Properties

Label 1008.2.df.e.929.8
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.8
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.e.689.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.958980 + 1.44234i) q^{3} +4.11484 q^{5} +(2.54819 + 0.711830i) q^{7} +(-1.16071 - 2.76636i) q^{9} +5.82138i q^{11} +(-2.52259 + 1.45642i) q^{13} +(-3.94605 + 5.93502i) q^{15} +(1.58162 + 2.73945i) q^{17} +(-0.722488 - 0.417129i) q^{19} +(-3.47037 + 2.99274i) q^{21} -7.09758i q^{23} +11.9319 q^{25} +(5.10314 + 0.978735i) q^{27} +(-1.91234 - 1.10409i) q^{29} +(-3.66696 - 2.11712i) q^{31} +(-8.39644 - 5.58259i) q^{33} +(10.4854 + 2.92907i) q^{35} +(1.82507 - 3.16112i) q^{37} +(0.318458 - 5.03512i) q^{39} +(2.04811 + 3.54743i) q^{41} +(-0.155460 + 0.269265i) q^{43} +(-4.77615 - 11.3831i) q^{45} +(-0.502335 - 0.870070i) q^{47} +(5.98660 + 3.62776i) q^{49} +(-5.46798 - 0.345835i) q^{51} +(-1.94801 + 1.12469i) q^{53} +23.9541i q^{55} +(1.29450 - 0.642058i) q^{57} +(-2.51748 + 4.36040i) q^{59} +(-3.98673 + 2.30174i) q^{61} +(-0.988547 - 7.87545i) q^{63} +(-10.3801 + 5.99293i) q^{65} +(-4.99726 + 8.65551i) q^{67} +(10.2371 + 6.80644i) q^{69} -11.4186i q^{71} +(-3.04990 + 1.76086i) q^{73} +(-11.4425 + 17.2099i) q^{75} +(-4.14384 + 14.8340i) q^{77} +(-0.579351 - 1.00346i) q^{79} +(-6.30549 + 6.42190i) q^{81} +(7.57669 - 13.1232i) q^{83} +(6.50813 + 11.2724i) q^{85} +(3.42638 - 1.69945i) q^{87} +(4.82266 - 8.35309i) q^{89} +(-7.46478 + 1.91558i) q^{91} +(6.57016 - 3.25874i) q^{93} +(-2.97292 - 1.71642i) q^{95} +(5.06969 + 2.92699i) q^{97} +(16.1040 - 6.75696i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.958980 + 1.44234i −0.553668 + 0.832738i
\(4\) 0 0
\(5\) 4.11484 1.84021 0.920106 0.391669i \(-0.128102\pi\)
0.920106 + 0.391669i \(0.128102\pi\)
\(6\) 0 0
\(7\) 2.54819 + 0.711830i 0.963127 + 0.269047i
\(8\) 0 0
\(9\) −1.16071 2.76636i −0.386905 0.922120i
\(10\) 0 0
\(11\) 5.82138i 1.75521i 0.479381 + 0.877607i \(0.340861\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(12\) 0 0
\(13\) −2.52259 + 1.45642i −0.699641 + 0.403938i −0.807214 0.590259i \(-0.799025\pi\)
0.107573 + 0.994197i \(0.465692\pi\)
\(14\) 0 0
\(15\) −3.94605 + 5.93502i −1.01887 + 1.53241i
\(16\) 0 0
\(17\) 1.58162 + 2.73945i 0.383600 + 0.664415i 0.991574 0.129542i \(-0.0413508\pi\)
−0.607974 + 0.793957i \(0.708017\pi\)
\(18\) 0 0
\(19\) −0.722488 0.417129i −0.165750 0.0956959i 0.414830 0.909899i \(-0.363841\pi\)
−0.580580 + 0.814203i \(0.697174\pi\)
\(20\) 0 0
\(21\) −3.47037 + 2.99274i −0.757297 + 0.653070i
\(22\) 0 0
\(23\) 7.09758i 1.47995i −0.672636 0.739973i \(-0.734838\pi\)
0.672636 0.739973i \(-0.265162\pi\)
\(24\) 0 0
\(25\) 11.9319 2.38638
\(26\) 0 0
\(27\) 5.10314 + 0.978735i 0.982100 + 0.188358i
\(28\) 0 0
\(29\) −1.91234 1.10409i −0.355113 0.205025i 0.311822 0.950141i \(-0.399061\pi\)
−0.666935 + 0.745116i \(0.732394\pi\)
\(30\) 0 0
\(31\) −3.66696 2.11712i −0.658606 0.380246i 0.133140 0.991097i \(-0.457494\pi\)
−0.791746 + 0.610851i \(0.790827\pi\)
\(32\) 0 0
\(33\) −8.39644 5.58259i −1.46163 0.971805i
\(34\) 0 0
\(35\) 10.4854 + 2.92907i 1.77236 + 0.495103i
\(36\) 0 0
\(37\) 1.82507 3.16112i 0.300040 0.519684i −0.676105 0.736806i \(-0.736333\pi\)
0.976145 + 0.217121i \(0.0696667\pi\)
\(38\) 0 0
\(39\) 0.318458 5.03512i 0.0509941 0.806265i
\(40\) 0 0
\(41\) 2.04811 + 3.54743i 0.319861 + 0.554016i 0.980459 0.196724i \(-0.0630303\pi\)
−0.660598 + 0.750740i \(0.729697\pi\)
\(42\) 0 0
\(43\) −0.155460 + 0.269265i −0.0237074 + 0.0410625i −0.877636 0.479328i \(-0.840880\pi\)
0.853928 + 0.520391i \(0.174214\pi\)
\(44\) 0 0
\(45\) −4.77615 11.3831i −0.711987 1.69690i
\(46\) 0 0
\(47\) −0.502335 0.870070i −0.0732731 0.126913i 0.827061 0.562112i \(-0.190011\pi\)
−0.900334 + 0.435200i \(0.856678\pi\)
\(48\) 0 0
\(49\) 5.98660 + 3.62776i 0.855228 + 0.518252i
\(50\) 0 0
\(51\) −5.46798 0.345835i −0.765670 0.0484266i
\(52\) 0 0
\(53\) −1.94801 + 1.12469i −0.267580 + 0.154487i −0.627787 0.778385i \(-0.716039\pi\)
0.360207 + 0.932872i \(0.382706\pi\)
\(54\) 0 0
\(55\) 23.9541i 3.22997i
\(56\) 0 0
\(57\) 1.29450 0.642058i 0.171460 0.0850427i
\(58\) 0 0
\(59\) −2.51748 + 4.36040i −0.327748 + 0.567676i −0.982065 0.188545i \(-0.939623\pi\)
0.654317 + 0.756221i \(0.272956\pi\)
\(60\) 0 0
\(61\) −3.98673 + 2.30174i −0.510449 + 0.294708i −0.733018 0.680209i \(-0.761889\pi\)
0.222569 + 0.974917i \(0.428556\pi\)
\(62\) 0 0
\(63\) −0.988547 7.87545i −0.124545 0.992214i
\(64\) 0 0
\(65\) −10.3801 + 5.99293i −1.28749 + 0.743331i
\(66\) 0 0
\(67\) −4.99726 + 8.65551i −0.610513 + 1.05744i 0.380641 + 0.924723i \(0.375703\pi\)
−0.991154 + 0.132717i \(0.957630\pi\)
\(68\) 0 0
\(69\) 10.2371 + 6.80644i 1.23241 + 0.819398i
\(70\) 0 0
\(71\) 11.4186i 1.35514i −0.735458 0.677571i \(-0.763033\pi\)
0.735458 0.677571i \(-0.236967\pi\)
\(72\) 0 0
\(73\) −3.04990 + 1.76086i −0.356964 + 0.206093i −0.667748 0.744387i \(-0.732742\pi\)
0.310784 + 0.950480i \(0.399408\pi\)
\(74\) 0 0
\(75\) −11.4425 + 17.2099i −1.32126 + 1.98723i
\(76\) 0 0
\(77\) −4.14384 + 14.8340i −0.472234 + 1.69049i
\(78\) 0 0
\(79\) −0.579351 1.00346i −0.0651820 0.112899i 0.831593 0.555386i \(-0.187429\pi\)
−0.896775 + 0.442487i \(0.854096\pi\)
\(80\) 0 0
\(81\) −6.30549 + 6.42190i −0.700610 + 0.713545i
\(82\) 0 0
\(83\) 7.57669 13.1232i 0.831650 1.44046i −0.0650797 0.997880i \(-0.520730\pi\)
0.896729 0.442579i \(-0.145937\pi\)
