Properties

Label 1512.2.cx.a.17.9
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.36828 q^{5} +(2.64451 + 0.0810554i) q^{7} +1.20384i q^{11} +(0.639364 + 0.369137i) q^{13} +(0.693066 - 1.20043i) q^{17} +(2.81671 - 1.62623i) q^{19} +3.81129i q^{23} -3.12781 q^{25} +(3.50030 - 2.02090i) q^{29} +(1.02924 - 0.594230i) q^{31} +(-3.61843 - 0.110906i) q^{35} +(5.10537 + 8.84276i) q^{37} +(0.670586 - 1.16149i) q^{41} +(-0.490044 - 0.848782i) q^{43} +(1.63634 - 2.83422i) q^{47} +(6.98686 + 0.428704i) q^{49} +(5.77421 + 3.33374i) q^{53} -1.64718i q^{55} +(6.73912 + 11.6725i) q^{59} +(-4.36067 - 2.51764i) q^{61} +(-0.874829 - 0.505083i) q^{65} +(-2.19665 - 3.80471i) q^{67} -8.84538i q^{71} +(10.2939 + 5.94320i) q^{73} +(-0.0975775 + 3.18356i) q^{77} +(6.34799 - 10.9950i) q^{79} +(3.14219 + 5.44243i) q^{83} +(-0.948308 + 1.64252i) q^{85} +(6.05868 + 10.4939i) q^{89} +(1.66088 + 1.02801i) q^{91} +(-3.85404 + 2.22513i) q^{95} +(10.9781 - 6.33821i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.36828 −0.611913 −0.305956 0.952046i \(-0.598976\pi\)
−0.305956 + 0.952046i \(0.598976\pi\)
\(6\) 0 0
\(7\) 2.64451 + 0.0810554i 0.999531 + 0.0306361i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.20384i 0.362971i 0.983394 + 0.181485i \(0.0580905\pi\)
−0.983394 + 0.181485i \(0.941910\pi\)
\(12\) 0 0
\(13\) 0.639364 + 0.369137i 0.177328 + 0.102380i 0.586037 0.810285i \(-0.300687\pi\)
−0.408709 + 0.912665i \(0.634021\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.693066 1.20043i 0.168093 0.291146i −0.769656 0.638459i \(-0.779572\pi\)
0.937749 + 0.347313i \(0.112906\pi\)
\(18\) 0 0
\(19\) 2.81671 1.62623i 0.646197 0.373082i −0.140801 0.990038i \(-0.544968\pi\)
0.786998 + 0.616956i \(0.211634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.81129i 0.794709i 0.917665 + 0.397355i \(0.130072\pi\)
−0.917665 + 0.397355i \(0.869928\pi\)
\(24\) 0 0
\(25\) −3.12781 −0.625563
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.50030 2.02090i 0.649989 0.375271i −0.138463 0.990368i \(-0.544216\pi\)
0.788452 + 0.615096i \(0.210883\pi\)
\(30\) 0 0
\(31\) 1.02924 0.594230i 0.184856 0.106727i −0.404716 0.914442i \(-0.632630\pi\)
0.589572 + 0.807716i \(0.299296\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.61843 0.110906i −0.611626 0.0187466i
\(36\) 0 0
\(37\) 5.10537 + 8.84276i 0.839317 + 1.45374i 0.890466 + 0.455049i \(0.150378\pi\)
−0.0511491 + 0.998691i \(0.516288\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.670586 1.16149i 0.104728 0.181394i −0.808899 0.587948i \(-0.799936\pi\)
0.913627 + 0.406553i \(0.133269\pi\)
\(42\) 0 0
\(43\) −0.490044 0.848782i −0.0747311 0.129438i 0.826238 0.563321i \(-0.190476\pi\)
−0.900969 + 0.433883i \(0.857143\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.63634 2.83422i 0.238684 0.413413i −0.721653 0.692255i \(-0.756617\pi\)
0.960337 + 0.278842i \(0.0899506\pi\)
\(48\) 0 0
\(49\) 6.98686 + 0.428704i 0.998123 + 0.0612434i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.77421 + 3.33374i 0.793148 + 0.457924i 0.841070 0.540927i \(-0.181926\pi\)
−0.0479213 + 0.998851i \(0.515260\pi\)
\(54\) 0 0
\(55\) 1.64718i 0.222106i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.73912 + 11.6725i 0.877359 + 1.51963i 0.854228 + 0.519898i \(0.174030\pi\)
0.0231309 + 0.999732i \(0.492637\pi\)
\(60\) 0 0
\(61\) −4.36067 2.51764i −0.558327 0.322350i 0.194147 0.980972i \(-0.437806\pi\)
−0.752474 + 0.658622i \(0.771140\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.874829 0.505083i −0.108509 0.0626478i
\(66\) 0 0
\(67\) −2.19665 3.80471i −0.268364 0.464819i 0.700076 0.714069i \(-0.253150\pi\)
−0.968439 + 0.249249i \(0.919816\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.84538i 1.04975i −0.851178 0.524877i \(-0.824111\pi\)
0.851178 0.524877i \(-0.175889\pi\)
\(72\) 0 0
\(73\) 10.2939 + 5.94320i 1.20481 + 0.695599i 0.961621 0.274380i \(-0.0884726\pi\)
0.243191 + 0.969978i \(0.421806\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.0975775 + 3.18356i −0.0111200 + 0.362800i
\(78\) 0 0
\(79\) 6.34799 10.9950i 0.714205 1.23704i −0.249060 0.968488i \(-0.580122\pi\)
0.963265 0.268551i \(-0.0865449\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.14219 + 5.44243i 0.344900 + 0.597384i 0.985336 0.170628i \(-0.0545795\pi\)
−0.640436 + 0.768012i \(0.721246\pi\)
\(84\) 0 0
\(85\) −0.948308 + 1.64252i −0.102858 + 0.178156i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.05868 + 10.4939i 0.642219 + 1.11236i 0.984936 + 0.172917i \(0.0553193\pi\)
−0.342718 + 0.939438i \(0.611347\pi\)
\(90\) 0 0
\(91\) 1.66088 + 1.02801i 0.174108 + 0.107765i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.85404 + 2.22513i −0.395416 + 0.228294i
