Properties

Label 1512.2.cx.a.89.9
Level $1512$
Weight $2$
Character 1512.89
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.9
Character \(\chi\) \(=\) 1512.89
Dual form 1512.2.cx.a.17.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.36828 q^{5} +(2.64451 - 0.0810554i) q^{7} -1.20384i q^{11} +(0.639364 - 0.369137i) q^{13} +(0.693066 + 1.20043i) q^{17} +(2.81671 + 1.62623i) q^{19} -3.81129i q^{23} -3.12781 q^{25} +(3.50030 + 2.02090i) q^{29} +(1.02924 + 0.594230i) q^{31} +(-3.61843 + 0.110906i) q^{35} +(5.10537 - 8.84276i) q^{37} +(0.670586 + 1.16149i) q^{41} +(-0.490044 + 0.848782i) q^{43} +(1.63634 + 2.83422i) q^{47} +(6.98686 - 0.428704i) q^{49} +(5.77421 - 3.33374i) q^{53} +1.64718i q^{55} +(6.73912 - 11.6725i) q^{59} +(-4.36067 + 2.51764i) q^{61} +(-0.874829 + 0.505083i) q^{65} +(-2.19665 + 3.80471i) q^{67} +8.84538i q^{71} +(10.2939 - 5.94320i) q^{73} +(-0.0975775 - 3.18356i) q^{77} +(6.34799 + 10.9950i) q^{79} +(3.14219 - 5.44243i) q^{83} +(-0.948308 - 1.64252i) q^{85} +(6.05868 - 10.4939i) q^{89} +(1.66088 - 1.02801i) q^{91} +(-3.85404 - 2.22513i) q^{95} +(10.9781 + 6.33821i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.36828 −0.611913 −0.305956 0.952046i \(-0.598976\pi\)
−0.305956 + 0.952046i \(0.598976\pi\)
\(6\) 0 0
\(7\) 2.64451 0.0810554i 0.999531 0.0306361i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.20384i 0.362971i −0.983394 0.181485i \(-0.941910\pi\)
0.983394 0.181485i \(-0.0580905\pi\)
\(12\) 0 0
\(13\) 0.639364 0.369137i 0.177328 0.102380i −0.408709 0.912665i \(-0.634021\pi\)
0.586037 + 0.810285i \(0.300687\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.693066 + 1.20043i 0.168093 + 0.291146i 0.937749 0.347313i \(-0.112906\pi\)
−0.769656 + 0.638459i \(0.779572\pi\)
\(18\) 0 0
\(19\) 2.81671 + 1.62623i 0.646197 + 0.373082i 0.786998 0.616956i \(-0.211634\pi\)
−0.140801 + 0.990038i \(0.544968\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.81129i 0.794709i −0.917665 0.397355i \(-0.869928\pi\)
0.917665 0.397355i \(-0.130072\pi\)
\(24\) 0 0
\(25\) −3.12781 −0.625563
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.50030 + 2.02090i 0.649989 + 0.375271i 0.788452 0.615096i \(-0.210883\pi\)
−0.138463 + 0.990368i \(0.544216\pi\)
\(30\) 0 0
\(31\) 1.02924 + 0.594230i 0.184856 + 0.106727i 0.589572 0.807716i \(-0.299296\pi\)
−0.404716 + 0.914442i \(0.632630\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.61843 + 0.110906i −0.611626 + 0.0187466i
\(36\) 0 0
\(37\) 5.10537 8.84276i 0.839317 1.45374i −0.0511491 0.998691i \(-0.516288\pi\)
0.890466 0.455049i \(-0.150378\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.670586 + 1.16149i 0.104728 + 0.181394i 0.913627 0.406553i \(-0.133269\pi\)
−0.808899 + 0.587948i \(0.799936\pi\)
\(42\) 0 0
\(43\) −0.490044 + 0.848782i −0.0747311 + 0.129438i −0.900969 0.433883i \(-0.857143\pi\)
0.826238 + 0.563321i \(0.190476\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.63634 + 2.83422i 0.238684 + 0.413413i 0.960337 0.278842i \(-0.0899506\pi\)
−0.721653 + 0.692255i \(0.756617\pi\)
\(48\) 0 0
\(49\) 6.98686 0.428704i 0.998123 0.0612434i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.77421 3.33374i 0.793148 0.457924i −0.0479213 0.998851i \(-0.515260\pi\)
0.841070 + 0.540927i \(0.181926\pi\)
\(54\) 0 0
\(55\) 1.64718i 0.222106i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.73912 11.6725i 0.877359 1.51963i 0.0231309 0.999732i \(-0.492637\pi\)
0.854228 0.519898i \(-0.174030\pi\)
\(60\) 0 0
\(61\) −4.36067 + 2.51764i −0.558327 + 0.322350i −0.752474 0.658622i \(-0.771140\pi\)
0.194147 + 0.980972i \(0.437806\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.874829 + 0.505083i −0.108509 + 0.0626478i
\(66\) 0 0
\(67\) −2.19665 + 3.80471i −0.268364 + 0.464819i −0.968439 0.249249i \(-0.919816\pi\)
0.700076 + 0.714069i \(0.253150\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.84538i 1.04975i 0.851178 + 0.524877i \(0.175889\pi\)
−0.851178 + 0.524877i \(0.824111\pi\)
\(72\) 0 0
\(73\) 10.2939 5.94320i 1.20481 0.695599i 0.243191 0.969978i \(-0.421806\pi\)
0.961621 + 0.274380i \(0.0884726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.0975775 3.18356i −0.0111200 0.362800i
\(78\) 0 0
\(79\) 6.34799 + 10.9950i 0.714205 + 1.23704i 0.963265 + 0.268551i \(0.0865449\pi\)
−0.249060 + 0.968488i \(0.580122\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.14219 5.44243i 0.344900 0.597384i −0.640436 0.768012i \(-0.721246\pi\)
0.985336 + 0.170628i \(0.0545795\pi\)
\(84\) 0 0
\(85\) −0.948308 1.64252i −0.102858 0.178156i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.05868 10.4939i 0.642219 1.11236i −0.342718 0.939438i \(-0.611347\pi\)