\(84\) 0 0
\(85\) 6.50813 + 11.2724i 0.705905 + 1.22266i
\(86\) 0 0
\(87\) 3.42638 1.69945i 0.367346 0.182201i
\(88\) 0 0
\(89\) 4.82266 8.35309i 0.511201 0.885426i −0.488715 0.872444i \(-0.662534\pi\)
0.999916 0.0129824i \(-0.00413254\pi\)
\(90\) 0 0
\(91\) −7.46478 + 1.91558i −0.782521 + 0.200808i
\(92\) 0 0
\(93\) 6.57016 3.25874i 0.681294 0.337916i
\(94\) 0 0
\(95\) −2.97292 1.71642i −0.305015 0.176101i
\(96\) 0 0
\(97\) 5.06969 + 2.92699i 0.514749 + 0.297190i 0.734784 0.678302i \(-0.237284\pi\)
−0.220035 + 0.975492i \(0.570617\pi\)
\(98\) 0 0
\(99\) 16.1040 6.75696i 1.61852 0.679100i
\(100\) 0 0
\(101\) 5.85264 0.582359 0.291180 0.956668i \(-0.405952\pi\)
0.291180 + 0.956668i \(0.405952\pi\)
\(102\) 0 0
\(103\) 0.780268i 0.0768821i 0.999261 + 0.0384410i \(0.0122392\pi\)
−0.999261 + 0.0384410i \(0.987761\pi\)
\(104\) 0 0
\(105\) −14.2800 + 12.3147i −1.39359 + 1.20179i
\(106\) 0 0
\(107\) 7.15538 + 4.13116i 0.691737 + 0.399374i 0.804262 0.594274i \(-0.202561\pi\)
−0.112526 + 0.993649i \(0.535894\pi\)
\(108\) 0 0
\(109\) 3.63584 + 6.29745i 0.348250 + 0.603187i 0.985939 0.167107i \(-0.0534427\pi\)
−0.637689 + 0.770294i \(0.720109\pi\)
\(110\) 0 0
\(111\) 2.80921 + 5.66383i 0.266639 + 0.537587i
\(112\) 0 0
\(113\) −16.0816 + 9.28474i −1.51283 + 0.873435i −0.512947 + 0.858421i \(0.671446\pi\)
−0.999887 + 0.0150145i \(0.995221\pi\)
\(114\) 0 0
\(115\) 29.2054i 2.72342i
\(116\) 0 0
\(117\) 6.95698 + 5.28791i 0.643173 + 0.488867i
\(118\) 0 0
\(119\) 2.08026 + 8.10650i 0.190697 + 0.743122i
\(120\) 0 0
\(121\) −22.8885 −2.08077
\(122\) 0 0
\(123\) −7.08072 0.447837i −0.638447 0.0403801i
\(124\) 0 0
\(125\) 28.5237 2.55124
\(126\) 0 0
\(127\) −4.38363 −0.388984 −0.194492 0.980904i \(-0.562306\pi\)
−0.194492 + 0.980904i \(0.562306\pi\)
\(128\) 0 0
\(129\) −0.239289 0.482446i −0.0210682 0.0424770i
\(130\) 0 0
\(131\) 15.7084 1.37245 0.686224 0.727391i \(-0.259267\pi\)
0.686224 + 0.727391i \(0.259267\pi\)
\(132\) 0 0
\(133\) −1.54412 1.57721i −0.133892 0.136762i
\(134\) 0 0
\(135\) 20.9986 + 4.02734i 1.80727 + 0.346618i
\(136\) 0 0
\(137\) 18.4638i 1.57747i −0.614734 0.788734i \(-0.710737\pi\)
0.614734 0.788734i \(-0.289263\pi\)
\(138\) 0 0
\(139\) −3.80522 + 2.19695i −0.322755 + 0.186343i −0.652620 0.757685i \(-0.726330\pi\)
0.329865 + 0.944028i \(0.392997\pi\)
\(140\) 0 0
\(141\) 1.73667 + 0.109840i 0.146254 + 0.00925018i
\(142\) 0 0
\(143\) −8.47837 14.6850i −0.708997 1.22802i
\(144\) 0 0
\(145\) −7.86898 4.54316i −0.653483 0.377289i
\(146\) 0 0
\(147\) −10.9735 + 5.15578i −0.905080 + 0.425241i
\(148\) 0 0
\(149\) 20.5051i 1.67984i −0.542706 0.839922i \(-0.682600\pi\)
0.542706 0.839922i \(-0.317400\pi\)
\(150\) 0 0
\(151\) −5.41552 −0.440709 −0.220354 0.975420i \(-0.570721\pi\)
−0.220354 + 0.975420i \(0.570721\pi\)
\(152\) 0 0
\(153\) 5.74250 7.55506i 0.464253 0.610790i
\(154\) 0 0
\(155\) −15.0890 8.71162i −1.21197 0.699734i
\(156\) 0 0
\(157\) 9.74596 + 5.62683i 0.777812 + 0.449070i 0.835654 0.549256i \(-0.185089\pi\)
−0.0578423 + 0.998326i \(0.518422\pi\)
\(158\) 0 0
\(159\) 0.245922 3.88826i 0.0195029 0.308359i
\(160\) 0 0
\(161\) 5.05227 18.0860i 0.398175 1.42538i
\(162\) 0 0
\(163\) 1.25819 2.17924i 0.0985487 0.170691i −0.812535 0.582912i \(-0.801913\pi\)
0.911084 + 0.412220i \(0.135247\pi\)
\(164\) 0 0
\(165\) −34.5500 22.9715i −2.68971 1.78833i
\(166\) 0 0
\(167\) −9.38259 16.2511i −0.726047 1.25755i −0.958542 0.284952i \(-0.908022\pi\)
0.232495 0.972598i \(-0.425311\pi\)
\(168\) 0 0
\(169\) −2.25769 + 3.91043i −0.173668 + 0.300803i
\(170\) 0 0
\(171\) −0.315326 + 2.48283i −0.0241136 + 0.189867i
\(172\) 0 0
\(173\) 4.85857 + 8.41530i 0.369391 + 0.639803i 0.989470 0.144735i \(-0.0462331\pi\)
−0.620080 + 0.784539i \(0.712900\pi\)
\(174\) 0 0
\(175\) 30.4048 + 8.49349i 2.29839 + 0.642048i
\(176\) 0 0
\(177\) −3.87499 7.81261i −0.291262 0.587232i
\(178\) 0 0
\(179\) 9.24569 5.33800i 0.691055 0.398981i −0.112952 0.993600i \(-0.536031\pi\)
0.804007 + 0.594619i \(0.202697\pi\)
\(180\) 0 0
\(181\) 4.34901i 0.323259i −0.986851 0.161630i \(-0.948325\pi\)
0.986851 0.161630i \(-0.0516750\pi\)
\(182\) 0 0
\(183\) 0.503295 7.95757i 0.0372046 0.588240i
\(184\) 0 0
\(185\) 7.50988 13.0075i 0.552137 0.956330i
\(186\) 0 0
\(187\) −15.9474 + 9.20724i −1.16619 + 0.673300i
\(188\) 0 0
\(189\) 12.3071 + 6.12658i 0.895211 + 0.445643i
\(190\) 0 0
\(191\) 21.4704 12.3959i 1.55354 0.896937i 0.555691 0.831389i \(-0.312454\pi\)
0.997849 0.0655476i \(-0.0208794\pi\)
\(192\) 0 0
\(193\) −13.3256 + 23.0806i −0.959198 + 1.66138i −0.234743 + 0.972058i \(0.575425\pi\)
−0.724455 + 0.689322i \(0.757909\pi\)
\(194\) 0 0
\(195\) 1.31040 20.7187i 0.0938400 1.48370i
\(196\) 0 0
\(197\) 6.11068i 0.435368i 0.976019 + 0.217684i \(0.0698502\pi\)
−0.976019 + 0.217684i \(0.930150\pi\)
\(198\) 0 0
\(199\) 0.385220 0.222407i 0.0273075 0.0157660i −0.486284 0.873801i \(-0.661648\pi\)
0.513592 + 0.858035i \(0.328315\pi\)
\(200\) 0 0
\(201\) −7.69195 15.5082i −0.542549 1.09387i
\(202\) 0 0
\(203\) −4.08710 4.17470i −0.286858 0.293007i
\(204\) 0 0
\(205\) 8.42765 + 14.5971i 0.588613 + 1.01951i
\(206\) 0 0
\(207\) −19.6344 + 8.23825i −1.36469 + 0.572598i
\(208\) 0 0
\(209\) 2.42827 4.20588i 0.167967 0.290927i
\(210\) 0 0
\(211\) 4.23912 + 7.34236i 0.291833 + 0.505469i 0.974243 0.225500i \(-0.0724016\pi\)
−0.682410 + 0.730969i \(0.739068\pi\)
\(212\) 0 0
