687178 0.0600891i
\(748\) 0 0
\(749\) 42.7380 + 22.9586i 1.56161 + 0.838888i
\(750\) 0 0
\(751\) −47.6328 −1.73815 −0.869073 0.494683i \(-0.835284\pi\)
−0.869073 + 0.494683i \(0.835284\pi\)
\(752\) 0 0
\(753\) −12.3363 + 19.3651i −0.449561 + 0.705704i
\(754\) 0 0
\(755\) −4.00761 −0.145852
\(756\) 0 0
\(757\) 50.4788 1.83468 0.917341 0.398102i \(-0.130331\pi\)
0.917341 + 0.398102i \(0.130331\pi\)
\(758\) 0 0
\(759\) 4.26974 6.70249i 0.154982 0.243285i
\(760\) 0 0
\(761\) 6.39506 0.231821 0.115910 0.993260i \(-0.463021\pi\)
0.115910 + 0.993260i \(0.463021\pi\)
\(762\) 0 0
\(763\) 24.3586 + 39.3544i 0.881839 + 1.42473i
\(764\) 0 0
\(765\) −3.26335 + 4.66100i −0.117987 + 0.168519i
\(766\) 0 0
\(767\) 9.95065i 0.359297i
\(768\) 0 0
\(769\) 21.1676 12.2211i 0.763322 0.440704i −0.0671654 0.997742i \(-0.521396\pi\)
0.830487 + 0.557038i \(0.188062\pi\)
\(770\) 0 0
\(771\) −23.2573 + 36.5084i −0.837590 + 1.31482i
\(772\) 0 0
\(773\) 8.32573 + 14.4206i 0.299456 + 0.518672i 0.976011 0.217719i \(-0.0698616\pi\)
−0.676556 + 0.736391i \(0.736528\pi\)
\(774\) 0 0
\(775\) 3.21926 + 1.85864i 0.115639 + 0.0667643i
\(776\) 0 0
\(777\) −22.8682 40.8226i −0.820392 1.46450i
\(778\) 0 0
\(779\) 4.36210i 0.156289i
\(780\) 0 0
\(781\) 10.6484 0.381030
\(782\) 0 0
\(783\) −16.6627 12.7840i −0.595477 0.456861i
\(784\) 0 0
\(785\) −23.0114 13.2856i −0.821310 0.474184i
\(786\) 0 0
\(787\) −1.21582 0.701955i −0.0433394 0.0250220i 0.478174 0.878265i \(-0.341299\pi\)
−0.521513 + 0.853243i \(0.674632\pi\)
\(788\) 0 0
\(789\) 21.2726 + 13.5515i 0.757326 + 0.482446i
\(790\) 0 0
\(791\) 10.7448 6.65056i 0.382043 0.236467i
\(792\) 0 0
\(793\) −1.85871 + 3.21937i −0.0660046 + 0.114323i
\(794\) 0 0
\(795\) 0.688895 15.7864i 0.0244326 0.559887i
\(796\) 0 0
\(797\) 14.7211 + 25.4977i 0.521448 + 0.903174i 0.999689 + 0.0249452i \(0.00794114\pi\)
−0.478241 + 0.878229i \(0.658726\pi\)
\(798\) 0 0
\(799\) 2.26818 3.92860i 0.0802423 0.138984i
\(800\) 0 0
\(801\) 36.2139 + 3.16667i 1.27955 + 0.111889i
\(802\) 0 0
\(803\) −7.15464 12.3922i −0.252482 0.437311i
\(804\) 0 0
\(805\) 0.422697 + 13.7909i 0.0148981 + 0.486065i
\(806\) 0 0
\(807\) 29.9114 + 1.30528i 1.05293 + 0.0459482i
\(808\) 0 0
\(809\) 41.2228 23.8000i 1.44932 0.836764i 0.450877 0.892586i \(-0.351111\pi\)
0.998441 + 0.0558222i \(0.0177780\pi\)
\(810\) 0 0
\(811\) 24.9460i 0.875973i −0.898981 0.437987i \(-0.855692\pi\)
0.898981 0.437987i \(-0.144308\pi\)
\(812\) 0 0
\(813\) 5.98369 3.11508i 0.209857 0.109251i
\(814\) 0 0
\(815\) −6.76087 + 11.7102i −0.236823 + 0.410189i
\(816\) 0 0
\(817\) −2.76062 + 1.59385i −0.0965820 + 0.0557616i
\(818\) 0 0
\(819\) 4.90099 + 3.21223i 0.171254 + 0.112244i
\(820\) 0 0
\(821\) −5.91506 + 3.41506i −0.206437 + 0.119186i −0.599654 0.800259i \(-0.704695\pi\)