0.984936 0.172917i \(-0.0553193\pi\)
\(90\) 0 0
\(91\) 1.66088 1.02801i 0.174108 0.107765i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.85404 2.22513i −0.395416 0.228294i
\(96\) 0 0
\(97\) 10.9781 + 6.33821i 1.11466 + 0.643548i 0.940032 0.341087i \(-0.110795\pi\)
0.174626 + 0.984635i \(0.444128\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.2437 1.31779 0.658897 0.752233i \(-0.271023\pi\)
0.658897 + 0.752233i \(0.271023\pi\)
\(102\) 0 0
\(103\) 13.1827i 1.29893i 0.760391 + 0.649465i \(0.225007\pi\)
−0.760391 + 0.649465i \(0.774993\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.8800 9.16833i −1.53518 0.886336i −0.999111 0.0421621i \(-0.986575\pi\)
−0.536069 0.844174i \(-0.680091\pi\)
\(108\) 0 0
\(109\) −8.74665 15.1496i −0.837777 1.45107i −0.891749 0.452531i \(-0.850521\pi\)
0.0539715 0.998542i \(-0.482812\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.13627 2.38808i 0.389108 0.224652i −0.292666 0.956215i \(-0.594542\pi\)
0.681774 + 0.731563i \(0.261209\pi\)
\(114\) 0 0
\(115\) 5.21491i 0.486293i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.93012 + 3.11836i 0.176934 + 0.285860i
\(120\) 0 0
\(121\) 9.55078 0.868252
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1211 0.994703
\(126\) 0 0
\(127\) −4.81674 −0.427416 −0.213708 0.976898i \(-0.568554\pi\)
−0.213708 + 0.976898i \(0.568554\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.14127 0.536566 0.268283 0.963340i \(-0.413544\pi\)
0.268283 + 0.963340i \(0.413544\pi\)
\(132\) 0 0
\(133\) 7.58063 + 4.07226i 0.657324 + 0.353110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.51935i 0.300678i −0.988634 0.150339i \(-0.951963\pi\)
0.988634 0.150339i \(-0.0480366\pi\)
\(138\) 0 0
\(139\) −12.6807 + 7.32119i −1.07556 + 0.620975i −0.929695 0.368329i \(-0.879930\pi\)
−0.145865 + 0.989304i \(0.546597\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.444381 0.769691i −0.0371610 0.0643648i
\(144\) 0 0
\(145\) −4.78939 2.76515i −0.397737 0.229633i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.8374i 1.21553i −0.794118 0.607763i \(-0.792067\pi\)
0.794118 0.607763i \(-0.207933\pi\)
\(150\) 0 0
\(151\) 2.92894 0.238354 0.119177 0.992873i \(-0.461974\pi\)
0.119177 + 0.992873i \(0.461974\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.40828 0.813072i −0.113116 0.0653075i
\(156\) 0 0
\(157\) −16.8177 9.70973i −1.34220 0.774920i −0.355071 0.934839i \(-0.615543\pi\)
−0.987130 + 0.159919i \(0.948877\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.308926 10.0790i −0.0243468 0.794336i
\(162\) 0 0
\(163\) 4.94115 8.55832i 0.387021 0.670340i −0.605027 0.796205i \(-0.706838\pi\)
0.992047 + 0.125866i \(0.0401709\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.58375 + 16.5995i 0.741613 + 1.28451i 0.951761 + 0.306841i \(0.0992721\pi\)
−0.210148 + 0.977670i \(0.567395\pi\)
\(168\) 0 0
\(169\) −6.22748 + 10.7863i −0.479037 + 0.829716i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.88299 3.26143i −0.143161 0.247962i 0.785524 0.618831i \(-0.212393\pi\)
−0.928685 + 0.370869i \(0.879060\pi\)
\(174\) 0 0
\(175\) −8.27153 + 0.253526i −0.625269 + 0.0191648i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.7425 + 13.1304i −1.69986 + 0.981412i −0.753971 + 0.656908i \(0.771864\pi\)
−0.945884 + 0.324504i \(0.894802\pi\)
\(180\) 0 0
\(181\) 7.60186i 0.565042i 0.959261 + 0.282521i \(0.0911706\pi\)
−0.959261 + 0.282521i \(0.908829\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.98557 + 12.0994i −0.513589 + 0.889562i
\(186\) 0 0
\(187\) 1.44512 0.834339i 0.105677 0.0610129i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.2060 + 9.35655i −1.17263 + 0.677016i −0.954297 0.298859i \(-0.903394\pi\)
−0.218329 + 0.975875i \(0.570061\pi\)
\(192\) 0 0
\(193\) −6.82526 + 11.8217i −0.491293 + 0.850945i −0.999950 0.0100249i \(-0.996809\pi\)
0.508657 + 0.860969i \(0.330142\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.3308i 1.16352i 0.813361 + 0.581760i \(0.197636\pi\)
−0.813361 + 0.581760i \(0.802364\pi\)
\(198\) 0 0
\(199\) 10.3429 5.97146i 0.733186 0.423305i −0.0864004 0.996260i \(-0.527536\pi\)
0.819587 + 0.572955i \(0.194203\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.42038 + 5.06057i 0.661181 + 0.355182i
\(204\) 0 0
\(205\) −0.917549 1.58924i −0.0640844 0.110997i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.95771 3.39086i 0.135418 0.234551i
\(210\) 0 0
\(211\) −8.33236 14.4321i −0.573623 0.993544i −0.996190 0.0872125i \(-0.972204\pi\)
0.422567 0.906332i \(-0.361129\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.670517 1.16137i 0.0457289 0.0792048i
\(216\) 0 0