\(213\) 16.4696 + 10.9502i 1.12848 + 0.750298i
\(214\) 0 0
\(215\) −0.639693 + 1.10798i −0.0436267 + 0.0755636i
\(216\) 0 0
\(217\) −7.83710 8.00509i −0.532017 0.543421i
\(218\) 0 0
\(219\) 0.385027 6.08763i 0.0260177 0.411364i
\(220\) 0 0
\(221\) −7.97958 4.60701i −0.536764 0.309901i
\(222\) 0 0
\(223\) 7.25738 + 4.19005i 0.485990 + 0.280587i 0.722909 0.690943i \(-0.242804\pi\)
−0.236919 + 0.971529i \(0.576138\pi\)
\(224\) 0 0
\(225\) −13.8495 33.0079i −0.923302 2.20053i
\(226\) 0 0
\(227\) 2.22151 0.147447 0.0737233 0.997279i \(-0.476512\pi\)
0.0737233 + 0.997279i \(0.476512\pi\)
\(228\) 0 0
\(229\) 23.6040i 1.55980i −0.625907 0.779898i \(-0.715271\pi\)
0.625907 0.779898i \(-0.284729\pi\)
\(230\) 0 0
\(231\) −17.4219 20.2024i −1.14628 1.32922i
\(232\) 0 0
\(233\) −6.69275 3.86406i −0.438457 0.253143i 0.264486 0.964390i \(-0.414798\pi\)
−0.702943 + 0.711246i \(0.748131\pi\)
\(234\) 0 0
\(235\) −2.06703 3.58020i −0.134838 0.233546i
\(236\) 0 0
\(237\) 2.00293 + 0.126680i 0.130104 + 0.00822874i
\(238\) 0 0
\(239\) −16.2873 + 9.40346i −1.05354 + 0.608259i −0.923637 0.383268i \(-0.874799\pi\)
−0.129899 + 0.991527i \(0.541465\pi\)
\(240\) 0 0
\(241\) 24.9125i 1.60476i −0.596815 0.802379i \(-0.703567\pi\)
0.596815 0.802379i \(-0.296433\pi\)
\(242\) 0 0
\(243\) −3.21576 15.2532i −0.206291 0.978491i
\(244\) 0 0
\(245\) 24.6339 + 14.9277i 1.57380 + 0.953694i
\(246\) 0 0
\(247\) 2.43006 0.154621
\(248\) 0 0
\(249\) 11.6623 + 23.5131i 0.739068 + 1.49008i
\(250\) 0 0
\(251\) 3.39294 0.214161 0.107080 0.994250i \(-0.465850\pi\)
0.107080 + 0.994250i \(0.465850\pi\)
\(252\) 0 0
\(253\) 41.3177 2.59762
\(254\) 0 0
\(255\) −22.4999 1.42306i −1.40900 0.0891152i
\(256\) 0 0
\(257\) 4.95421 0.309035 0.154518 0.987990i \(-0.450618\pi\)
0.154518 + 0.987990i \(0.450618\pi\)
\(258\) 0 0
\(259\) 6.90082 6.75600i 0.428796 0.419797i
\(260\) 0 0
\(261\) −0.834632 + 6.57176i −0.0516624 + 0.406782i
\(262\) 0 0
\(263\) 2.91442i 0.179711i −0.995955 0.0898553i \(-0.971360\pi\)
0.995955 0.0898553i \(-0.0286405\pi\)
\(264\) 0 0
\(265\) −8.01576 + 4.62790i −0.492404 + 0.284290i
\(266\) 0 0
\(267\) 7.42320 + 14.9664i 0.454292 + 0.915928i
\(268\) 0 0
\(269\) −9.41429 16.3060i −0.573999 0.994196i −0.996150 0.0876702i \(-0.972058\pi\)
0.422150 0.906526i \(-0.361276\pi\)
\(270\) 0 0
\(271\) 13.6959 + 7.90734i 0.831967 + 0.480336i 0.854526 0.519409i \(-0.173848\pi\)
−0.0225585 + 0.999746i \(0.507181\pi\)
\(272\) 0 0
\(273\) 4.39564 12.6038i 0.266037 0.762816i
\(274\) 0 0
\(275\) 69.4602i 4.18861i
\(276\) 0 0
\(277\) −4.90462 −0.294690 −0.147345 0.989085i \(-0.547073\pi\)
−0.147345 + 0.989085i \(0.547073\pi\)
\(278\) 0 0
\(279\) −1.60043 + 12.6015i −0.0958150 + 0.754433i
\(280\) 0 0
\(281\) 2.77186 + 1.60034i 0.165355 + 0.0954680i 0.580394 0.814336i \(-0.302899\pi\)
−0.415039 + 0.909804i \(0.636232\pi\)
\(282\) 0 0
\(283\) −4.38850 2.53370i −0.260869 0.150613i 0.363862 0.931453i \(-0.381458\pi\)
−0.624731 + 0.780840i \(0.714791\pi\)
\(284\) 0 0
\(285\) 5.32664 2.64197i 0.315523 0.156497i
\(286\) 0 0
\(287\) 2.69382 + 10.4975i 0.159011 + 0.619646i
\(288\) 0 0
\(289\) 3.49694 6.05687i 0.205702 0.356287i
\(290\) 0 0
\(291\) −9.08345 + 4.50531i −0.532481 + 0.264106i
\(292\) 0 0
\(293\) −12.3751 21.4343i −0.722961 1.25221i −0.959808 0.280658i \(-0.909447\pi\)
0.236847 0.971547i \(-0.423886\pi\)
\(294\) 0 0
\(295\) −10.3590 + 17.9424i −0.603126 + 1.04464i
\(296\) 0 0
\(297\) −5.69760 + 29.7074i −0.330608 + 1.72380i
\(298\) 0 0
\(299\) 10.3370 + 17.9043i 0.597807 + 1.03543i
\(300\) 0 0
\(301\) −0.587813 + 0.575477i −0.0338810 + 0.0331700i
\(302\) 0 0
\(303\) −5.61256 + 8.44152i −0.322433 + 0.484953i
\(304\) 0 0
\(305\) −16.4048 + 9.47130i −0.939335 + 0.542325i
\(306\) 0 0
\(307\) 19.8011i 1.13011i 0.825054 + 0.565055i \(0.191145\pi\)
−0.825054 + 0.565055i \(0.808855\pi\)
\(308\) 0 0
\(309\) −1.12541 0.748261i −0.0640226 0.0425671i
\(310\) 0 0
\(311\) 6.02449 10.4347i 0.341617 0.591699i −0.643116 0.765769i \(-0.722359\pi\)
0.984733 + 0.174070i \(0.0556920\pi\)
\(312\) 0 0
\(313\) 26.0564 15.0437i 1.47279 0.850318i 0.473262 0.880922i \(-0.343076\pi\)
0.999532 + 0.0306036i \(0.00974294\pi\)
\(314\) 0 0
\(315\) −4.06771 32.4062i −0.229190 1.82588i
\(316\) 0 0
\(317\) −10.9888 + 6.34436i −0.617190 + 0.356335i −0.775774 0.631011i \(-0.782640\pi\)
0.158584 + 0.987345i \(0.449307\pi\)
\(318\) 0 0
\(319\) 6.42734 11.1325i 0.359862 0.623299i
\(320\) 0 0
\(321\) −12.8204 + 6.35882i −0.715566 + 0.354915i
\(322\) 0 0
\(323\) 2.63896i 0.146836i
\(324\) 0 0
\(325\) −30.0993 + 17.3778i −1.66961 + 0.963950i
\(326\) 0 0
\(327\) −12.5698 0.795006i −0.695111 0.0439639i
\(328\) 0 0
\(329\) −0.660706 2.57469i −0.0364259 0.141947i
\(330\) 0 0
\(331\) −2.95408 5.11662i −0.162371 0.281235i 0.773348 0.633982i \(-0.218581\pi\)
−0.935719 + 0.352748i \(0.885247\pi\)
\(332\) 0 0
\(333\) −10.8632 1.37965i −0.595298 0.0756045i
\(334\) 0 0
\(335\) −20.5629 + 35.6161i −1.12347 + 1.94591i
\(336\) 0 0
\(337\) −10.5675 18.3034i −0.575647 0.997051i −0.995971 0.0896763i \(-0.971417\pi\)
0.420323 0.907374i \(-0.361917\pi\)
\(338\) 0 0
\(339\) 2.03019 32.0992i 0.110265 1.74339i
\(340\) 0 0
\(341\) 12.3246 21.3468i 0.667414 1.15599i
\(342\) 0 0
\(343\) 12.6727 + 13.5057i 0.684259 + 0.729239i
\(344\) 0 0
\(345\) 42.1242 + 28.0074i 2.26789 + 1.50787i
\(346\) 0 0
\(347\) −25.6322 14.7988i −1.37601 0.794439i −0.384333 0.923195i \(-0.625568\pi\)