\(96\) 0 0
\(97\) 10.9781 6.33821i 1.11466 0.643548i 0.174626 0.984635i \(-0.444128\pi\)
0.940032 + 0.341087i \(0.110795\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.2437 1.31779 0.658897 0.752233i \(-0.271023\pi\)
0.658897 + 0.752233i \(0.271023\pi\)
\(102\) 0 0
\(103\) 13.1827i 1.29893i −0.760391 0.649465i \(-0.774993\pi\)
0.760391 0.649465i \(-0.225007\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.8800 + 9.16833i −1.53518 + 0.886336i −0.536069 + 0.844174i \(0.680091\pi\)
−0.999111 + 0.0421621i \(0.986575\pi\)
\(108\) 0 0
\(109\) −8.74665 + 15.1496i −0.837777 + 1.45107i 0.0539715 + 0.998542i \(0.482812\pi\)
−0.891749 + 0.452531i \(0.850521\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.13627 + 2.38808i 0.389108 + 0.224652i 0.681774 0.731563i \(-0.261209\pi\)
−0.292666 + 0.956215i \(0.594542\pi\)
\(114\) 0 0
\(115\) 5.21491i 0.486293i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.93012 3.11836i 0.176934 0.285860i
\(120\) 0 0
\(121\) 9.55078 0.868252
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1211 0.994703
\(126\) 0 0
\(127\) −4.81674 −0.427416 −0.213708 0.976898i \(-0.568554\pi\)
−0.213708 + 0.976898i \(0.568554\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.14127 0.536566 0.268283 0.963340i \(-0.413544\pi\)
0.268283 + 0.963340i \(0.413544\pi\)
\(132\) 0 0
\(133\) 7.58063 4.07226i 0.657324 0.353110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.51935i 0.300678i 0.988634 + 0.150339i \(0.0480366\pi\)
−0.988634 + 0.150339i \(0.951963\pi\)
\(138\) 0 0
\(139\) −12.6807 7.32119i −1.07556 0.620975i −0.145865 0.989304i \(-0.546597\pi\)
−0.929695 + 0.368329i \(0.879930\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.444381 + 0.769691i −0.0371610 + 0.0643648i
\(144\) 0 0
\(145\) −4.78939 + 2.76515i −0.397737 + 0.229633i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.8374i 1.21553i 0.794118 + 0.607763i \(0.207933\pi\)
−0.794118 + 0.607763i \(0.792067\pi\)
\(150\) 0 0
\(151\) 2.92894 0.238354 0.119177 0.992873i \(-0.461974\pi\)
0.119177 + 0.992873i \(0.461974\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.40828 + 0.813072i −0.113116 + 0.0653075i
\(156\) 0 0
\(157\) −16.8177 + 9.70973i −1.34220 + 0.774920i −0.987130 0.159919i \(-0.948877\pi\)
−0.355071 + 0.934839i \(0.615543\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.308926 + 10.0790i −0.0243468 + 0.794336i
\(162\) 0 0
\(163\) 4.94115 + 8.55832i 0.387021 + 0.670340i 0.992047 0.125866i \(-0.0401709\pi\)
−0.605027 + 0.796205i \(0.706838\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.58375 16.5995i 0.741613 1.28451i −0.210148 0.977670i \(-0.567395\pi\)
0.951761 0.306841i \(-0.0992721\pi\)
\(168\) 0 0
\(169\) −6.22748 10.7863i −0.479037 0.829716i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.88299 + 3.26143i −0.143161 + 0.247962i −0.928685 0.370869i \(-0.879060\pi\)
0.785524 + 0.618831i \(0.212393\pi\)
\(174\) 0 0
\(175\) −8.27153 0.253526i −0.625269 0.0191648i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.7425 13.1304i −1.69986 0.981412i −0.945884 0.324504i \(-0.894802\pi\)
−0.753971 0.656908i \(-0.771864\pi\)
\(180\) 0 0
\(181\) 7.60186i 0.565042i −0.959261 0.282521i \(-0.908829\pi\)
0.959261 0.282521i \(-0.0911706\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.98557 12.0994i −0.513589 0.889562i
\(186\) 0 0
\(187\) 1.44512 + 0.834339i 0.105677 + 0.0610129i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.2060 9.35655i −1.17263 0.677016i −0.218329 0.975875i \(-0.570061\pi\)
−0.954297 + 0.298859i \(0.903394\pi\)
\(192\) 0 0
\(193\) −6.82526 11.8217i −0.491293 0.850945i 0.508657 0.860969i \(-0.330142\pi\)
−0.999950 + 0.0100249i \(0.996809\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.3308i 1.16352i −0.813361 0.581760i \(-0.802364\pi\)
0.813361 0.581760i \(-0.197636\pi\)
\(198\) 0 0
\(199\) 10.3429 + 5.97146i 0.733186 + 0.423305i 0.819587 0.572955i \(-0.194203\pi\)
−0.0864004 + 0.996260i \(0.527536\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 9.42038 5.06057i 0.661181 0.355182i
\(204\) 0 0
\(205\) −0.917549 + 1.58924i −0.0640844 + 0.110997i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.95771 + 3.39086i 0.135418 + 0.234551i
\(210\) 0 0
\(211\) −8.33236 + 14.4321i −0.573623 + 0.993544i 0.422567 + 0.906332i \(0.361129\pi\)
−0.996190 + 0.0872125i \(0.972204\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.670517 + 1.16137i 0.0457289 + 0.0792048i
\(216\) 0 0
\(217\) 2.76999 1.48802i 0.188039 0.101014i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.886244 0.511673i 0.0596152 0.0344188i
\(222\) 0 0