\(217\) 2.76999 + 1.48802i 0.188039 + 0.101014i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.886244 + 0.511673i 0.0596152 + 0.0344188i
\(222\) 0 0
\(223\) 2.30524 + 1.33093i 0.154370 + 0.0891258i 0.575195 0.818016i \(-0.304926\pi\)
−0.420825 + 0.907142i \(0.638259\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.68069 −0.310669 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(228\) 0 0
\(229\) 4.29143i 0.283586i −0.989896 0.141793i \(-0.954713\pi\)
0.989896 0.141793i \(-0.0452867\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00156 1.73295i −0.196639 0.113530i 0.398448 0.917191i \(-0.369549\pi\)
−0.595087 + 0.803661i \(0.702882\pi\)
\(234\) 0 0
\(235\) −2.23896 3.87800i −0.146054 0.252973i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.5074 + 12.9946i −1.45588 + 0.840554i −0.998805 0.0488730i \(-0.984437\pi\)
−0.457077 + 0.889427i \(0.651104\pi\)
\(240\) 0 0
\(241\) 14.7470i 0.949939i −0.880002 0.474970i \(-0.842459\pi\)
0.880002 0.474970i \(-0.157541\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.55997 + 0.586586i −0.610764 + 0.0374756i
\(246\) 0 0
\(247\) 2.40120 0.152785
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.2564 0.836734 0.418367 0.908278i \(-0.362603\pi\)
0.418367 + 0.908278i \(0.362603\pi\)
\(252\) 0 0
\(253\) −4.58818 −0.288456
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.9917 −1.55894 −0.779471 0.626438i \(-0.784512\pi\)
−0.779471 + 0.626438i \(0.784512\pi\)
\(258\) 0 0
\(259\) 12.7844 23.7986i 0.794386 1.47877i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.5621i 0.897940i −0.893547 0.448970i \(-0.851791\pi\)
0.893547 0.448970i \(-0.148209\pi\)
\(264\) 0 0
\(265\) −7.90073 + 4.56149i −0.485338 + 0.280210i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.64288 + 14.9699i 0.526966 + 0.912731i 0.999506 + 0.0314225i \(0.0100037\pi\)
−0.472540 + 0.881309i \(0.656663\pi\)
\(270\) 0 0
\(271\) 3.37299 + 1.94740i 0.204895 + 0.118296i 0.598936 0.800797i \(-0.295590\pi\)
−0.394042 + 0.919092i \(0.628924\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.76538i 0.227061i
\(276\) 0 0
\(277\) 19.7457 1.18641 0.593203 0.805053i \(-0.297863\pi\)
0.593203 + 0.805053i \(0.297863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41396 + 0.816352i 0.0843499 + 0.0486994i 0.541582 0.840648i \(-0.317826\pi\)
−0.457232 + 0.889348i \(0.651159\pi\)
\(282\) 0 0
\(283\) −23.1548 13.3684i −1.37641 0.794671i −0.384686 0.923048i \(-0.625690\pi\)
−0.991726 + 0.128376i \(0.959023\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.86752 + 3.01722i 0.110236 + 0.178101i
\(288\) 0 0
\(289\) 7.53932 13.0585i 0.443489 0.768146i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.68847 + 9.85271i 0.332324 + 0.575602i 0.982967 0.183782i \(-0.0588340\pi\)
−0.650643 + 0.759383i \(0.725501\pi\)
\(294\) 0 0
\(295\) −9.22100 + 15.9712i −0.536867 + 0.929882i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.40689 2.43681i −0.0813626 0.140924i
\(300\) 0 0
\(301\) −1.22713 + 2.28433i −0.0707305 + 0.131667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.96662 3.44483i 0.341647 0.197250i
\(306\) 0 0
\(307\) 19.4683i 1.11111i 0.831479 + 0.555556i \(0.187495\pi\)
−0.831479 + 0.555556i \(0.812505\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.0992 + 19.2243i −0.629375 + 1.09011i 0.358302 + 0.933606i \(0.383356\pi\)
−0.987677 + 0.156504i \(0.949978\pi\)
\(312\) 0 0
\(313\) −12.1557 + 7.01812i −0.687083 + 0.396688i −0.802518 0.596627i \(-0.796507\pi\)
0.115435 + 0.993315i \(0.463174\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.2557 + 6.49848i −0.632183 + 0.364991i −0.781597 0.623784i \(-0.785595\pi\)
0.149414 + 0.988775i \(0.452261\pi\)
\(318\) 0 0
\(319\) 2.43283 4.21379i 0.136212 0.235927i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.50833i 0.250850i
\(324\) 0 0
\(325\) −1.99981 + 1.15459i −0.110930 + 0.0640453i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.55703 + 7.36248i 0.251237 + 0.405906i
\(330\) 0 0
\(331\) −6.26139 10.8451i −0.344157 0.596098i 0.641043 0.767505i \(-0.278502\pi\)
−0.985200 + 0.171407i \(0.945169\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.00563 5.20590i 0.164215 0.284429i
\(336\) 0 0
\(337\) −10.9647 18.9915i −0.597287 1.03453i −0.993220 0.116251i \(-0.962912\pi\)
0.395933 0.918279i \(-0.370421\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.715356 1.23903i 0.0387387 0.0670974i
\(342\) 0 0
\(343\) 18.4421 1.70003i 0.995778 0.0917932i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.33668 + 0.771734i 0.0717569 + 0.0414288i 0.535449 0.844567i \(-0.320142\pi\)
−0.463692 + 0.885996i \(0.653476\pi\)
\(348\) 0 0
\(349\) 5.10876 + 2.94954i 0.273465 + 0.157885i 0.630461 0.776221i \(-0.282866\pi\)