−0.991676 + 0.128756i \(0.958902\pi\)
\(348\) 0 0
\(349\) −6.60232 3.81185i −0.353414 0.204044i 0.312774 0.949828i \(-0.398742\pi\)
−0.666188 + 0.745784i \(0.732075\pi\)
\(350\) 0 0
\(351\) −14.2986 + 4.96336i −0.763202 + 0.264925i
\(352\) 0 0
\(353\) 10.4945 0.558568 0.279284 0.960208i \(-0.409903\pi\)
0.279284 + 0.960208i \(0.409903\pi\)
\(354\) 0 0
\(355\) 46.9858i 2.49375i
\(356\) 0 0
\(357\) −13.6873 4.77353i −0.724409 0.252642i
\(358\) 0 0
\(359\) −4.65028 2.68484i −0.245432 0.141700i 0.372239 0.928137i \(-0.378590\pi\)
−0.617671 + 0.786437i \(0.711924\pi\)
\(360\) 0 0
\(361\) −9.15201 15.8517i −0.481685 0.834302i
\(362\) 0 0
\(363\) 21.9496 33.0131i 1.15206 1.73274i
\(364\) 0 0
\(365\) −12.5498 + 7.24566i −0.656889 + 0.379255i
\(366\) 0 0
\(367\) 11.1054i 0.579698i 0.957072 + 0.289849i \(0.0936051\pi\)
−0.957072 + 0.289849i \(0.906395\pi\)
\(368\) 0 0
\(369\) 7.43620 9.78337i 0.387113 0.509302i
\(370\) 0 0
\(371\) −5.76450 + 1.47926i −0.299278 + 0.0767995i
\(372\) 0 0
\(373\) −35.4042 −1.83316 −0.916580 0.399850i \(-0.869062\pi\)
−0.916580 + 0.399850i \(0.869062\pi\)
\(374\) 0 0
\(375\) −27.3536 + 41.1410i −1.41254 + 2.12451i
\(376\) 0 0
\(377\) 6.43208 0.331269
\(378\) 0 0
\(379\) 26.5906 1.36587 0.682933 0.730481i \(-0.260704\pi\)
0.682933 + 0.730481i \(0.260704\pi\)
\(380\) 0 0
\(381\) 4.20382 6.32271i 0.215368 0.323922i
\(382\) 0 0
\(383\) 24.5913 1.25655 0.628277 0.777989i \(-0.283760\pi\)
0.628277 + 0.777989i \(0.283760\pi\)
\(384\) 0 0
\(385\) −17.0512 + 61.0396i −0.869011 + 3.11087i
\(386\) 0 0
\(387\) 0.925327 + 0.117519i 0.0470370 + 0.00597383i
\(388\) 0 0
\(389\) 19.0987i 0.968344i 0.874973 + 0.484172i \(0.160879\pi\)
−0.874973 + 0.484172i \(0.839121\pi\)
\(390\) 0 0
\(391\) 19.4435 11.2257i 0.983298 0.567708i
\(392\) 0 0
\(393\) −15.0640 + 22.6569i −0.759880 + 1.14289i
\(394\) 0 0
\(395\) −2.38394 4.12910i −0.119949 0.207757i
\(396\) 0 0
\(397\) 17.8857 + 10.3263i 0.897655 + 0.518261i 0.876439 0.481513i \(-0.159913\pi\)
0.0212165 + 0.999775i \(0.493246\pi\)
\(398\) 0 0
\(399\) 3.75566 0.714629i 0.188018 0.0357762i
\(400\) 0 0
\(401\) 15.4357i 0.770823i 0.922745 + 0.385412i \(0.125941\pi\)
−0.922745 + 0.385412i \(0.874059\pi\)
\(402\) 0 0
\(403\) 12.3337 0.614384
\(404\) 0 0
\(405\) −25.9461 + 26.4251i −1.28927 + 1.31307i
\(406\) 0 0
\(407\) 18.4021 + 10.6244i 0.912157 + 0.526634i
\(408\) 0 0
\(409\) −16.1611 9.33064i −0.799117 0.461370i 0.0440453 0.999030i \(-0.485975\pi\)
−0.843162 + 0.537659i \(0.819309\pi\)
\(410\) 0 0
\(411\) 26.6311 + 17.7064i 1.31362 + 0.873393i
\(412\) 0 0
\(413\) −9.51889 + 9.31914i −0.468394 + 0.458565i
\(414\) 0 0
\(415\) 31.1769 53.9999i 1.53041 2.65075i
\(416\) 0 0
\(417\) 0.480381 7.59527i 0.0235244 0.371942i
\(418\) 0 0
\(419\) −14.3576 24.8681i −0.701414 1.21488i −0.967970 0.251065i \(-0.919219\pi\)
0.266557 0.963819i \(-0.414114\pi\)
\(420\) 0 0
\(421\) 12.8338 22.2287i 0.625479 1.08336i −0.362969 0.931801i \(-0.618237\pi\)
0.988448 0.151560i \(-0.0484296\pi\)
\(422\) 0 0
\(423\) −1.82386 + 2.39954i −0.0886791 + 0.116670i
\(424\) 0 0
\(425\) 18.8718 + 32.6869i 0.915416 + 1.58555i
\(426\) 0 0
\(427\) −11.7974 + 3.02741i −0.570918 + 0.146507i
\(428\) 0 0
\(429\) 29.3114 + 1.85387i 1.41517 + 0.0895055i
\(430\) 0 0
\(431\) 17.0243 9.82896i 0.820030 0.473444i −0.0303970 0.999538i \(-0.509677\pi\)
0.850427 + 0.526094i \(0.176344\pi\)
\(432\) 0 0
\(433\) 7.07732i 0.340114i −0.985434 0.170057i \(-0.945605\pi\)
0.985434 0.170057i \(-0.0543952\pi\)
\(434\) 0 0
\(435\) 14.0990 6.99298i 0.675995 0.335288i
\(436\) 0 0
\(437\) −2.96060 + 5.12791i −0.141625 + 0.245301i
\(438\) 0 0
\(439\) −16.8368 + 9.72072i −0.803575 + 0.463945i −0.844720 0.535209i \(-0.820233\pi\)
0.0411444 + 0.999153i \(0.486900\pi\)
\(440\) 0 0
\(441\) 3.08698 20.7719i 0.146999 0.989137i
\(442\) 0 0
\(443\) −29.8951 + 17.2600i −1.42036 + 0.820045i −0.996329 0.0856030i \(-0.972718\pi\)
−0.424030 + 0.905648i \(0.639385\pi\)
\(444\) 0 0
\(445\) 19.8445 34.3716i 0.940718 1.62937i
\(446\) 0 0
\(447\) 29.5754 + 19.6640i 1.39887 + 0.930076i
\(448\) 0 0
\(449\) 10.9491i 0.516720i 0.966049 + 0.258360i \(0.0831821\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(450\) 0 0
\(451\) −20.6510 + 11.9228i −0.972417 + 0.561425i
\(452\) 0 0
\(453\) 5.19338 7.81104i 0.244006 0.366995i
\(454\) 0 0
\(455\) −30.7164 + 7.88231i −1.44001 + 0.369529i
\(456\) 0 0
\(457\) 9.59613 + 16.6210i 0.448888 + 0.777497i 0.998314 0.0580457i \(-0.0184869\pi\)
−0.549426 + 0.835542i \(0.685154\pi\)
\(458\) 0 0
\(459\) 5.39005 + 15.5278i 0.251586 + 0.724776i
\(460\) 0 0
\(461\) 16.2492 28.1444i 0.756799 1.31081i −0.187676 0.982231i \(-0.560095\pi\)
0.944475 0.328584i \(-0.106571\pi\)
\(462\) 0 0
\(463\) −13.9136 24.0991i −0.646621 1.11998i −0.983924 0.178585i \(-0.942848\pi\)
0.337303 0.941396i \(-0.390485\pi\)
\(464\) 0 0
\(465\) 27.0352 13.4092i 1.25373 0.621837i
\(466\) 0 0
\(467\) 0.0869153 0.150542i 0.00402196 0.00696624i −0.864007 0.503479i \(-0.832053\pi\)
0.868029 + 0.496513i \(0.165386\pi\)
\(468\) 0 0
\(469\) −18.8953 + 18.4987i −0.872502 + 0.854192i
\(470\) 0 0
\(471\) −17.4620 + 8.66100i −0.804607 + 0.399078i
\(472\) 0 0
\(473\) −1.56749 0.904992i −0.0720734 0.0416116i
\(474\) 0 0
\(475\) −8.62066 4.97714i −0.395543 0.228367i
\(476\) 0 0
\(477\) 5.37237 + 4.08346i 0.245984 + 0.186969i
\(478\) 0 0