\(223\) 2.30524 1.33093i 0.154370 0.0891258i −0.420825 0.907142i \(-0.638259\pi\)
0.575195 + 0.818016i \(0.304926\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.68069 −0.310669 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(228\) 0 0
\(229\) 4.29143i 0.283586i 0.989896 + 0.141793i \(0.0452867\pi\)
−0.989896 + 0.141793i \(0.954713\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.00156 + 1.73295i −0.196639 + 0.113530i −0.595087 0.803661i \(-0.702882\pi\)
0.398448 + 0.917191i \(0.369549\pi\)
\(234\) 0 0
\(235\) −2.23896 + 3.87800i −0.146054 + 0.252973i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.5074 12.9946i −1.45588 0.840554i −0.457077 0.889427i \(-0.651104\pi\)
−0.998805 + 0.0488730i \(0.984437\pi\)
\(240\) 0 0
\(241\) 14.7470i 0.949939i 0.880002 + 0.474970i \(0.157541\pi\)
−0.880002 + 0.474970i \(0.842459\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.55997 0.586586i −0.610764 0.0374756i
\(246\) 0 0
\(247\) 2.40120 0.152785
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.2564 0.836734 0.418367 0.908278i \(-0.362603\pi\)
0.418367 + 0.908278i \(0.362603\pi\)
\(252\) 0 0
\(253\) −4.58818 −0.288456
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.9917 −1.55894 −0.779471 0.626438i \(-0.784512\pi\)
−0.779471 + 0.626438i \(0.784512\pi\)
\(258\) 0 0
\(259\) 12.7844 + 23.7986i 0.794386 + 1.47877i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.5621i 0.897940i 0.893547 + 0.448970i \(0.148209\pi\)
−0.893547 + 0.448970i \(0.851791\pi\)
\(264\) 0 0
\(265\) −7.90073 4.56149i −0.485338 0.280210i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 8.64288 14.9699i 0.526966 0.912731i −0.472540 0.881309i \(-0.656663\pi\)
0.999506 0.0314225i \(-0.0100037\pi\)
\(270\) 0 0
\(271\) 3.37299 1.94740i 0.204895 0.118296i −0.394042 0.919092i \(-0.628924\pi\)
0.598936 + 0.800797i \(0.295590\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.76538i 0.227061i
\(276\) 0 0
\(277\) 19.7457 1.18641 0.593203 0.805053i \(-0.297863\pi\)
0.593203 + 0.805053i \(0.297863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.41396 0.816352i 0.0843499 0.0486994i −0.457232 0.889348i \(-0.651159\pi\)
0.541582 + 0.840648i \(0.317826\pi\)
\(282\) 0 0
\(283\) −23.1548 + 13.3684i −1.37641 + 0.794671i −0.991726 0.128376i \(-0.959023\pi\)
−0.384686 + 0.923048i \(0.625690\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.86752 3.01722i 0.110236 0.178101i
\(288\) 0 0
\(289\) 7.53932 + 13.0585i 0.443489 + 0.768146i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.68847 9.85271i 0.332324 0.575602i −0.650643 0.759383i \(-0.725501\pi\)
0.982967 + 0.183782i \(0.0588340\pi\)
\(294\) 0 0
\(295\) −9.22100 15.9712i −0.536867 0.929882i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.40689 + 2.43681i −0.0813626 + 0.140924i
\(300\) 0 0
\(301\) −1.22713 2.28433i −0.0707305 0.131667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.96662 + 3.44483i 0.341647 + 0.197250i
\(306\) 0 0
\(307\) 19.4683i 1.11111i −0.831479 0.555556i \(-0.812505\pi\)
0.831479 0.555556i \(-0.187495\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.0992 19.2243i −0.629375 1.09011i −0.987677 0.156504i \(-0.949978\pi\)
0.358302 0.933606i \(-0.383356\pi\)
\(312\) 0 0
\(313\) −12.1557 7.01812i −0.687083 0.396688i 0.115435 0.993315i \(-0.463174\pi\)
−0.802518 + 0.596627i \(0.796507\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.2557 6.49848i −0.632183 0.364991i 0.149414 0.988775i \(-0.452261\pi\)
−0.781597 + 0.623784i \(0.785595\pi\)
\(318\) 0 0
\(319\) 2.43283 + 4.21379i 0.136212 + 0.235927i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.50833i 0.250850i
\(324\) 0 0
\(325\) −1.99981 1.15459i −0.110930 0.0640453i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.55703 7.36248i 0.251237 0.405906i
\(330\) 0 0
\(331\) −6.26139 + 10.8451i −0.344157 + 0.596098i −0.985200 0.171407i \(-0.945169\pi\)
0.641043 + 0.767505i \(0.278502\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3.00563 + 5.20590i 0.164215 + 0.284429i
\(336\) 0 0
\(337\) −10.9647 + 18.9915i −0.597287 + 1.03453i 0.395933 + 0.918279i \(0.370421\pi\)
−0.993220 + 0.116251i \(0.962912\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.715356 + 1.23903i 0.0387387 + 0.0670974i
\(342\) 0 0
\(343\) 18.4421 + 1.70003i 0.995778 + 0.0917932i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.33668 0.771734i 0.0717569 0.0414288i −0.463692 0.885996i \(-0.653476\pi\)
0.535449 + 0.844567i \(0.320142\pi\)
\(348\) 0 0
\(349\) 5.10876 2.94954i 0.273465 0.157885i −0.356996 0.934106i \(-0.616199\pi\)
0.630461 + 0.776221i \(0.282866\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.3268 −0.656091 −0.328046 0.944662i \(-0.606390\pi\)