−0.356996 + 0.934106i \(0.616199\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.3268 −0.656091 −0.328046 0.944662i \(-0.606390\pi\)
−0.328046 + 0.944662i \(0.606390\pi\)
\(354\) 0 0
\(355\) 12.1030i 0.642358i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.03896 + 2.33189i 0.213168 + 0.123073i 0.602783 0.797905i \(-0.294059\pi\)
−0.389615 + 0.920978i \(0.627392\pi\)
\(360\) 0 0
\(361\) −4.21077 7.29327i −0.221619 0.383856i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.0850 + 8.13195i −0.737240 + 0.425646i
\(366\) 0 0
\(367\) 23.4243i 1.22274i 0.791345 + 0.611370i \(0.209381\pi\)
−0.791345 + 0.611370i \(0.790619\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.9997 9.28414i 0.778747 0.482008i
\(372\) 0 0
\(373\) −12.0306 −0.622923 −0.311461 0.950259i \(-0.600818\pi\)
−0.311461 + 0.950259i \(0.600818\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.98396 0.153682
\(378\) 0 0
\(379\) −31.6065 −1.62352 −0.811758 0.583994i \(-0.801489\pi\)
−0.811758 + 0.583994i \(0.801489\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.2570 1.13728 0.568641 0.822586i \(-0.307470\pi\)
0.568641 + 0.822586i \(0.307470\pi\)
\(384\) 0 0
\(385\) 0.133513 + 4.35600i 0.00680447 + 0.222002i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.5575i 1.80283i 0.432951 + 0.901417i \(0.357472\pi\)
−0.432951 + 0.901417i \(0.642528\pi\)
\(390\) 0 0
\(391\) 4.57517 2.64148i 0.231376 0.133585i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.68582 15.0443i −0.437031 0.756960i
\(396\) 0 0
\(397\) −5.16204 2.98030i −0.259075 0.149577i 0.364837 0.931071i \(-0.381125\pi\)
−0.623913 + 0.781494i \(0.714458\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.1472i 0.956165i −0.878315 0.478083i \(-0.841332\pi\)
0.878315 0.478083i \(-0.158668\pi\)
\(402\) 0 0
\(403\) 0.877410 0.0437069
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.6452 6.14603i −0.527665 0.304647i
\(408\) 0 0
\(409\) −8.83357 5.10006i −0.436792 0.252182i 0.265444 0.964126i \(-0.414481\pi\)
−0.702236 + 0.711944i \(0.747815\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.8756 31.4143i 0.830392 1.54580i
\(414\) 0 0
\(415\) −4.29939 + 7.44676i −0.211049 + 0.365547i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.14385 5.44530i −0.153587 0.266021i 0.778957 0.627078i \(-0.215749\pi\)
−0.932544 + 0.361057i \(0.882416\pi\)
\(420\) 0 0
\(421\) −1.14723 + 1.98705i −0.0559123 + 0.0968430i −0.892627 0.450796i \(-0.851140\pi\)
0.836714 + 0.547639i \(0.184473\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.16778 3.75471i −0.105153 0.182130i
\(426\) 0 0
\(427\) −11.3278 + 7.01137i −0.548189 + 0.339304i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.3251 + 11.1574i −0.930859 + 0.537432i −0.887083 0.461610i \(-0.847272\pi\)
−0.0437761 + 0.999041i \(0.513939\pi\)
\(432\) 0 0
\(433\) 36.2306i 1.74113i 0.492053 + 0.870565i \(0.336247\pi\)
−0.492053 + 0.870565i \(0.663753\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.19803 10.7353i 0.296492 0.513539i
\(438\) 0 0
\(439\) −15.6320 + 9.02511i −0.746072 + 0.430745i −0.824273 0.566193i \(-0.808416\pi\)
0.0782007 + 0.996938i \(0.475083\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.7590 + 6.21170i −0.511174 + 0.295127i −0.733316 0.679888i \(-0.762029\pi\)
0.222142 + 0.975014i \(0.428695\pi\)
\(444\) 0 0
\(445\) −8.28996 + 14.3586i −0.392982 + 0.680665i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.5762i 0.923858i 0.886917 + 0.461929i \(0.152842\pi\)
−0.886917 + 0.461929i \(0.847158\pi\)
\(450\) 0 0
\(451\) 1.39824 0.807277i 0.0658407 0.0380132i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.27255 + 1.40661i −0.106539 + 0.0659427i
\(456\) 0 0
\(457\) −11.8799 20.5765i −0.555717 0.962530i −0.997847 0.0655789i \(-0.979111\pi\)
0.442131 0.896951i \(-0.354223\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.6541 + 18.4535i −0.496213 + 0.859466i −0.999990 0.00436764i \(-0.998610\pi\)
0.503778 + 0.863833i \(0.331943\pi\)
\(462\) 0 0
\(463\) 8.72943 + 15.1198i 0.405691 + 0.702677i 0.994402 0.105667i \(-0.0336977\pi\)
−0.588711 + 0.808344i \(0.700364\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.11806 + 8.86473i −0.236835 + 0.410211i −0.959804 0.280669i \(-0.909444\pi\)
0.722969 + 0.690880i \(0.242777\pi\)
\(468\) 0 0
\(469\) −5.50067 + 10.2396i −0.253997 + 0.472823i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.02179 + 0.589933i 0.0469822 + 0.0271252i
\(474\) 0 0
\(475\) −8.81014 5.08654i −0.404237 0.233386i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.1247 −0.691063 −0.345531 0.938407i \(-0.612301\pi\)
−0.345531 + 0.938407i \(0.612301\pi\)