\(479\) 2.93195 0.133964 0.0669822 0.997754i \(-0.478663\pi\)
0.0669822 + 0.997754i \(0.478663\pi\)
\(480\) 0 0
\(481\) 10.6323i 0.484790i
\(482\) 0 0
\(483\) 21.2412 + 24.6312i 0.966509 + 1.12076i
\(484\) 0 0
\(485\) 20.8610 + 12.0441i 0.947247 + 0.546893i
\(486\) 0 0
\(487\) −18.7014 32.3917i −0.847440 1.46781i −0.883486 0.468458i \(-0.844810\pi\)
0.0360460 0.999350i \(-0.488524\pi\)
\(488\) 0 0
\(489\) 1.93664 + 3.90459i 0.0875780 + 0.176572i
\(490\) 0 0
\(491\) 7.27844 4.20221i 0.328472 0.189643i −0.326691 0.945131i \(-0.605934\pi\)
0.655162 + 0.755488i \(0.272600\pi\)
\(492\) 0 0
\(493\) 6.98503i 0.314590i
\(494\) 0 0
\(495\) 66.2656 27.8038i 2.97842 1.24969i
\(496\) 0 0
\(497\) 8.12812 29.0969i 0.364596 1.30517i
\(498\) 0 0
\(499\) 0.0352479 0.00157791 0.000788956 1.00000i \(-0.499749\pi\)
0.000788956 1.00000i \(0.499749\pi\)
\(500\) 0 0
\(501\) 32.4374 + 2.05158i 1.44920 + 0.0916579i
\(502\) 0 0
\(503\) 14.9085 0.664736 0.332368 0.943150i \(-0.392152\pi\)
0.332368 + 0.943150i \(0.392152\pi\)
\(504\) 0 0
\(505\) 24.0827 1.07166
\(506\) 0 0
\(507\) −3.47511 7.00639i −0.154335 0.311165i
\(508\) 0 0
\(509\) −14.4128 −0.638836 −0.319418 0.947614i \(-0.603487\pi\)
−0.319418 + 0.947614i \(0.603487\pi\)
\(510\) 0 0
\(511\) −9.02517 + 2.31600i −0.399250 + 0.102454i
\(512\) 0 0
\(513\) −3.27870 2.83579i −0.144758 0.125203i
\(514\) 0 0
\(515\) 3.21068i 0.141479i
\(516\) 0 0
\(517\) 5.06501 2.92429i 0.222759 0.128610i
\(518\) 0 0
\(519\) −16.7970 1.06237i −0.737308 0.0466328i
\(520\) 0 0
\(521\) −10.4159 18.0409i −0.456330 0.790386i 0.542434 0.840098i \(-0.317503\pi\)
−0.998764 + 0.0497124i \(0.984170\pi\)
\(522\) 0 0
\(523\) −12.6684 7.31408i −0.553949 0.319822i 0.196764 0.980451i \(-0.436957\pi\)
−0.750713 + 0.660628i \(0.770290\pi\)
\(524\) 0 0
\(525\) −41.4082 + 35.7091i −1.80720 + 1.55847i
\(526\) 0 0
\(527\) 13.3940i 0.583450i
\(528\) 0 0
\(529\) −27.3756 −1.19024
\(530\) 0 0
\(531\) 14.9845 + 1.90307i 0.650272 + 0.0825864i
\(532\) 0 0
\(533\) −10.3331 5.96582i −0.447576 0.258408i
\(534\) 0 0
\(535\) 29.4432 + 16.9991i 1.27294 + 0.734934i
\(536\) 0 0
\(537\) −1.16720 + 18.4545i −0.0503683 + 0.796371i
\(538\) 0 0
\(539\) −21.1186 + 34.8503i −0.909643 + 1.50111i
\(540\) 0 0
\(541\) 3.60713 6.24773i 0.155083 0.268611i −0.778006 0.628256i \(-0.783769\pi\)
0.933089 + 0.359645i \(0.117102\pi\)
\(542\) 0 0
\(543\) 6.27277 + 4.17061i 0.269190 + 0.178978i
\(544\) 0 0
\(545\) 14.9609 + 25.9130i 0.640854 + 1.10999i
\(546\) 0 0
\(547\) −3.81987 + 6.61620i −0.163326 + 0.282888i −0.936059 0.351842i \(-0.885555\pi\)
0.772734 + 0.634730i \(0.218889\pi\)
\(548\) 0 0
\(549\) 10.9949 + 8.35708i 0.469251 + 0.356671i
\(550\) 0 0
\(551\) 0.921096 + 1.59539i 0.0392400 + 0.0679657i
\(552\) 0 0
\(553\) −0.762002 2.96942i −0.0324036 0.126273i
\(554\) 0 0
\(555\) 11.5595 + 23.3058i 0.490671 + 0.989274i
\(556\) 0 0
\(557\) −8.13965 + 4.69943i −0.344888 + 0.199121i −0.662432 0.749122i \(-0.730475\pi\)
0.317543 + 0.948244i \(0.397142\pi\)
\(558\) 0 0
\(559\) 0.905659i 0.0383053i
\(560\) 0 0
\(561\) 2.01324 31.8312i 0.0849990 1.34391i
\(562\) 0 0
\(563\) −2.06352 + 3.57413i −0.0869671 + 0.150631i −0.906228 0.422790i \(-0.861051\pi\)
0.819261 + 0.573421i \(0.194384\pi\)
\(564\) 0 0
\(565\) −66.1734 + 38.2052i −2.78394 + 1.60731i
\(566\) 0 0
\(567\) −20.6389 + 11.8758i −0.866753 + 0.498738i
\(568\) 0 0
\(569\) −15.7740 + 9.10715i −0.661282 + 0.381792i −0.792765 0.609527i \(-0.791359\pi\)
0.131483 + 0.991318i \(0.458026\pi\)
\(570\) 0 0
\(571\) −22.5913 + 39.1293i −0.945417 + 1.63751i −0.190502 + 0.981687i \(0.561012\pi\)
−0.754915 + 0.655823i \(0.772322\pi\)
\(572\) 0 0
\(573\) −2.71047 + 42.8551i −0.113231 + 1.79030i
\(574\) 0 0
\(575\) 84.6876i 3.53172i
\(576\) 0 0
\(577\) 7.04322 4.06641i 0.293213 0.169287i −0.346177 0.938169i \(-0.612520\pi\)
0.639390 + 0.768883i \(0.279187\pi\)
\(578\) 0 0
\(579\) −20.5112 41.3540i −0.852417 1.71861i
\(580\) 0 0
\(581\) 28.6484 28.0472i 1.18853 1.16359i
\(582\) 0 0
\(583\) −6.54723 11.3401i −0.271158 0.469660i
\(584\) 0 0
\(585\) 28.6269 + 21.7589i 1.18358 + 0.899620i
\(586\) 0 0
\(587\) −12.4379 + 21.5430i −0.513366 + 0.889175i 0.486514 + 0.873673i \(0.338268\pi\)
−0.999880 + 0.0155026i \(0.995065\pi\)
\(588\) 0 0
\(589\) 1.76622 + 3.05919i 0.0727760 + 0.126052i
\(590\) 0 0
\(591\) −8.81370 5.86002i −0.362547 0.241049i
\(592\) 0 0
\(593\) −15.6229 + 27.0596i −0.641554 + 1.11120i 0.343532 + 0.939141i \(0.388377\pi\)
−0.985086 + 0.172063i \(0.944957\pi\)
\(594\) 0 0
\(595\) 8.55993 + 33.3570i 0.350923 + 1.36750i
\(596\) 0 0
\(597\) −0.0486312 + 0.768904i −0.00199034 + 0.0314692i
\(598\) 0 0
\(599\) 5.54125 + 3.19925i 0.226410 + 0.130718i 0.608915 0.793236i \(-0.291605\pi\)
−0.382505 + 0.923953i \(0.624939\pi\)
\(600\) 0 0
\(601\) 36.0541 + 20.8158i 1.47068 + 0.849095i 0.999458 0.0329215i \(-0.0104811\pi\)
0.471218 + 0.882017i \(0.343814\pi\)
\(602\) 0 0
\(603\) 29.7447 + 3.77765i 1.21130 + 0.153838i
\(604\) 0 0
\(605\) −94.1826 −3.82907
\(606\) 0 0
\(607\) 25.0762i 1.01781i 0.860822 + 0.508907i \(0.169950\pi\)
−0.860822 + 0.508907i \(0.830050\pi\)
\(608\) 0 0
\(609\) 9.94080 1.89154i 0.402822 0.0766491i
\(610\) 0 0
\(611\) 2.53437 + 1.46322i 0.102530 + 0.0591956i
\(612\) 0 0
\(613\) 15.3779 + 26.6352i 0.621106 + 1.07579i 0.989280 + 0.146030i \(0.0466497\pi\)
−0.368174 + 0.929757i \(0.620017\pi\)
\(614\) 0 0