−0.328046 + 0.944662i \(0.606390\pi\)
\(354\) 0 0
\(355\) 12.1030i 0.642358i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.03896 2.33189i 0.213168 0.123073i −0.389615 0.920978i \(-0.627392\pi\)
0.602783 + 0.797905i \(0.294059\pi\)
\(360\) 0 0
\(361\) −4.21077 + 7.29327i −0.221619 + 0.383856i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −14.0850 8.13195i −0.737240 0.425646i
\(366\) 0 0
\(367\) 23.4243i 1.22274i −0.791345 0.611370i \(-0.790619\pi\)
0.791345 0.611370i \(-0.209381\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 14.9997 + 9.28414i 0.778747 + 0.482008i
\(372\) 0 0
\(373\) −12.0306 −0.622923 −0.311461 0.950259i \(-0.600818\pi\)
−0.311461 + 0.950259i \(0.600818\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.98396 0.153682
\(378\) 0 0
\(379\) −31.6065 −1.62352 −0.811758 0.583994i \(-0.801489\pi\)
−0.811758 + 0.583994i \(0.801489\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.2570 1.13728 0.568641 0.822586i \(-0.307470\pi\)
0.568641 + 0.822586i \(0.307470\pi\)
\(384\) 0 0
\(385\) 0.133513 4.35600i 0.00680447 0.222002i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.5575i 1.80283i −0.432951 0.901417i \(-0.642528\pi\)
0.432951 0.901417i \(-0.357472\pi\)
\(390\) 0 0
\(391\) 4.57517 + 2.64148i 0.231376 + 0.133585i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.68582 + 15.0443i −0.437031 + 0.756960i
\(396\) 0 0
\(397\) −5.16204 + 2.98030i −0.259075 + 0.149577i −0.623913 0.781494i \(-0.714458\pi\)
0.364837 + 0.931071i \(0.381125\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.1472i 0.956165i 0.878315 + 0.478083i \(0.158668\pi\)
−0.878315 + 0.478083i \(0.841332\pi\)
\(402\) 0 0
\(403\) 0.877410 0.0437069
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −10.6452 + 6.14603i −0.527665 + 0.304647i
\(408\) 0 0
\(409\) −8.83357 + 5.10006i −0.436792 + 0.252182i −0.702236 0.711944i \(-0.747815\pi\)
0.265444 + 0.964126i \(0.414481\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.8756 + 31.4143i 0.830392 + 1.54580i
\(414\) 0 0
\(415\) −4.29939 7.44676i −0.211049 0.365547i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3.14385 + 5.44530i −0.153587 + 0.266021i −0.932544 0.361057i \(-0.882416\pi\)
0.778957 + 0.627078i \(0.215749\pi\)
\(420\) 0 0
\(421\) −1.14723 1.98705i −0.0559123 0.0968430i 0.836714 0.547639i \(-0.184473\pi\)
−0.892627 + 0.450796i \(0.851140\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.16778 + 3.75471i −0.105153 + 0.182130i
\(426\) 0 0
\(427\) −11.3278 7.01137i −0.548189 0.339304i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −19.3251 11.1574i −0.930859 0.537432i −0.0437761 0.999041i \(-0.513939\pi\)
−0.887083 + 0.461610i \(0.847272\pi\)
\(432\) 0 0
\(433\) 36.2306i 1.74113i −0.492053 0.870565i \(-0.663753\pi\)
0.492053 0.870565i \(-0.336247\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.19803 + 10.7353i 0.296492 + 0.513539i
\(438\) 0 0
\(439\) −15.6320 9.02511i −0.746072 0.430745i 0.0782007 0.996938i \(-0.475083\pi\)
−0.824273 + 0.566193i \(0.808416\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.7590 6.21170i −0.511174 0.295127i 0.222142 0.975014i \(-0.428695\pi\)
−0.733316 + 0.679888i \(0.762029\pi\)
\(444\) 0 0
\(445\) −8.28996 14.3586i −0.392982 0.680665i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 19.5762i 0.923858i −0.886917 0.461929i \(-0.847158\pi\)
0.886917 0.461929i \(-0.152842\pi\)
\(450\) 0 0
\(451\) 1.39824 + 0.807277i 0.0658407 + 0.0380132i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.27255 1.40661i −0.106539 0.0659427i
\(456\) 0 0
\(457\) −11.8799 + 20.5765i −0.555717 + 0.962530i 0.442131 + 0.896951i \(0.354223\pi\)
−0.997847 + 0.0655789i \(0.979111\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10.6541 18.4535i −0.496213 0.859466i 0.503778 0.863833i \(-0.331943\pi\)
−0.999990 + 0.00436764i \(0.998610\pi\)
\(462\) 0 0
\(463\) 8.72943 15.1198i 0.405691 0.702677i −0.588711 0.808344i \(-0.700364\pi\)
0.994402 + 0.105667i \(0.0336977\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −5.11806 8.86473i −0.236835 0.410211i 0.722969 0.690880i \(-0.242777\pi\)
−0.959804 + 0.280669i \(0.909444\pi\)
\(468\) 0 0
\(469\) −5.50067 10.2396i −0.253997 0.472823i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.02179 0.589933i 0.0469822 0.0271252i
\(474\) 0 0
\(475\) −8.81014 + 5.08654i −0.404237 + 0.233386i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.1247 −0.691063 −0.345531 0.938407i \(-0.612301\pi\)
−0.345531 + 0.938407i \(0.612301\pi\)
\(480\) 0 0
\(481\) 7.53832i 0.343718i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.0211 + 8.67244i −0.682074 + 0.393795i