\(480\) 0 0
\(481\) 7.53832i 0.343718i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.0211 8.67244i −0.682074 0.393795i
\(486\) 0 0
\(487\) −17.3450 30.0425i −0.785979 1.36136i −0.928412 0.371551i \(-0.878826\pi\)
0.142433 0.989804i \(-0.454507\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.2050 6.46922i 0.505676 0.291952i −0.225379 0.974271i \(-0.572362\pi\)
0.731054 + 0.682319i \(0.239029\pi\)
\(492\) 0 0
\(493\) 5.60247i 0.252322i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.716966 + 23.3917i 0.0321603 + 1.04926i
\(498\) 0 0
\(499\) −7.04669 −0.315453 −0.157727 0.987483i \(-0.550416\pi\)
−0.157727 + 0.987483i \(0.550416\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.3853 1.62234 0.811170 0.584810i \(-0.198831\pi\)
0.811170 + 0.584810i \(0.198831\pi\)
\(504\) 0 0
\(505\) −18.1210 −0.806376
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.7611 −1.62941 −0.814704 0.579877i \(-0.803101\pi\)
−0.814704 + 0.579877i \(0.803101\pi\)
\(510\) 0 0
\(511\) 26.7406 16.5512i 1.18294 0.732183i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.0376i 0.794832i
\(516\) 0 0
\(517\) 3.41193 1.96988i 0.150057 0.0866353i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.9686 24.1943i −0.611976 1.05997i −0.990907 0.134548i \(-0.957042\pi\)
0.378931 0.925425i \(-0.376292\pi\)
\(522\) 0 0
\(523\) 15.0082 + 8.66497i 0.656261 + 0.378893i 0.790851 0.612009i \(-0.209638\pi\)
−0.134590 + 0.990901i \(0.542972\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.64736i 0.0717603i
\(528\) 0 0
\(529\) 8.47405 0.368437
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.857498 + 0.495077i 0.0371424 + 0.0214442i
\(534\) 0 0
\(535\) 21.7283 + 12.5448i 0.939396 + 0.542361i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.516089 8.41104i −0.0222295 0.362289i
\(540\) 0 0
\(541\) 5.30043 9.18061i 0.227883 0.394705i −0.729297 0.684197i \(-0.760153\pi\)
0.957181 + 0.289491i \(0.0934862\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.9679 + 20.7289i 0.512647 + 0.887930i
\(546\) 0 0
\(547\) −8.55403 + 14.8160i −0.365744 + 0.633487i −0.988895 0.148614i \(-0.952519\pi\)
0.623151 + 0.782101i \(0.285852\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.57288 + 11.3846i 0.280014 + 0.484999i
\(552\) 0 0
\(553\) 17.6785 + 28.5620i 0.751768 + 1.21458i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.02890 + 1.17139i −0.0859673 + 0.0496333i −0.542367 0.840141i \(-0.682472\pi\)
0.456400 + 0.889775i \(0.349139\pi\)
\(558\) 0 0
\(559\) 0.723574i 0.0306039i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.0507 36.4608i 0.887180 1.53664i 0.0439857 0.999032i \(-0.485994\pi\)
0.843194 0.537609i \(-0.180672\pi\)
\(564\) 0 0
\(565\) −5.65958 + 3.26756i −0.238100 + 0.137467i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.0375 20.2289i 1.46885 0.848040i 0.469458 0.882955i \(-0.344449\pi\)
0.999390 + 0.0349152i \(0.0111161\pi\)
\(570\) 0 0
\(571\) −0.160538 + 0.278060i −0.00671832 + 0.0116365i −0.869365 0.494170i \(-0.835472\pi\)
0.862647 + 0.505807i \(0.168805\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.9210i 0.497141i
\(576\) 0 0
\(577\) 20.9395 12.0894i 0.871721 0.503288i 0.00380123 0.999993i \(-0.498790\pi\)
0.867920 + 0.496704i \(0.165457\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.86841 14.6472i 0.326436 0.607670i
\(582\) 0 0
\(583\) −4.01328 6.95120i −0.166213 0.287889i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.4257 24.9860i 0.595411 1.03128i −0.398077 0.917352i \(-0.630322\pi\)
0.993489 0.113931i \(-0.0363442\pi\)
\(588\) 0 0
\(589\) 1.93271 + 3.34755i 0.0796358 + 0.137933i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.07472 + 1.86147i −0.0441335 + 0.0764414i −0.887248 0.461292i \(-0.847386\pi\)
0.843115 + 0.537734i \(0.180719\pi\)
\(594\) 0 0
\(595\) −2.64094 4.26679i −0.108268 0.174921i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.58798 + 3.22622i 0.228319 + 0.131820i 0.609796 0.792558i \(-0.291251\pi\)
−0.381477 + 0.924378i \(0.624585\pi\)
\(600\) 0 0
\(601\) 10.6341 + 6.13960i 0.433774 + 0.250439i 0.700953 0.713207i \(-0.252758\pi\)
−0.267179 + 0.963647i \(0.586092\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.0681 −0.531295
\(606\) 0 0
\(607\) 38.3682i 1.55732i −0.627448 0.778658i \(-0.715901\pi\)
0.627448 0.778658i \(-0.284099\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.09243 + 1.20806i 0.0846506 + 0.0488731i
\(612\) 0 0
\(613\) 6.96098 + 12.0568i 0.281151 + 0.486969i 0.971669 0.236347i \(-0.0759503\pi\)
−0.690517 + 0.723316i \(0.742617\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0193 + 8.67142i −0.604656 + 0.349098i −0.770871 0.636991i \(-0.780179\pi\)