\(615\) −29.1360 1.84278i −1.17488 0.0743079i
\(616\) 0 0
\(617\) −10.1910 + 5.88375i −0.410272 + 0.236871i −0.690907 0.722944i \(-0.742788\pi\)
0.280634 + 0.959815i \(0.409455\pi\)
\(618\) 0 0
\(619\) 7.09698i 0.285252i 0.989777 + 0.142626i \(0.0455546\pi\)
−0.989777 + 0.142626i \(0.954445\pi\)
\(620\) 0 0
\(621\) 6.94665 36.2199i 0.278759 1.45346i
\(622\) 0 0
\(623\) 18.2351 17.8524i 0.730572 0.715241i
\(624\) 0 0
\(625\) 57.7108 2.30843
\(626\) 0 0
\(627\) 3.73767 + 7.53575i 0.149268 + 0.300949i
\(628\) 0 0
\(629\) 11.5463 0.460381
\(630\) 0 0
\(631\) −13.0686 −0.520252 −0.260126 0.965575i \(-0.583764\pi\)
−0.260126 + 0.965575i \(0.583764\pi\)
\(632\) 0 0
\(633\) −14.6554 0.926918i −0.582502 0.0368417i
\(634\) 0 0
\(635\) −18.0379 −0.715814
\(636\) 0 0
\(637\) −20.3853 0.432378i −0.807694 0.0171314i
\(638\) 0 0
\(639\) −31.5880 + 13.2538i −1.24960 + 0.524310i
\(640\) 0 0
\(641\) 12.6115i 0.498123i 0.968488 + 0.249062i \(0.0801221\pi\)
−0.968488 + 0.249062i \(0.919878\pi\)
\(642\) 0 0
\(643\) −12.3449 + 7.12736i −0.486837 + 0.281076i −0.723261 0.690574i \(-0.757358\pi\)
0.236424 + 0.971650i \(0.424025\pi\)
\(644\) 0 0
\(645\) −0.984636 1.98519i −0.0387700 0.0781667i
\(646\) 0 0
\(647\) 20.0060 + 34.6515i 0.786519 + 1.36229i 0.928088 + 0.372362i \(0.121452\pi\)
−0.141569 + 0.989928i \(0.545215\pi\)
\(648\) 0 0
\(649\) −25.3836 14.6552i −0.996392 0.575267i
\(650\) 0 0
\(651\) 19.0617 3.62707i 0.747088 0.142156i
\(652\) 0 0
\(653\) 14.6331i 0.572638i 0.958134 + 0.286319i \(0.0924317\pi\)
−0.958134 + 0.286319i \(0.907568\pi\)
\(654\) 0 0
\(655\) 64.6375 2.52559
\(656\) 0 0
\(657\) 8.41123 + 6.39326i 0.328153 + 0.249425i
\(658\) 0 0
\(659\) 23.7553 + 13.7151i 0.925374 + 0.534265i 0.885346 0.464934i \(-0.153922\pi\)
0.0400285 + 0.999199i \(0.487255\pi\)
\(660\) 0 0
\(661\) 30.8389 + 17.8048i 1.19949 + 0.692528i 0.960442 0.278479i \(-0.0898304\pi\)
0.239051 + 0.971007i \(0.423164\pi\)
\(662\) 0 0
\(663\) 14.2972 7.09126i 0.555255 0.275402i
\(664\) 0 0
\(665\) −6.35379 6.48998i −0.246389 0.251671i
\(666\) 0 0
\(667\) −7.83637 + 13.5730i −0.303426 + 0.525548i
\(668\) 0 0
\(669\) −13.0032 + 6.44946i −0.502732 + 0.249351i
\(670\) 0 0
\(671\) −13.3993 23.2083i −0.517275 0.895947i
\(672\) 0 0
\(673\) 6.35937 11.0147i 0.245136 0.424587i −0.717034 0.697038i \(-0.754501\pi\)
0.962170 + 0.272451i \(0.0878342\pi\)
\(674\) 0 0
\(675\) 60.8902 + 11.6782i 2.34367 + 0.449493i
\(676\) 0 0
\(677\) 14.0278 + 24.2968i 0.539131 + 0.933803i 0.998951 + 0.0457904i \(0.0145807\pi\)
−0.459820 + 0.888012i \(0.652086\pi\)
\(678\) 0 0
\(679\) 10.8350 + 11.0673i 0.415810 + 0.424723i
\(680\) 0 0
\(681\) −2.13038 + 3.20418i −0.0816364 + 0.122784i
\(682\) 0 0
\(683\) 14.4564 8.34638i 0.553157 0.319365i −0.197237 0.980356i \(-0.563197\pi\)
0.750394 + 0.660990i \(0.229864\pi\)
\(684\) 0 0
\(685\) 75.9756i 2.90288i
\(686\) 0 0
\(687\) 34.0451 + 22.6358i 1.29890 + 0.863608i
\(688\) 0 0
\(689\) 3.27603 5.67424i 0.124807 0.216171i
\(690\) 0 0
\(691\) −26.3650 + 15.2218i −1.00297 + 0.579066i −0.909126 0.416521i \(-0.863249\pi\)
−0.0938458 + 0.995587i \(0.529916\pi\)
\(692\) 0 0
\(693\) 45.8460 5.75471i 1.74155 0.218603i
\(694\) 0 0
\(695\) −15.6579 + 9.04009i −0.593938 + 0.342910i
\(696\) 0 0
\(697\) −6.47868 + 11.2214i −0.245398 + 0.425041i
\(698\) 0 0
\(699\) 11.9915 5.94769i 0.453561 0.224962i
\(700\) 0 0
\(701\) 6.16940i 0.233015i −0.993190 0.116507i \(-0.962830\pi\)
0.993190 0.116507i \(-0.0371699\pi\)
\(702\) 0 0
\(703\) −2.63719 + 1.52258i −0.0994633 + 0.0574252i
\(704\) 0 0
\(705\) 7.14612 + 0.451973i 0.269138 + 0.0170223i
\(706\) 0 0
\(707\) 14.9137 + 4.16608i 0.560886 + 0.156682i
\(708\) 0 0
\(709\) −12.7487 22.0813i −0.478786 0.829282i 0.520918 0.853607i \(-0.325590\pi\)
−0.999704 + 0.0243250i \(0.992256\pi\)
\(710\) 0 0
\(711\) −2.10348 + 2.76743i −0.0788868 + 0.103787i
\(712\) 0 0
\(713\) −15.0264 + 26.0265i −0.562744 + 0.974702i
\(714\) 0 0
\(715\) −34.8871 60.4263i −1.30471 2.25982i
\(716\) 0 0
\(717\) 2.05615 32.5096i 0.0767881 1.21409i
\(718\) 0 0
\(719\) −12.1263 + 21.0034i −0.452236 + 0.783296i −0.998525 0.0543012i \(-0.982707\pi\)
0.546289 + 0.837597i \(0.316040\pi\)
\(720\) 0 0
\(721\) −0.555418 + 1.98827i −0.0206849 + 0.0740472i
\(722\) 0 0
\(723\) 35.9324 + 23.8906i 1.33634 + 0.888502i
\(724\) 0 0
\(725\) −22.8179 13.1739i −0.847435 0.489267i
\(726\) 0 0
\(727\) 13.5251 + 7.80870i 0.501617 + 0.289609i 0.729381 0.684108i \(-0.239808\pi\)
−0.227764 + 0.973716i \(0.573141\pi\)
\(728\) 0 0
\(729\) 25.0842 + 9.98925i 0.929043 + 0.369972i
\(730\) 0 0
\(731\) −0.983516 −0.0363767
\(732\) 0 0
\(733\) 35.7036i 1.31874i 0.751818 + 0.659371i \(0.229177\pi\)
−0.751818 + 0.659371i \(0.770823\pi\)
\(734\) 0 0
\(735\) −45.1542 + 21.2152i −1.66554 + 0.782534i
\(736\) 0 0
\(737\) −50.3871 29.0910i −1.85603 1.07158i
\(738\) 0 0
\(739\) −7.27883 12.6073i −0.267756 0.463767i 0.700526 0.713627i \(-0.252949\pi\)
−0.968282 + 0.249860i \(0.919615\pi\)
\(740\) 0 0
\(741\) −2.33038 + 3.50498i −0.0856085 + 0.128759i
\(742\) 0 0
\(743\) −0.0287226 + 0.0165830i −0.00105373 + 0.000608372i −0.500527 0.865721i \(-0.666860\pi\)
0.499473 + 0.866329i \(0.333527\pi\)
\(744\) 0 0
\(745\) 84.3753i 3.09127i
\(746\) 0 0
\(747\) −45.0979 5.72755i −1.65005 0.209560i
\(748\) 0 0
\(749\) 15.2926 + 15.6204i 0.558780 + 0.570758i
\(750\) 0 0
\(751\) −23.7899 −0.868106 −0.434053 0.900887i \(-0.642917\pi\)