\(486\) 0 0
\(487\) −17.3450 + 30.0425i −0.785979 + 1.36136i 0.142433 + 0.989804i \(0.454507\pi\)
−0.928412 + 0.371551i \(0.878826\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 11.2050 + 6.46922i 0.505676 + 0.291952i 0.731054 0.682319i \(-0.239029\pi\)
−0.225379 + 0.974271i \(0.572362\pi\)
\(492\) 0 0
\(493\) 5.60247i 0.252322i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.716966 23.3917i 0.0321603 1.04926i
\(498\) 0 0
\(499\) −7.04669 −0.315453 −0.157727 0.987483i \(-0.550416\pi\)
−0.157727 + 0.987483i \(0.550416\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 36.3853 1.62234 0.811170 0.584810i \(-0.198831\pi\)
0.811170 + 0.584810i \(0.198831\pi\)
\(504\) 0 0
\(505\) −18.1210 −0.806376
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −36.7611 −1.62941 −0.814704 0.579877i \(-0.803101\pi\)
−0.814704 + 0.579877i \(0.803101\pi\)
\(510\) 0 0
\(511\) 26.7406 + 16.5512i 1.18294 + 0.732183i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.0376i 0.794832i
\(516\) 0 0
\(517\) 3.41193 + 1.96988i 0.150057 + 0.0866353i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.9686 + 24.1943i −0.611976 + 1.05997i 0.378931 + 0.925425i \(0.376292\pi\)
−0.990907 + 0.134548i \(0.957042\pi\)
\(522\) 0 0
\(523\) 15.0082 8.66497i 0.656261 0.378893i −0.134590 0.990901i \(-0.542972\pi\)
0.790851 + 0.612009i \(0.209638\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.64736i 0.0717603i
\(528\) 0 0
\(529\) 8.47405 0.368437
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.857498 0.495077i 0.0371424 0.0214442i
\(534\) 0 0
\(535\) 21.7283 12.5448i 0.939396 0.542361i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.516089 + 8.41104i −0.0222295 + 0.362289i
\(540\) 0 0
\(541\) 5.30043 + 9.18061i 0.227883 + 0.394705i 0.957181 0.289491i \(-0.0934862\pi\)
−0.729297 + 0.684197i \(0.760153\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.9679 20.7289i 0.512647 0.887930i
\(546\) 0 0
\(547\) −8.55403 14.8160i −0.365744 0.633487i 0.623151 0.782101i \(-0.285852\pi\)
−0.988895 + 0.148614i \(0.952519\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.57288 11.3846i 0.280014 0.484999i
\(552\) 0 0
\(553\) 17.6785 28.5620i 0.751768 1.21458i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.02890 1.17139i −0.0859673 0.0496333i 0.456400 0.889775i \(-0.349139\pi\)
−0.542367 + 0.840141i \(0.682472\pi\)
\(558\) 0 0
\(559\) 0.723574i 0.0306039i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 21.0507 + 36.4608i 0.887180 + 1.53664i 0.843194 + 0.537609i \(0.180672\pi\)
0.0439857 + 0.999032i \(0.485994\pi\)
\(564\) 0 0
\(565\) −5.65958 3.26756i −0.238100 0.137467i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 35.0375 + 20.2289i 1.46885 + 0.848040i 0.999390 0.0349152i \(-0.0111161\pi\)
0.469458 + 0.882955i \(0.344449\pi\)
\(570\) 0 0
\(571\) −0.160538 0.278060i −0.00671832 0.0116365i 0.862647 0.505807i \(-0.168805\pi\)
−0.869365 + 0.494170i \(0.835472\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 11.9210i 0.497141i
\(576\) 0 0
\(577\) 20.9395 + 12.0894i 0.871721 + 0.503288i 0.867920 0.496704i \(-0.165457\pi\)
0.00380123 + 0.999993i \(0.498790\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.86841 + 14.6472i 0.326436 + 0.607670i
\(582\) 0 0
\(583\) −4.01328 + 6.95120i −0.166213 + 0.287889i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.4257 + 24.9860i 0.595411 + 1.03128i 0.993489 + 0.113931i \(0.0363442\pi\)
−0.398077 + 0.917352i \(0.630322\pi\)
\(588\) 0 0
\(589\) 1.93271 3.34755i 0.0796358 0.137933i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.07472 1.86147i −0.0441335 0.0764414i 0.843115 0.537734i \(-0.180719\pi\)
−0.887248 + 0.461292i \(0.847386\pi\)
\(594\) 0 0
\(595\) −2.64094 + 4.26679i −0.108268 + 0.174921i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.58798 3.22622i 0.228319 0.131820i −0.381477 0.924378i \(-0.624585\pi\)
0.609796 + 0.792558i \(0.291251\pi\)
\(600\) 0 0
\(601\) 10.6341 6.13960i 0.433774 0.250439i −0.267179 0.963647i \(-0.586092\pi\)
0.700953 + 0.713207i \(0.252758\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.0681 −0.531295
\(606\) 0 0
\(607\) 38.3682i 1.55732i 0.627448 + 0.778658i \(0.284099\pi\)
−0.627448 + 0.778658i \(0.715901\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.09243 1.20806i 0.0846506 0.0488731i
\(612\) 0 0
\(613\) 6.96098 12.0568i 0.281151 0.486969i −0.690517 0.723316i \(-0.742617\pi\)
0.971669 + 0.236347i \(0.0759503\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0193 8.67142i −0.604656 0.349098i 0.166215 0.986090i \(-0.446845\pi\)
−0.770871 + 0.636991i \(0.780179\pi\)
\(618\) 0 0