0.166215 + 0.986090i \(0.446845\pi\)
\(618\) 0 0
\(619\) 29.6508i 1.19177i 0.803071 + 0.595884i \(0.203198\pi\)
−0.803071 + 0.595884i \(0.796802\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.1716 28.2424i 0.607839 1.13151i
\(624\) 0 0
\(625\) 0.422282 0.0168913
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.1534 0.564334
\(630\) 0 0
\(631\) −16.6402 −0.662437 −0.331218 0.943554i \(-0.607460\pi\)
−0.331218 + 0.943554i \(0.607460\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.59064 0.261541
\(636\) 0 0
\(637\) 4.30890 2.85321i 0.170725 0.113048i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5930i 0.615888i 0.951404 + 0.307944i \(0.0996410\pi\)
−0.951404 + 0.307944i \(0.900359\pi\)
\(642\) 0 0
\(643\) 13.7474 7.93708i 0.542146 0.313008i −0.203802 0.979012i \(-0.565330\pi\)
0.745948 + 0.666004i \(0.231997\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.18164 2.04666i −0.0464549 0.0804623i 0.841863 0.539691i \(-0.181459\pi\)
−0.888318 + 0.459229i \(0.848126\pi\)
\(648\) 0 0
\(649\) −14.0518 8.11281i −0.551581 0.318455i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.6821i 0.731088i −0.930794 0.365544i \(-0.880883\pi\)
0.930794 0.365544i \(-0.119117\pi\)
\(654\) 0 0
\(655\) −8.40297 −0.328331
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.5543 + 10.1350i 0.683819 + 0.394803i 0.801293 0.598273i \(-0.204146\pi\)
−0.117473 + 0.993076i \(0.537479\pi\)
\(660\) 0 0
\(661\) 27.1506 + 15.6754i 1.05604 + 0.609703i 0.924333 0.381586i \(-0.124622\pi\)
0.131704 + 0.991289i \(0.457955\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.3724 5.57199i −0.402225 0.216073i
\(666\) 0 0
\(667\) 7.70224 13.3407i 0.298232 0.516553i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.03082 + 5.24954i 0.117004 + 0.202656i
\(672\) 0 0
\(673\) 9.49210 16.4408i 0.365893 0.633746i −0.623026 0.782201i \(-0.714097\pi\)
0.988919 + 0.148455i \(0.0474301\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.8417 + 22.2424i 0.493545 + 0.854845i 0.999972 0.00743750i \(-0.00236745\pi\)
−0.506427 + 0.862283i \(0.669034\pi\)
\(678\) 0 0
\(679\) 29.5455 + 15.8716i 1.13385 + 0.609097i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.2147 18.5992i 1.23266 0.711677i 0.265078 0.964227i \(-0.414602\pi\)
0.967584 + 0.252550i \(0.0812691\pi\)
\(684\) 0 0
\(685\) 4.81545i 0.183989i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.46122 4.26295i 0.0937648 0.162405i
\(690\) 0 0
\(691\) 38.8499 22.4300i 1.47792 0.853277i 0.478231 0.878234i \(-0.341278\pi\)
0.999689 + 0.0249572i \(0.00794496\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.3507 10.0174i 0.658150 0.379983i
\(696\) 0 0
\(697\) −0.929521 + 1.60998i −0.0352081 + 0.0609823i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0630i 0.984387i 0.870486 + 0.492194i \(0.163805\pi\)
−0.870486 + 0.492194i \(0.836195\pi\)
\(702\) 0 0
\(703\) 28.7607 16.6050i 1.08473 0.626269i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.0230 1.07347i 1.31718 0.0403721i
\(708\) 0 0
\(709\) −16.6461 28.8319i −0.625158 1.08281i −0.988510 0.151154i \(-0.951701\pi\)
0.363352 0.931652i \(-0.381632\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.26478 3.92272i 0.0848169 0.146907i
\(714\) 0 0
\(715\) 0.608037 + 1.05315i 0.0227393 + 0.0393856i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.3474 + 42.1709i −0.908003 + 1.57271i −0.0911690 + 0.995835i \(0.529060\pi\)
−0.816834 + 0.576872i \(0.804273\pi\)
\(720\) 0 0
\(721\) 1.06853 + 34.8618i 0.0397941 + 1.29832i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.9483 6.32099i −0.406609 0.234756i
\(726\) 0 0
\(727\) −8.76540 5.06071i −0.325091 0.187691i 0.328569 0.944480i \(-0.393434\pi\)
−0.653659 + 0.756789i \(0.726767\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.35853 −0.0502471
\(732\) 0 0
\(733\) 18.6611i 0.689262i 0.938738 + 0.344631i \(0.111996\pi\)
−0.938738 + 0.344631i \(0.888004\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.58025 + 2.64441i 0.168716 + 0.0974081i
\(738\) 0 0
\(739\) −13.5646 23.4946i −0.498983 0.864264i 0.501016 0.865438i \(-0.332960\pi\)
−0.999999 + 0.00117395i \(0.999626\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.9378 + 8.04698i −0.511328 + 0.295215i −0.733379 0.679820i \(-0.762058\pi\)
0.222052 + 0.975035i \(0.428725\pi\)
\(744\) 0 0
\(745\) 20.3017i 0.743796i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −42.7380 22.9586i −1.56161 0.838888i
\(750\) 0 0
\(751\) 47.6328 1.73815 0.869073 0.494683i \(-0.164716\pi\)
0.869073 + 0.494683i \(0.164716\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.00761 −0.145852
\(756\) 0 0
\(757\) 50.4788 1.83468 0.917341 0.398102i \(-0.130331\pi\)