−0.434053 + 0.900887i \(0.642917\pi\)
\(752\) 0 0
\(753\) −3.25377 + 4.89379i −0.118574 + 0.178340i
\(754\) 0 0
\(755\) −22.2840 −0.810998
\(756\) 0 0
\(757\) −33.2060 −1.20689 −0.603446 0.797404i \(-0.706206\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(758\) 0 0
\(759\) −39.6229 + 59.5944i −1.43822 + 2.16314i
\(760\) 0 0
\(761\) −42.5675 −1.54307 −0.771535 0.636187i \(-0.780511\pi\)
−0.771535 + 0.636187i \(0.780511\pi\)
\(762\) 0 0
\(763\) 4.78210 + 18.6352i 0.173124 + 0.674641i
\(764\) 0 0
\(765\) 23.6295 31.0878i 0.854325 1.12398i
\(766\) 0 0
\(767\) 14.6660i 0.529559i
\(768\) 0 0
\(769\) 27.1091 15.6514i 0.977578 0.564405i 0.0760402 0.997105i \(-0.475772\pi\)
0.901538 + 0.432700i \(0.142439\pi\)
\(770\) 0 0
\(771\) −4.75099 + 7.14568i −0.171103 + 0.257345i
\(772\) 0 0
\(773\) 0.165130 + 0.286014i 0.00593932 + 0.0102872i 0.868980 0.494848i \(-0.164776\pi\)
−0.863040 + 0.505135i \(0.831443\pi\)
\(774\) 0 0
\(775\) −43.7539 25.2613i −1.57168 0.907413i
\(776\) 0 0
\(777\) 3.12673 + 16.4322i 0.112171 + 0.589503i
\(778\) 0 0
\(779\) 3.41730i 0.122438i
\(780\) 0 0
\(781\) 66.4722 2.37856
\(782\) 0 0
\(783\) −8.67835 7.50601i −0.310139 0.268243i
\(784\) 0 0
\(785\) 40.1031 + 23.1535i 1.43134 + 0.826384i
\(786\) 0 0
\(787\) 6.50328 + 3.75467i 0.231817 + 0.133840i 0.611410 0.791314i \(-0.290603\pi\)
−0.379593 + 0.925154i \(0.623936\pi\)
\(788\) 0 0
\(789\) 4.20359 + 2.79487i 0.149652 + 0.0995000i
\(790\) 0 0
\(791\) −47.5883 + 12.2119i −1.69205 + 0.434206i
\(792\) 0 0
\(793\) 6.70460 11.6127i 0.238087 0.412379i
\(794\) 0 0
\(795\) 1.01193 15.9995i 0.0358894 0.567445i
\(796\) 0 0
\(797\) 3.58136 + 6.20310i 0.126858 + 0.219725i 0.922458 0.386098i \(-0.126177\pi\)
−0.795600 + 0.605823i \(0.792844\pi\)
\(798\) 0 0
\(799\) 1.58901 2.75225i 0.0562151 0.0973675i
\(800\) 0 0
\(801\) −28.7054 3.64566i −1.01425 0.128813i
\(802\) 0 0
\(803\) −10.2506 17.7546i −0.361737 0.626547i
\(804\) 0 0
\(805\) 20.7893 74.4210i 0.732726 2.62300i
\(806\) 0 0
\(807\) 32.5470 + 2.05851i 1.14571 + 0.0724631i
\(808\) 0 0
\(809\) 39.9767 23.0806i 1.40551 0.811469i 0.410556 0.911836i \(-0.365335\pi\)
0.994951 + 0.100366i \(0.0320014\pi\)
\(810\) 0 0
\(811\) 22.8560i 0.802581i −0.915951 0.401290i \(-0.868562\pi\)
0.915951 0.401290i \(-0.131438\pi\)
\(812\) 0 0
\(813\) −24.5392 + 12.1712i −0.860628 + 0.426864i
\(814\) 0 0
\(815\) 5.17723 8.96723i 0.181351 0.314108i
\(816\) 0 0
\(817\) 0.224636 0.129694i 0.00785902 0.00453741i
\(818\) 0 0
\(819\) 13.9637 + 18.4268i 0.487930 + 0.643885i
\(820\) 0 0
\(821\) −1.65766 + 0.957051i −0.0578527 + 0.0334013i −0.528647 0.848842i \(-0.677301\pi\)
0.470795 + 0.882243i \(0.343967\pi\)
\(822\) 0 0
\(823\) −7.54735 + 13.0724i −0.263084 + 0.455675i −0.967060 0.254549i \(-0.918073\pi\)
0.703976 + 0.710224i \(0.251406\pi\)
\(824\) 0 0
\(825\) −100.186 66.6110i −3.48801 2.31910i
\(826\) 0 0
\(827\) 14.4077i 0.501004i 0.968116 + 0.250502i \(0.0805956\pi\)
−0.968116 + 0.250502i \(0.919404\pi\)
\(828\) 0 0
\(829\) −37.1450 + 21.4457i −1.29010 + 0.744840i −0.978672 0.205430i \(-0.934141\pi\)
−0.311429 + 0.950270i \(0.600807\pi\)
\(830\) 0 0
\(831\) 4.70344 7.07415i 0.163160 0.245400i
\(832\) 0 0
\(833\) −0.469548 + 22.1377i −0.0162689 + 0.767027i
\(834\) 0 0
\(835\) −38.6079 66.8708i −1.33608 2.31416i
\(836\) 0 0
\(837\) −16.6409 14.3930i −0.575195 0.497494i
\(838\) 0 0
\(839\) 12.5327 21.7073i 0.432678 0.749421i −0.564425 0.825485i \(-0.690902\pi\)
0.997103 + 0.0760639i \(0.0242353\pi\)
\(840\) 0 0
\(841\) −12.0620 20.8919i −0.415930 0.720412i
\(842\) 0 0
\(843\) −4.96640 + 2.46329i −0.171052 + 0.0848402i
\(844\) 0 0
\(845\) −9.29003 + 16.0908i −0.319587 + 0.553541i
\(846\) 0 0
\(847\) −58.3244 16.2927i −2.00405 0.559825i
\(848\) 0 0
\(849\) 7.86296 3.89996i 0.269856 0.133846i
\(850\) 0 0
\(851\) −22.4363 12.9536i −0.769105 0.444043i
\(852\) 0 0
\(853\) −14.9013 8.60328i −0.510211 0.294571i 0.222709 0.974885i \(-0.428510\pi\)
−0.732920 + 0.680314i \(0.761843\pi\)
\(854\) 0 0
\(855\) −1.29752 + 10.2164i −0.0443741 + 0.349395i
\(856\) 0 0
\(857\) 48.6968 1.66345 0.831726 0.555187i \(-0.187353\pi\)
0.831726 + 0.555187i \(0.187353\pi\)
\(858\) 0 0
\(859\) 3.09785i 0.105697i 0.998603 + 0.0528487i \(0.0168301\pi\)
−0.998603 + 0.0528487i \(0.983170\pi\)
\(860\) 0 0
\(861\) −17.7243 6.18145i −0.604042 0.210663i
\(862\) 0 0
\(863\) −22.2443 12.8427i −0.757203 0.437172i 0.0710874 0.997470i \(-0.477353\pi\)
−0.828291 + 0.560299i \(0.810686\pi\)
\(864\) 0 0
\(865\) 19.9923 + 34.6276i 0.679757 + 1.17737i
\(866\) 0 0
\(867\) 5.38260 + 10.8522i 0.182803 + 0.368560i
\(868\) 0 0
\(869\) 5.84156 3.37262i 0.198161 0.114408i
\(870\) 0 0
\(871\) 29.1124i 0.986437i
\(872\) 0 0
\(873\) 2.21264 17.4220i 0.0748864 0.589644i
\(874\) 0 0
\(875\) 72.6839 + 20.3040i 2.45716 + 0.686401i
\(876\) 0 0
\(877\) 1.25325 0.0423193 0.0211597 0.999776i \(-0.493264\pi\)
0.0211597 + 0.999776i \(0.493264\pi\)
\(878\) 0 0
\(879\) 42.7831 + 2.70592i 1.44304 + 0.0912684i
\(880\) 0 0
\(881\) 18.7429 0.631464 0.315732 0.948848i \(-0.397750\pi\)
0.315732 + 0.948848i \(0.397750\pi\)
\(882\) 0 0
\(883\) −39.3701 −1.32491 −0.662454 0.749103i \(-0.730485\pi\)
−0.662454 + 0.749103i \(0.730485\pi\)
\(884\) 0 0
\(885\) −15.9450 32.1476i −0.535984 1.08063i
\(886\) 0 0
\(887\) 37.1909 1.24875 0.624374 0.781126i \(-0.285354\pi\)
0.624374 + 0.781126i \(0.285354\pi\)
\(888\) 0 0