\(619\) 29.6508i 1.19177i −0.803071 0.595884i \(-0.796802\pi\)
0.803071 0.595884i \(-0.203198\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 15.1716 + 28.2424i 0.607839 + 1.13151i
\(624\) 0 0
\(625\) 0.422282 0.0168913
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.1534 0.564334
\(630\) 0 0
\(631\) −16.6402 −0.662437 −0.331218 0.943554i \(-0.607460\pi\)
−0.331218 + 0.943554i \(0.607460\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.59064 0.261541
\(636\) 0 0
\(637\) 4.30890 + 2.85321i 0.170725 + 0.113048i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.5930i 0.615888i −0.951404 0.307944i \(-0.900359\pi\)
0.951404 0.307944i \(-0.0996410\pi\)
\(642\) 0 0
\(643\) 13.7474 + 7.93708i 0.542146 + 0.313008i 0.745948 0.666004i \(-0.231997\pi\)
−0.203802 + 0.979012i \(0.565330\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.18164 + 2.04666i −0.0464549 + 0.0804623i −0.888318 0.459229i \(-0.848126\pi\)
0.841863 + 0.539691i \(0.181459\pi\)
\(648\) 0 0
\(649\) −14.0518 + 8.11281i −0.551581 + 0.318455i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 18.6821i 0.731088i 0.930794 + 0.365544i \(0.119117\pi\)
−0.930794 + 0.365544i \(0.880883\pi\)
\(654\) 0 0
\(655\) −8.40297 −0.328331
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 17.5543 10.1350i 0.683819 0.394803i −0.117473 0.993076i \(-0.537479\pi\)
0.801293 + 0.598273i \(0.204146\pi\)
\(660\) 0 0
\(661\) 27.1506 15.6754i 1.05604 0.609703i 0.131704 0.991289i \(-0.457955\pi\)
0.924333 + 0.381586i \(0.124622\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10.3724 + 5.57199i −0.402225 + 0.216073i
\(666\) 0 0
\(667\) 7.70224 + 13.3407i 0.298232 + 0.516553i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.03082 5.24954i 0.117004 0.202656i
\(672\) 0 0
\(673\) 9.49210 + 16.4408i 0.365893 + 0.633746i 0.988919 0.148455i \(-0.0474301\pi\)
−0.623026 + 0.782201i \(0.714097\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.8417 22.2424i 0.493545 0.854845i −0.506427 0.862283i \(-0.669034\pi\)
0.999972 + 0.00743750i \(0.00236745\pi\)
\(678\) 0 0
\(679\) 29.5455 15.8716i 1.13385 0.609097i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.2147 + 18.5992i 1.23266 + 0.711677i 0.967584 0.252550i \(-0.0812691\pi\)
0.265078 + 0.964227i \(0.414602\pi\)
\(684\) 0 0
\(685\) 4.81545i 0.183989i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.46122 + 4.26295i 0.0937648 + 0.162405i
\(690\) 0 0
\(691\) 38.8499 + 22.4300i 1.47792 + 0.853277i 0.999689 0.0249572i \(-0.00794496\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 17.3507 + 10.0174i 0.658150 + 0.379983i
\(696\) 0 0
\(697\) −0.929521 1.60998i −0.0352081 0.0609823i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 26.0630i 0.984387i −0.870486 0.492194i \(-0.836195\pi\)
0.870486 0.492194i \(-0.163805\pi\)
\(702\) 0 0
\(703\) 28.7607 + 16.6050i 1.08473 + 0.626269i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 35.0230 + 1.07347i 1.31718 + 0.0403721i
\(708\) 0 0
\(709\) −16.6461 + 28.8319i −0.625158 + 1.08281i 0.363352 + 0.931652i \(0.381632\pi\)
−0.988510 + 0.151154i \(0.951701\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.26478 + 3.92272i 0.0848169 + 0.146907i
\(714\) 0 0
\(715\) 0.608037 1.05315i 0.0227393 0.0393856i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.3474 42.1709i −0.908003 1.57271i −0.816834 0.576872i \(-0.804273\pi\)
−0.0911690 0.995835i \(-0.529060\pi\)
\(720\) 0 0
\(721\) 1.06853 34.8618i 0.0397941 1.29832i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.9483 + 6.32099i −0.406609 + 0.234756i
\(726\) 0 0
\(727\) −8.76540 + 5.06071i −0.325091 + 0.187691i −0.653659 0.756789i \(-0.726767\pi\)
0.328569 + 0.944480i \(0.393434\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.35853 −0.0502471
\(732\) 0 0
\(733\) 18.6611i 0.689262i −0.938738 0.344631i \(-0.888004\pi\)
0.938738 0.344631i \(-0.111996\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.58025 2.64441i 0.168716 0.0974081i
\(738\) 0 0
\(739\) −13.5646 + 23.4946i −0.498983 + 0.864264i −0.999999 0.00117395i \(-0.999626\pi\)
0.501016 + 0.865438i \(0.332960\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.9378 8.04698i −0.511328 0.295215i 0.222052 0.975035i \(-0.428725\pi\)
−0.733379 + 0.679820i \(0.762058\pi\)
\(744\) 0 0
\(745\) 20.3017i 0.743796i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −42.7380 + 22.9586i −1.56161 + 0.838888i
\(750\) 0 0
\(751\) 47.6328 1.73815 0.869073 0.494683i \(-0.164716\pi\)
0.869073 + 0.494683i \(0.164716\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.00761 −0.145852
\(756\) 0 0
\(757\) 50.4788 1.83468 0.917341 0.398102i \(-0.130331\pi\)