0.917341 + 0.398102i \(0.130331\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.39506 −0.231821 −0.115910 0.993260i \(-0.536979\pi\)
−0.115910 + 0.993260i \(0.536979\pi\)
\(762\) 0 0
\(763\) −24.3586 39.3544i −0.881839 1.42473i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.95065i 0.359297i
\(768\) 0 0
\(769\) 21.1676 12.2211i 0.763322 0.440704i −0.0671654 0.997742i \(-0.521396\pi\)
0.830487 + 0.557038i \(0.188062\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.32573 14.4206i −0.299456 0.518672i 0.676556 0.736391i \(-0.263472\pi\)
−0.976011 + 0.217719i \(0.930138\pi\)
\(774\) 0 0
\(775\) −3.21926 1.85864i −0.115639 0.0667643i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.36210i 0.156289i
\(780\) 0 0
\(781\) 10.6484 0.381030
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.0114 + 13.2856i 0.821310 + 0.474184i
\(786\) 0 0
\(787\) 1.21582 + 0.701955i 0.0433394 + 0.0250220i 0.521513 0.853243i \(-0.325368\pi\)
−0.478174 + 0.878265i \(0.658701\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.7448 6.65056i 0.382043 0.236467i
\(792\) 0 0
\(793\) −1.85871 + 3.21937i −0.0660046 + 0.114323i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.7211 25.4977i −0.521448 0.903174i −0.999689 0.0249452i \(-0.992059\pi\)
0.478241 0.878229i \(-0.341274\pi\)
\(798\) 0 0
\(799\) −2.26818 + 3.92860i −0.0802423 + 0.138984i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.15464 12.3922i −0.252482 0.437311i
\(804\) 0 0
\(805\) 0.422697 + 13.7909i 0.0148981 + 0.486065i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −41.2228 + 23.8000i −1.44932 + 0.836764i −0.998441 0.0558222i \(-0.982222\pi\)
−0.450877 + 0.892586i \(0.648889\pi\)
\(810\) 0 0
\(811\) 24.9460i 0.875973i 0.898981 + 0.437987i \(0.144308\pi\)
−0.898981 + 0.437987i \(0.855692\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.76087 + 11.7102i −0.236823 + 0.410189i
\(816\) 0 0
\(817\) −2.76062 + 1.59385i −0.0965820 + 0.0557616i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.91506 3.41506i 0.206437 0.119186i −0.393218 0.919445i \(-0.628638\pi\)
0.599654 + 0.800259i \(0.295305\pi\)
\(822\) 0 0
\(823\) −3.68905 + 6.38962i −0.128592 + 0.222728i −0.923131 0.384485i \(-0.874379\pi\)
0.794539 + 0.607213i \(0.207712\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.1804i 0.736516i −0.929724 0.368258i \(-0.879954\pi\)
0.929724 0.368258i \(-0.120046\pi\)
\(828\) 0 0
\(829\) −1.60383 + 0.925970i −0.0557032 + 0.0321603i −0.527593 0.849497i \(-0.676905\pi\)
0.471890 + 0.881658i \(0.343572\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.35698 + 8.09009i 0.185608 + 0.280305i
\(834\) 0 0
\(835\) −13.1132 22.7128i −0.453802 0.786009i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.90568 + 13.6930i −0.272934 + 0.472736i −0.969612 0.244648i \(-0.921328\pi\)
0.696678 + 0.717384i \(0.254661\pi\)
\(840\) 0 0
\(841\) −6.33194 10.9672i −0.218343 0.378181i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.52092 14.7587i 0.293129 0.507714i
\(846\) 0 0
\(847\) 25.2571 0.774142i 0.867845 0.0265998i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −33.7023 19.4581i −1.15530 0.667013i
\(852\) 0 0
\(853\) −8.16324 4.71305i −0.279504 0.161372i 0.353695 0.935361i \(-0.384925\pi\)
−0.633199 + 0.773989i \(0.718258\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.8222 1.05287 0.526433 0.850217i \(-0.323529\pi\)
0.526433 + 0.850217i \(0.323529\pi\)
\(858\) 0 0
\(859\) 1.53925i 0.0525185i 0.999655 + 0.0262592i \(0.00835953\pi\)
−0.999655 + 0.0262592i \(0.991640\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.645937 + 0.372932i 0.0219879 + 0.0126947i 0.510954 0.859608i \(-0.329292\pi\)
−0.488966 + 0.872303i \(0.662626\pi\)
\(864\) 0 0
\(865\) 2.57645 + 4.46255i 0.0876020 + 0.151731i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.2362 7.64195i 0.449009 0.259235i
\(870\) 0 0
\(871\) 3.24346i 0.109901i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.4099 0.901427i 0.994236 0.0304738i
\(876\) 0 0
\(877\) 3.47691 0.117407 0.0587034 0.998275i \(-0.481303\pi\)
0.0587034 + 0.998275i \(0.481303\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −49.4437 −1.66580 −0.832900 0.553424i \(-0.813321\pi\)
−0.832900 + 0.553424i \(0.813321\pi\)
\(882\) 0 0
\(883\) 3.02160 0.101685 0.0508424 0.998707i \(-0.483809\pi\)
0.0508424 + 0.998707i \(0.483809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.5134 1.19242 0.596212 0.802827i \(-0.296672\pi\)
0.596212 + 0.802827i \(0.296672\pi\)
\(888\) 0 0
\(889\) −12.7379 + 0.390423i −0.427216 + 0.0130944i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.6442i 0.356195i
\(894\) 0 0