\(889\) −11.1703 3.12040i −0.374641 0.104655i
\(890\) 0 0
\(891\) −37.3844 36.7067i −1.25242 1.22972i
\(892\) 0 0
\(893\) 0.838154i 0.0280478i
\(894\) 0 0
\(895\) 38.0445 21.9650i 1.27169 0.734210i
\(896\) 0 0
\(897\) −35.7372 2.26028i −1.19323 0.0754686i
\(898\) 0 0
\(899\) 4.67499 + 8.09732i 0.155920 + 0.270061i
\(900\) 0 0
\(901\) −6.16204 3.55766i −0.205287 0.118523i
\(902\) 0 0
\(903\) −0.266336 1.39970i −0.00886309 0.0465791i
\(904\) 0 0
\(905\) 17.8955i 0.594866i
\(906\) 0 0
\(907\) 30.8590 1.02466 0.512328 0.858790i \(-0.328783\pi\)
0.512328 + 0.858790i \(0.328783\pi\)
\(908\) 0 0
\(909\) −6.79324 16.1905i −0.225317 0.537005i
\(910\) 0 0
\(911\) 14.7486 + 8.51511i 0.488643 + 0.282118i 0.724011 0.689788i \(-0.242296\pi\)
−0.235368 + 0.971906i \(0.575630\pi\)
\(912\) 0 0
\(913\) 76.3953 + 44.1068i 2.52831 + 1.45972i
\(914\) 0 0
\(915\) 2.07098 32.7441i 0.0684645 1.08249i
\(916\) 0 0
\(917\) 40.0280 + 11.1817i 1.32184 + 0.369252i
\(918\) 0 0
\(919\) 8.44635 14.6295i 0.278619 0.482583i −0.692422 0.721492i \(-0.743457\pi\)
0.971042 + 0.238909i \(0.0767898\pi\)
\(920\) 0 0
\(921\) −28.5600 18.9889i −0.941085 0.625705i
\(922\) 0 0
\(923\) 16.6303 + 28.8045i 0.547393 + 0.948112i
\(924\) 0 0
\(925\) 21.7766 37.7182i 0.716010 1.24017i
\(926\) 0 0
\(927\) 2.15850 0.905668i 0.0708945 0.0297460i
\(928\) 0 0
\(929\) −3.39678 5.88339i −0.111445 0.193028i 0.804908 0.593399i \(-0.202214\pi\)
−0.916353 + 0.400371i \(0.868881\pi\)
\(930\) 0 0
\(931\) −2.81200 5.11820i −0.0921596 0.167742i
\(932\) 0 0
\(933\) 9.27309 + 18.6961i 0.303587 + 0.612082i
\(934\) 0 0
\(935\) −65.6210 + 37.8863i −2.14604 + 1.23901i
\(936\) 0 0
\(937\) 5.14535i 0.168091i 0.996462 + 0.0840456i \(0.0267841\pi\)
−0.996462 + 0.0840456i \(0.973216\pi\)
\(938\) 0 0
\(939\) −3.28942 + 52.0088i −0.107346 + 1.69724i
\(940\) 0 0
\(941\) 0.460454 0.797529i 0.0150104 0.0259987i −0.858423 0.512943i \(-0.828555\pi\)
0.873433 + 0.486944i \(0.161889\pi\)
\(942\) 0 0
\(943\) 25.1782 14.5366i 0.819914 0.473378i
\(944\) 0 0
\(945\) 50.6418 + 25.2099i 1.64738 + 0.820078i
\(946\) 0 0
\(947\) −21.2033 + 12.2417i −0.689015 + 0.397803i −0.803243 0.595652i \(-0.796894\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(948\) 0 0
\(949\) 5.12910 8.88386i 0.166498 0.288382i
\(950\) 0 0
\(951\) 1.38725 21.9337i 0.0449846 0.711248i
\(952\) 0 0
\(953\) 9.80916i 0.317750i 0.987299 + 0.158875i \(0.0507866\pi\)
−0.987299 + 0.158875i \(0.949213\pi\)
\(954\) 0 0
\(955\) 88.3471 51.0072i 2.85884 1.65055i
\(956\) 0 0
\(957\) 9.89318 + 19.9463i 0.319801 + 0.644771i
\(958\) 0 0
\(959\) 13.1431 47.0494i 0.424412 1.51930i
\(960\) 0 0
\(961\) −6.53559 11.3200i −0.210825 0.365160i
\(962\) 0 0
\(963\) 3.12293 24.5894i 0.100635 0.792384i
\(964\) 0 0
\(965\) −54.8327 + 94.9731i −1.76513 + 3.05729i
\(966\) 0 0
\(967\) 18.1376 + 31.4152i 0.583264 + 1.01024i 0.995089 + 0.0989807i \(0.0315582\pi\)
−0.411825 + 0.911263i \(0.635108\pi\)
\(968\) 0 0
\(969\) 3.80629 + 2.53071i 0.122276 + 0.0812982i
\(970\) 0 0
\(971\) 1.09772 1.90130i 0.0352274 0.0610157i −0.847874 0.530198i \(-0.822118\pi\)
0.883102 + 0.469182i \(0.155451\pi\)
\(972\) 0 0
\(973\) −11.2603 + 2.88958i −0.360989 + 0.0926356i
\(974\) 0 0
\(975\) 3.79981 60.0786i 0.121691 1.92405i
\(976\) 0 0
\(977\) −36.9950 21.3591i −1.18357 0.683337i −0.226736 0.973956i \(-0.572805\pi\)
−0.956839 + 0.290619i \(0.906139\pi\)
\(978\) 0 0
\(979\) 48.6266 + 28.0746i 1.55411 + 0.897267i
\(980\) 0 0
\(981\) 13.2009 17.3676i 0.421471 0.554504i
\(982\) 0 0
\(983\) −45.7562 −1.45940 −0.729698 0.683770i \(-0.760339\pi\)
−0.729698 + 0.683770i \(0.760339\pi\)
\(984\) 0 0
\(985\) 25.1444i 0.801169i
\(986\) 0 0
\(987\) 4.34719 + 1.51611i 0.138373 + 0.0482582i
\(988\) 0 0
\(989\) 1.91113 + 1.10339i 0.0607703 + 0.0350857i
\(990\) 0 0
\(991\) 8.30690 + 14.3880i 0.263877 + 0.457049i 0.967269 0.253754i \(-0.0816653\pi\)
−0.703392 + 0.710803i \(0.748332\pi\)
\(992\) 0 0
\(993\) 10.2128 + 0.645934i 0.324094 + 0.0204981i
\(994\) 0 0
\(995\) 1.58512 0.915169i 0.0502517 0.0290128i
\(996\) 0 0
\(997\) 21.4826i 0.680361i 0.940360 + 0.340181i \(0.110488\pi\)
−0.940360 + 0.340181i \(0.889512\pi\)
\(998\) 0 0
\(999\) 12.4075 14.3454i 0.392556 0.453868i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.929.8 48
3.2 odd 2 3024.2.df.e.1601.1 48
4.3 odd 2 504.2.cx.a.425.17 yes 48
7.3 odd 6 1008.2.ca.e.353.2 48
9.4 even 3 3024.2.ca.e.2609.1 48
9.5 odd 6 1008.2.ca.e.257.2 48
12.11 even 2 1512.2.cx.a.89.1 48
21.17 even 6 3024.2.ca.e.2033.1 48
28.3 even 6 504.2.bs.a.353.23 yes 48
36.23 even 6 504.2.bs.a.257.23 48
36.31 odd 6 1512.2.bs.a.1097.1 48
63.31 odd 6 3024.2.df.e.17.1 48
63.59 even 6 inner 1008.2.df.e.689.8 48
84.59 odd 6 1512.2.bs.a.521.1 48
252.31 even 6 1512.2.cx.a.17.1 48
252.59 odd 6 504.2.cx.a.185.17 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.23 48 36.23 even 6
504.2.bs.a.353.23 yes 48 28.3 even 6
504.2.cx.a.185.17 yes 48 252.59 odd 6
504.2.cx.a.425.17 yes 48 4.3 odd 2
1008.2.ca.e.257.2 48 9.5 odd 6
1008.2.ca.e.353.2 48 7.3 odd 6
1008.2.df.e.689.8 48 63.59 even 6 inner
1008.2.df.e.929.8 48 1.1 even 1 trivial
1512.2.bs.a.521.1 48 84.59 odd 6
1512.2.bs.a.1097.1 48 36.31 odd 6
1512.2.cx.a.17.1 48 252.31 even 6
1512.2.cx.a.89.1 48 12.11 even 2
3024.2.ca.e.2033.1 48 21.17 even 6
3024.2.ca.e.2609.1 48 9.4 even 3
3024.2.df.e.17.1 48 63.31 odd 6
3024.2.df.e.1601.1 48 3.2 odd 2