0.917341 + 0.398102i \(0.130331\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.39506 −0.231821 −0.115910 0.993260i \(-0.536979\pi\)
−0.115910 + 0.993260i \(0.536979\pi\)
\(762\) 0 0
\(763\) −24.3586 + 39.3544i −0.881839 + 1.42473i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.95065i 0.359297i
\(768\) 0 0
\(769\) 21.1676 + 12.2211i 0.763322 + 0.440704i 0.830487 0.557038i \(-0.188062\pi\)
−0.0671654 + 0.997742i \(0.521396\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.32573 + 14.4206i −0.299456 + 0.518672i −0.976011 0.217719i \(-0.930138\pi\)
0.676556 + 0.736391i \(0.263472\pi\)
\(774\) 0 0
\(775\) −3.21926 + 1.85864i −0.115639 + 0.0667643i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.36210i 0.156289i
\(780\) 0 0
\(781\) 10.6484 0.381030
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.0114 13.2856i 0.821310 0.474184i
\(786\) 0 0
\(787\) 1.21582 0.701955i 0.0433394 0.0250220i −0.478174 0.878265i \(-0.658701\pi\)
0.521513 + 0.853243i \(0.325368\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.7448 + 6.65056i 0.382043 + 0.236467i
\(792\) 0 0
\(793\) −1.85871 3.21937i −0.0660046 0.114323i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −14.7211 + 25.4977i −0.521448 + 0.903174i 0.478241 + 0.878229i \(0.341274\pi\)
−0.999689 + 0.0249452i \(0.992059\pi\)
\(798\) 0 0
\(799\) −2.26818 3.92860i −0.0802423 0.138984i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.15464 + 12.3922i −0.252482 + 0.437311i
\(804\) 0 0
\(805\) 0.422697 13.7909i 0.0148981 0.486065i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −41.2228 23.8000i −1.44932 0.836764i −0.450877 0.892586i \(-0.648889\pi\)
−0.998441 + 0.0558222i \(0.982222\pi\)
\(810\) 0 0
\(811\) 24.9460i 0.875973i −0.898981 0.437987i \(-0.855692\pi\)
0.898981 0.437987i \(-0.144308\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.76087 11.7102i −0.236823 0.410189i
\(816\) 0 0
\(817\) −2.76062 1.59385i −0.0965820 0.0557616i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 5.91506 + 3.41506i 0.206437 + 0.119186i 0.599654 0.800259i \(-0.295305\pi\)
−0.393218 + 0.919445i \(0.628638\pi\)
\(822\) 0 0
\(823\) −3.68905 6.38962i −0.128592 0.222728i 0.794539 0.607213i \(-0.207712\pi\)
−0.923131 + 0.384485i \(0.874379\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 21.1804i 0.736516i 0.929724 + 0.368258i \(0.120046\pi\)
−0.929724 + 0.368258i \(0.879954\pi\)
\(828\) 0 0
\(829\) −1.60383 0.925970i −0.0557032 0.0321603i 0.471890 0.881658i \(-0.343572\pi\)
−0.527593 + 0.849497i \(0.676905\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.35698 8.09009i 0.185608 0.280305i
\(834\) 0 0
\(835\) −13.1132 + 22.7128i −0.453802 + 0.786009i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.90568 13.6930i −0.272934 0.472736i 0.696678 0.717384i \(-0.254661\pi\)
−0.969612 + 0.244648i \(0.921328\pi\)
\(840\) 0 0
\(841\) −6.33194 + 10.9672i −0.218343 + 0.378181i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8.52092 + 14.7587i 0.293129 + 0.507714i
\(846\) 0 0
\(847\) 25.2571 + 0.774142i 0.867845 + 0.0265998i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −33.7023 + 19.4581i −1.15530 + 0.667013i
\(852\) 0 0
\(853\) −8.16324 + 4.71305i −0.279504 + 0.161372i −0.633199 0.773989i \(-0.718258\pi\)
0.353695 + 0.935361i \(0.384925\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.8222 1.05287 0.526433 0.850217i \(-0.323529\pi\)
0.526433 + 0.850217i \(0.323529\pi\)
\(858\) 0 0
\(859\) 1.53925i 0.0525185i −0.999655 0.0262592i \(-0.991640\pi\)
0.999655 0.0262592i \(-0.00835953\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.645937 0.372932i 0.0219879 0.0126947i −0.488966 0.872303i \(-0.662626\pi\)
0.510954 + 0.859608i \(0.329292\pi\)
\(864\) 0 0
\(865\) 2.57645 4.46255i 0.0876020 0.151731i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.2362 + 7.64195i 0.449009 + 0.259235i
\(870\) 0 0
\(871\) 3.24346i 0.109901i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 29.4099 + 0.901427i 0.994236 + 0.0304738i
\(876\) 0 0
\(877\) 3.47691 0.117407 0.0587034 0.998275i \(-0.481303\pi\)
0.0587034 + 0.998275i \(0.481303\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −49.4437 −1.66580 −0.832900 0.553424i \(-0.813321\pi\)
−0.832900 + 0.553424i \(0.813321\pi\)
\(882\) 0 0
\(883\) 3.02160 0.101685 0.0508424 0.998707i \(-0.483809\pi\)
0.0508424 + 0.998707i \(0.483809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 35.5134 1.19242 0.596212 0.802827i \(-0.296672\pi\)
0.596212 + 0.802827i \(0.296672\pi\)
\(888\) 0 0
\(889\) −12.7379 0.390423i −0.427216 0.0130944i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.6442i 0.356195i
\(894\) 0 0