\(895\) 31.1181 17.9660i 1.04016 0.600539i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.40176 + 4.15997i 0.0801031 + 0.138743i
\(900\) 0 0
\(901\) 8.00381 + 4.62100i 0.266646 + 0.153948i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.4015i 0.345756i
\(906\) 0 0
\(907\) −16.1292 −0.535561 −0.267781 0.963480i \(-0.586290\pi\)
−0.267781 + 0.963480i \(0.586290\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.7485 9.66977i −0.554903 0.320374i 0.196194 0.980565i \(-0.437142\pi\)
−0.751097 + 0.660191i \(0.770475\pi\)
\(912\) 0 0
\(913\) −6.55180 3.78268i −0.216833 0.125188i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.2407 0.497784i 0.536314 0.0164383i
\(918\) 0 0
\(919\) −18.3378 + 31.7620i −0.604908 + 1.04773i 0.387158 + 0.922014i \(0.373457\pi\)
−0.992066 + 0.125718i \(0.959876\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.26516 + 5.65542i 0.107474 + 0.186151i
\(924\) 0 0
\(925\) −15.9686 + 27.6585i −0.525046 + 0.909405i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.4172 + 21.5073i 0.407397 + 0.705632i 0.994597 0.103810i \(-0.0331033\pi\)
−0.587200 + 0.809442i \(0.699770\pi\)
\(930\) 0 0
\(931\) 20.3771 + 10.1547i 0.667833 + 0.332807i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.97732 + 1.14161i −0.0646654 + 0.0373346i
\(936\) 0 0
\(937\) 53.1227i 1.73544i 0.497050 + 0.867722i \(0.334416\pi\)
−0.497050 + 0.867722i \(0.665584\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.2471 29.8729i 0.562240 0.973829i −0.435060 0.900401i \(-0.643273\pi\)
0.997301 0.0734277i \(-0.0233938\pi\)
\(942\) 0 0
\(943\) 4.42678 2.55580i 0.144156 0.0832283i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.2611 + 9.96572i −0.560912 + 0.323842i −0.753511 0.657435i \(-0.771641\pi\)
0.192600 + 0.981277i \(0.438308\pi\)
\(948\) 0 0
\(949\) 4.38771 7.59974i 0.142431 0.246698i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 37.0472i 1.20008i −0.799971 0.600039i \(-0.795152\pi\)
0.799971 0.600039i \(-0.204848\pi\)
\(954\) 0 0
\(955\) 22.1744 12.8024i 0.717545 0.414275i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.285263 9.30696i −0.00921161 0.300537i
\(960\) 0 0
\(961\) −14.7938 25.6236i −0.477219 0.826567i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.33886 16.1754i 0.300629 0.520704i
\(966\) 0 0
\(967\) 16.5292 + 28.6294i 0.531543 + 0.920659i 0.999322 + 0.0368136i \(0.0117208\pi\)
−0.467780 + 0.883845i \(0.654946\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.1441 + 22.7662i −0.421813 + 0.730602i −0.996117 0.0880404i \(-0.971940\pi\)
0.574304 + 0.818642i \(0.305273\pi\)
\(972\) 0 0
\(973\) −32.9407 + 20.3888i −1.05603 + 0.653635i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.7246 + 14.2748i 0.791011 + 0.456690i 0.840318 0.542093i \(-0.182368\pi\)
−0.0493073 + 0.998784i \(0.515701\pi\)
\(978\) 0 0
\(979\) −12.6330 7.29366i −0.403752 0.233106i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.12317 −0.0996138 −0.0498069 0.998759i \(-0.515861\pi\)
−0.0498069 + 0.998759i \(0.515861\pi\)
\(984\) 0 0
\(985\) 22.3451i 0.711973i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.23496 + 1.86770i 0.102866 + 0.0593895i
\(990\) 0 0
\(991\) −9.31103 16.1272i −0.295775 0.512297i 0.679390 0.733777i \(-0.262244\pi\)
−0.975165 + 0.221481i \(0.928911\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.1519 + 8.17062i −0.448646 + 0.259026i
\(996\) 0 0
\(997\) 0.0372304i 0.00117910i 1.00000 0.000589549i \(0.000187659\pi\)
−1.00000 0.000589549i \(0.999812\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.89.9 48
3.2 odd 2 504.2.cx.a.425.16 yes 48
4.3 odd 2 3024.2.df.e.1601.9 48
7.3 odd 6 1512.2.bs.a.521.9 48
9.4 even 3 504.2.bs.a.257.24 48
9.5 odd 6 1512.2.bs.a.1097.9 48
12.11 even 2 1008.2.df.e.929.9 48
21.17 even 6 504.2.bs.a.353.24 yes 48
28.3 even 6 3024.2.ca.e.2033.9 48
36.23 even 6 3024.2.ca.e.2609.9 48
36.31 odd 6 1008.2.ca.e.257.1 48
63.31 odd 6 504.2.cx.a.185.16 yes 48
63.59 even 6 inner 1512.2.cx.a.17.9 48
84.59 odd 6 1008.2.ca.e.353.1 48
252.31 even 6 1008.2.df.e.689.9 48
252.59 odd 6 3024.2.df.e.17.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.24 48 9.4 even 3
504.2.bs.a.353.24 yes 48 21.17 even 6
504.2.cx.a.185.16 yes 48 63.31 odd 6
504.2.cx.a.425.16 yes 48 3.2 odd 2
1008.2.ca.e.257.1 48 36.31 odd 6
1008.2.ca.e.353.1 48 84.59 odd 6
1008.2.df.e.689.9 48 252.31 even 6
1008.2.df.e.929.9 48 12.11 even 2
1512.2.bs.a.521.9 48 7.3 odd 6
1512.2.bs.a.1097.9 48 9.5 odd 6
1512.2.cx.a.17.9 48 63.59 even 6 inner
1512.2.cx.a.89.9 48 1.1 even 1 trivial
3024.2.ca.e.2033.9 48 28.3 even 6
3024.2.ca.e.2609.9 48 36.23 even 6
3024.2.df.e.17.9 48 252.59 odd 6
3024.2.df.e.1601.9 48 4.3 odd 2