0.393218 + 0.919445i \(0.371362\pi\)
\(822\) 0 0
\(823\) 3.68905 6.38962i 0.128592 0.222728i −0.794539 0.607213i \(-0.792288\pi\)
0.923131 + 0.384485i \(0.125621\pi\)
\(824\) 0 0
\(825\) −5.50053 3.50405i −0.191504 0.121995i
\(826\) 0 0
\(827\) 21.1804i 0.736516i −0.929724 0.368258i \(-0.879954\pi\)
0.929724 0.368258i \(-0.120046\pi\)
\(828\) 0 0
\(829\) −1.60383 + 0.925970i −0.0557032 + 0.0321603i −0.527593 0.849497i \(-0.676905\pi\)
0.471890 + 0.881658i \(0.343572\pi\)
\(830\) 0 0
\(831\) −18.3753 + 28.8449i −0.637432 + 1.00062i
\(832\) 0 0
\(833\) −5.35698 8.09009i −0.185608 0.280305i
\(834\) 0 0
\(835\) 13.1132 + 22.7128i 0.453802 + 0.786009i
\(836\) 0 0
\(837\) −4.89954 3.75903i −0.169353 0.129931i
\(838\) 0 0
\(839\) −7.90568 + 13.6930i −0.272934 + 0.472736i −0.969612 0.244648i \(-0.921328\pi\)
0.696678 + 0.717384i \(0.254661\pi\)
\(840\) 0 0
\(841\) −6.33194 10.9672i −0.218343 0.378181i
\(842\) 0 0
\(843\) 2.50837 1.30585i 0.0863929 0.0449757i
\(844\) 0 0
\(845\) −8.52092 + 14.7587i −0.293129 + 0.507714i
\(846\) 0 0
\(847\) −25.2571 + 0.774142i −0.867845 + 0.0265998i
\(848\) 0 0
\(849\) −41.0767 + 21.3843i −1.40975 + 0.733909i
\(850\) 0 0
\(851\) −33.7023 19.4581i −1.15530 0.667013i
\(852\) 0 0
\(853\) −8.16324 4.71305i −0.279504 0.161372i 0.353695 0.935361i \(-0.384925\pi\)
−0.633199 + 0.773989i \(0.718258\pi\)
\(854\) 0 0
\(855\) −1.16300 + 13.3000i −0.0397738 + 0.454852i
\(856\) 0 0
\(857\) −30.8222 −1.05287 −0.526433 0.850217i \(-0.676471\pi\)
−0.526433 + 0.850217i \(0.676471\pi\)
\(858\) 0 0
\(859\) 1.53925i 0.0525185i −0.999655 0.0262592i \(-0.991640\pi\)
0.999655 0.0262592i \(-0.00835953\pi\)
\(860\) 0 0
\(861\) −6.14551 0.0797110i −0.209438 0.00271655i
\(862\) 0 0
\(863\) 0.645937 + 0.372932i 0.0219879 + 0.0126947i 0.510954 0.859608i \(-0.329292\pi\)
−0.488966 + 0.872303i \(0.662626\pi\)
\(864\) 0 0
\(865\) 2.57645 + 4.46255i 0.0876020 + 0.151731i
\(866\) 0 0
\(867\) 12.0600 + 23.1658i 0.409579 + 0.786751i
\(868\) 0 0
\(869\) −13.2362 + 7.64195i −0.449009 + 0.259235i
\(870\) 0 0
\(871\) 3.24346i 0.109901i
\(872\) 0 0
\(873\) 3.31277 37.8847i 0.112120 1.28220i
\(874\) 0 0
\(875\) 29.4099 0.901427i 0.994236 0.0304738i
\(876\) 0 0
\(877\) 3.47691 0.117407 0.0587034 0.998275i \(-0.481303\pi\)
0.0587034 + 0.998275i \(0.481303\pi\)
\(878\) 0 0
\(879\) 19.6867 + 0.859096i 0.664015 + 0.0289766i
\(880\) 0 0
\(881\) 49.4437 1.66580 0.832900 0.553424i \(-0.186679\pi\)
0.832900 + 0.553424i \(0.186679\pi\)
\(882\) 0 0
\(883\) −3.02160 −0.101685 −0.0508424 0.998707i \(-0.516191\pi\)
−0.0508424 + 0.998707i \(0.516191\pi\)
\(884\) 0 0
\(885\) 14.7500 + 28.3330i 0.495817 + 0.952403i
\(886\) 0 0
\(887\) 35.5134 1.19242 0.596212 0.802827i \(-0.296672\pi\)