\(895\) 31.1181 + 17.9660i 1.04016 + 0.600539i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.40176 4.15997i 0.0801031 0.138743i
\(900\) 0 0
\(901\) 8.00381 4.62100i 0.266646 0.153948i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.4015i 0.345756i
\(906\) 0 0
\(907\) −16.1292 −0.535561 −0.267781 0.963480i \(-0.586290\pi\)
−0.267781 + 0.963480i \(0.586290\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.7485 + 9.66977i −0.554903 + 0.320374i −0.751097 0.660191i \(-0.770475\pi\)
0.196194 + 0.980565i \(0.437142\pi\)
\(912\) 0 0
\(913\) −6.55180 + 3.78268i −0.216833 + 0.125188i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.2407 + 0.497784i 0.536314 + 0.0164383i
\(918\) 0 0
\(919\) −18.3378 31.7620i −0.604908 1.04773i −0.992066 0.125718i \(-0.959876\pi\)
0.387158 0.922014i \(-0.373457\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.26516 5.65542i 0.107474 0.186151i
\(924\) 0 0
\(925\) −15.9686 27.6585i −0.525046 0.909405i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.4172 21.5073i 0.407397 0.705632i −0.587200 0.809442i \(-0.699770\pi\)
0.994597 + 0.103810i \(0.0331033\pi\)
\(930\) 0 0
\(931\) 20.3771 10.1547i 0.667833 0.332807i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.97732 1.14161i −0.0646654 0.0373346i
\(936\) 0 0
\(937\) 53.1227i 1.73544i −0.497050 0.867722i \(-0.665584\pi\)
0.497050 0.867722i \(-0.334416\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 17.2471 + 29.8729i 0.562240 + 0.973829i 0.997301 + 0.0734277i \(0.0233938\pi\)
−0.435060 + 0.900401i \(0.643273\pi\)
\(942\) 0 0
\(943\) 4.42678 + 2.55580i 0.144156 + 0.0832283i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.2611 9.96572i −0.560912 0.323842i 0.192600 0.981277i \(-0.438308\pi\)
−0.753511 + 0.657435i \(0.771641\pi\)
\(948\) 0 0
\(949\) 4.38771 + 7.59974i 0.142431 + 0.246698i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 37.0472i 1.20008i 0.799971 + 0.600039i \(0.204848\pi\)
−0.799971 + 0.600039i \(0.795152\pi\)
\(954\) 0 0
\(955\) 22.1744 + 12.8024i 0.717545 + 0.414275i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.285263 + 9.30696i −0.00921161 + 0.300537i
\(960\) 0 0
\(961\) −14.7938 + 25.6236i −0.477219 + 0.826567i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 9.33886 + 16.1754i 0.300629 + 0.520704i
\(966\) 0 0
\(967\) 16.5292 28.6294i 0.531543 0.920659i −0.467780 0.883845i \(-0.654946\pi\)
0.999322 0.0368136i \(-0.0117208\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.1441 22.7662i −0.421813 0.730602i 0.574304 0.818642i \(-0.305273\pi\)
−0.996117 + 0.0880404i \(0.971940\pi\)
\(972\) 0 0
\(973\) −32.9407 20.3888i −1.05603 0.653635i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 24.7246 14.2748i 0.791011 0.456690i −0.0493073 0.998784i \(-0.515701\pi\)
0.840318 + 0.542093i \(0.182368\pi\)
\(978\) 0 0
\(979\) −12.6330 + 7.29366i −0.403752 + 0.233106i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.12317 −0.0996138 −0.0498069 0.998759i \(-0.515861\pi\)
−0.0498069 + 0.998759i \(0.515861\pi\)
\(984\) 0 0
\(985\) 22.3451i 0.711973i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.23496 1.86770i 0.102866 0.0593895i
\(990\) 0 0
\(991\) −9.31103 + 16.1272i −0.295775 + 0.512297i −0.975165 0.221481i \(-0.928911\pi\)
0.679390 + 0.733777i \(0.262244\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −14.1519 8.17062i −0.448646 0.259026i
\(996\) 0 0
\(997\) 0.0372304i 0.00117910i −1.00000 0.000589549i \(-0.999812\pi\)
1.00000 0.000589549i \(-0.000187659\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.9 48
3.2 odd 2 504.2.cx.a.185.16 yes 48
4.3 odd 2 3024.2.df.e.17.9 48
7.5 odd 6 1512.2.bs.a.1097.9 48
9.2 odd 6 1512.2.bs.a.521.9 48
9.7 even 3 504.2.bs.a.353.24 yes 48
12.11 even 2 1008.2.df.e.689.9 48
21.5 even 6 504.2.bs.a.257.24 48
28.19 even 6 3024.2.ca.e.2609.9 48
36.7 odd 6 1008.2.ca.e.353.1 48
36.11 even 6 3024.2.ca.e.2033.9 48
63.47 even 6 inner 1512.2.cx.a.89.9 48
63.61 odd 6 504.2.cx.a.425.16 yes 48
84.47 odd 6 1008.2.ca.e.257.1 48
252.47 odd 6 3024.2.df.e.1601.9 48
252.187 even 6 1008.2.df.e.929.9 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.24 48 21.5 even 6
504.2.bs.a.353.24 yes 48 9.7 even 3
504.2.cx.a.185.16 yes 48 3.2 odd 2
504.2.cx.a.425.16 yes 48 63.61 odd 6
1008.2.ca.e.257.1 48 84.47 odd 6
1008.2.ca.e.353.1 48 36.7 odd 6
1008.2.df.e.689.9 48 12.11 even 2
1008.2.df.e.929.9 48 252.187 even 6
1512.2.bs.a.521.9 48 9.2 odd 6
1512.2.bs.a.1097.9 48 7.5 odd 6
1512.2.cx.a.17.9 48 1.1 even 1 trivial
1512.2.cx.a.89.9 48 63.47 even 6 inner
3024.2.ca.e.2033.9 48 36.11 even 6
3024.2.ca.e.2609.9 48 28.19 even 6
3024.2.df.e.17.9 48 4.3 odd 2
3024.2.df.e.1601.9 48 252.47 odd 6