0.596212 + 0.802827i \(0.296672\pi\)
\(888\) 0 0
\(889\) −12.7379 + 0.390423i −0.427216 + 0.0130944i
\(890\) 0 0
\(891\) 8.30036 + 6.96356i 0.278073 + 0.233288i
\(892\) 0 0
\(893\) 10.6442i 0.356195i
\(894\) 0 0
\(895\) −31.1181 + 17.9660i −1.04016 + 0.600539i
\(896\) 0 0
\(897\) 4.86898 + 0.212474i 0.162570 + 0.00709432i
\(898\) 0 0
\(899\) 2.40176 + 4.15997i 0.0801031 + 0.138743i
\(900\) 0 0
\(901\) 8.00381 + 4.62100i 0.266646 + 0.153948i
\(902\) 0 0
\(903\) −2.19503 3.91840i −0.0730460 0.130396i
\(904\) 0 0
\(905\) 10.4015i 0.345756i
\(906\) 0 0
\(907\) 16.1292 0.535561 0.267781 0.963480i \(-0.413710\pi\)
0.267781 + 0.963480i \(0.413710\pi\)
\(908\) 0 0
\(909\) 16.7927 + 36.0078i 0.556978 + 1.19430i
\(910\) 0 0
\(911\) −16.7485 9.66977i −0.554903 0.320374i 0.196194 0.980565i \(-0.437142\pi\)
−0.751097 + 0.660191i \(0.770475\pi\)
\(912\) 0 0
\(913\) −6.55180 3.78268i −0.216833 0.125188i
\(914\) 0 0
\(915\) 0.520252 11.9219i 0.0171990 0.394125i
\(916\) 0 0
\(917\) −16.2407 + 0.497784i −0.536314 + 0.0164383i
\(918\) 0 0
\(919\) 18.3378 31.7620i 0.604908 1.04773i −0.387158 0.922014i \(-0.626543\pi\)
0.992066 0.125718i \(-0.0401236\pi\)
\(920\) 0 0
\(921\) 28.4396 + 18.1171i 0.937117 + 0.596980i
\(922\) 0 0
\(923\) 3.26516 + 5.65542i 0.107474 + 0.186151i
\(924\) 0 0
\(925\) −15.9686 + 27.6585i −0.525046 + 0.909405i
\(926\) 0 0
\(927\) −35.8420 + 16.7154i −1.17721 + 0.549005i
\(928\) 0 0
\(929\) −12.4172 21.5073i −0.407397 0.705632i 0.587200 0.809442i \(-0.300230\pi\)
−0.994597 + 0.103810i \(0.966897\pi\)
\(930\) 0 0
\(931\) −20.3771 10.1547i −0.667833 0.332807i
\(932\) 0 0
\(933\) −17.7543 34.1039i −0.581251 1.11651i
\(934\) 0 0
\(935\) −1.97732 + 1.14161i −0.0646654 + 0.0373346i
\(936\) 0 0
\(937\) 53.1227i 1.73544i 0.497050 + 0.867722i \(0.334416\pi\)
−0.497050 + 0.867722i \(0.665584\pi\)
\(938\) 0 0
\(939\) 1.05991 24.2884i 0.0345887 0.792621i
\(940\) 0 0
\(941\) −17.2471 + 29.8729i −0.562240 + 0.973829i 0.435060 + 0.900401i \(0.356727\pi\)
−0.997301 + 0.0734277i \(0.976606\pi\)
\(942\) 0 0
\(943\) −4.42678 + 2.55580i −0.144156 + 0.0832283i
\(944\) 0 0
\(945\) −18.7164 1.88152i −0.608844 0.0612059i
\(946\) 0 0
\(947\) −17.2611 + 9.96572i −0.560912 + 0.323842i −0.753511 0.657435i \(-0.771641\pi\)
0.192600 + 0.981277i \(0.438308\pi\)
\(948\) 0 0
\(949\) 4.38771 7.59974i 0.142431 0.246698i
\(950\) 0 0
\(951\) −0.981428 + 22.4900i −0.0318250 + 0.729288i
\(952\) 0 0
\(953\) 37.0472i 1.20008i 0.799971 + 0.600039i \(0.204848\pi\)
−0.799971 + 0.600039i \(0.795152\pi\)
\(954\) 0 0
\(955\) −22.1744 + 12.8024i −0.717545 + 0.414275i
\(956\) 0 0
\(957\) −3.89159 7.47527i −0.125797 0.241641i
\(958\) 0 0
\(959\) −0.285263 9.30696i −0.00921161 0.300537i
\(960\) 0 0
\(961\) −14.7938 25.6236i −0.477219 0.826567i
\(962\) 0 0
\(963\) −4.79198 + 54.8009i −0.154419 + 1.76593i
\(964\) 0 0
\(965\) −9.33886 + 16.1754i −0.300629 + 0.520704i
\(966\) 0 0
\(967\) −16.5292 28.6294i −0.531543 0.920659i −0.999322 0.0368136i \(-0.988279\pi\)
0.467780 0.883845i \(-0.345054\pi\)
\(968\) 0 0
\(969\) −6.58585 4.19544i −0.211568 0.134777i
\(970\) 0 0
\(971\) −13.1441 + 22.7662i −0.421813 + 0.730602i −0.996117 0.0880404i \(-0.971940\pi\)
0.574304 + 0.818642i \(0.305273\pi\)
\(972\) 0 0
\(973\) −32.9407 + 20.3888i −1.05603 + 0.653635i
\(974\) 0 0
\(975\) 0.174371 3.99582i 0.00558435 0.127969i
\(976\) 0 0
\(977\) −24.7246 14.2748i −0.791011 0.456690i 0.0493073 0.998784i \(-0.484299\pi\)
−0.840318 + 0.542093i \(0.817632\pi\)
\(978\) 0 0
\(979\) 12.6330 + 7.29366i 0.403752 + 0.233106i
\(980\) 0 0
\(981\) −30.0993 + 42.9904i −0.960997 + 1.37258i
\(982\) 0 0
\(983\) −3.12317 −0.0996138 −0.0498069 0.998759i \(-0.515861\pi\)
−0.0498069 + 0.998759i \(0.515861\pi\)
\(984\) 0 0
\(985\) 22.3451i 0.711973i
\(986\) 0 0
\(987\) 14.9960 + 0.194507i 0.477328 + 0.00619124i
\(988\) 0 0
\(989\) −3.23496 1.86770i −0.102866 0.0593895i
\(990\) 0 0
\(991\) 9.31103 + 16.1272i 0.295775 + 0.512297i 0.975165 0.221481i \(-0.0710889\pi\)
−0.679390 + 0.733777i \(0.737756\pi\)
\(992\) 0 0
\(993\) −21.6695 0.945622i −0.687660 0.0300084i
\(994\) 0 0
\(995\) −14.1519 + 8.17062i −0.448646 + 0.259026i
\(996\) 0 0
\(997\) 0.0372304i 0.00117910i 1.00000 0.000589549i \(0.000187659\pi\)
−1.00000 0.000589549i \(0.999812\pi\)
\(998\) 0 0
\(999\) 32.2959 42.0948i 1.02180 1.33182i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.929.9 48
3.2 odd 2 3024.2.df.e.1601.9 48
4.3 odd 2 504.2.cx.a.425.16 yes 48
7.3 odd 6 1008.2.ca.e.353.1 48
9.4 even 3 3024.2.ca.e.2609.9 48
9.5 odd 6 1008.2.ca.e.257.1 48
12.11 even 2 1512.2.cx.a.89.9 48
21.17 even 6 3024.2.ca.e.2033.9 48
28.3 even 6 504.2.bs.a.353.24 yes 48
36.23 even 6 504.2.bs.a.257.24 48
36.31 odd 6 1512.2.bs.a.1097.9 48
63.31 odd 6 3024.2.df.e.17.9 48
63.59 even 6 inner 1008.2.df.e.689.9 48
84.59 odd 6 1512.2.bs.a.521.9 48
252.31 even 6 1512.2.cx.a.17.9 48
252.59 odd 6 504.2.cx.a.185.16 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.24 48 36.23 even 6
504.2.bs.a.353.24 yes 48 28.3 even 6
504.2.cx.a.185.16 yes 48 252.59 odd 6
504.2.cx.a.425.16 yes 48 4.3 odd 2
1008.2.ca.e.257.1 48 9.5 odd 6
1008.2.ca.e.353.1 48 7.3 odd 6
1008.2.df.e.689.9 48 63.59 even 6 inner
1008.2.df.e.929.9 48 1.1 even 1 trivial
1512.2.bs.a.521.9 48 84.59 odd 6
1512.2.bs.a.1097.9 48 36.31 odd 6
1512.2.cx.a.17.9 48 252.31 even 6
1512.2.cx.a.89.9 48 12.11 even 2
3024.2.ca.e.2033.9 48 21.17 even 6
3024.2.ca.e.2609.9 48 9.4 even 3
3024.2.df.e.17.9 48 63.31 odd 6
3024.2.df.e.1601.9 48 3.2 odd 2