Properties

Label 3024.2.df.e.17.1
Level $3024$
Weight $2$
Character 3024.17
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 3024.17
Dual form 3024.2.df.e.1601.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.11484 q^{5} +(2.54819 - 0.711830i) q^{7} +5.82138i q^{11} +(-2.52259 - 1.45642i) q^{13} +(-1.58162 + 2.73945i) q^{17} +(-0.722488 + 0.417129i) q^{19} -7.09758i q^{23} +11.9319 q^{25} +(1.91234 - 1.10409i) q^{29} +(-3.66696 + 2.11712i) q^{31} +(-10.4854 + 2.92907i) q^{35} +(1.82507 + 3.16112i) q^{37} +(-2.04811 + 3.54743i) q^{41} +(-0.155460 - 0.269265i) q^{43} +(0.502335 - 0.870070i) q^{47} +(5.98660 - 3.62776i) q^{49} +(1.94801 + 1.12469i) q^{53} -23.9541i q^{55} +(2.51748 + 4.36040i) q^{59} +(-3.98673 - 2.30174i) q^{61} +(10.3801 + 5.99293i) q^{65} +(-4.99726 - 8.65551i) q^{67} -11.4186i q^{71} +(-3.04990 - 1.76086i) q^{73} +(4.14384 + 14.8340i) q^{77} +(-0.579351 + 1.00346i) q^{79} +(-7.57669 - 13.1232i) q^{83} +(6.50813 - 11.2724i) q^{85} +(-4.82266 - 8.35309i) q^{89} +(-7.46478 - 1.91558i) q^{91} +(2.97292 - 1.71642i) q^{95} +(5.06969 - 2.92699i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.11484 −1.84021 −0.920106 0.391669i \(-0.871898\pi\)
−0.920106 + 0.391669i \(0.871898\pi\)
\(6\) 0 0
\(7\) 2.54819 0.711830i 0.963127 0.269047i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.82138i 1.75521i 0.479381 + 0.877607i \(0.340861\pi\)
−0.479381 + 0.877607i \(0.659139\pi\)
\(12\) 0 0
\(13\) −2.52259 1.45642i −0.699641 0.403938i 0.107573 0.994197i \(-0.465692\pi\)
−0.807214 + 0.590259i \(0.799025\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.58162 + 2.73945i −0.383600 + 0.664415i −0.991574 0.129542i \(-0.958649\pi\)
0.607974 + 0.793957i \(0.291983\pi\)
\(18\) 0 0
\(19\) −0.722488 + 0.417129i −0.165750 + 0.0956959i −0.580580 0.814203i \(-0.697174\pi\)
0.414830 + 0.909899i \(0.363841\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.09758i 1.47995i −0.672636 0.739973i \(-0.734838\pi\)
0.672636 0.739973i \(-0.265162\pi\)
\(24\) 0 0
\(25\) 11.9319 2.38638
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.91234 1.10409i 0.355113 0.205025i −0.311822 0.950141i \(-0.600939\pi\)
0.666935 + 0.745116i \(0.267606\pi\)
\(30\) 0 0
\(31\) −3.66696 + 2.11712i −0.658606 + 0.380246i −0.791746 0.610851i \(-0.790827\pi\)
0.133140 + 0.991097i \(0.457494\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −10.4854 + 2.92907i −1.77236 + 0.495103i
\(36\) 0 0
\(37\) 1.82507 + 3.16112i 0.300040 + 0.519684i 0.976145 0.217121i \(-0.0696667\pi\)
−0.676105 + 0.736806i \(0.736333\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.04811 + 3.54743i −0.319861 + 0.554016i −0.980459 0.196724i \(-0.936970\pi\)
0.660598 + 0.750740i \(0.270303\pi\)
\(42\) 0 0
\(43\) −0.155460 0.269265i −0.0237074 0.0410625i 0.853928 0.520391i \(-0.174214\pi\)
−0.877636 + 0.479328i \(0.840880\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.502335 0.870070i 0.0732731 0.126913i −0.827061 0.562112i \(-0.809989\pi\)
0.900334 + 0.435200i \(0.143322\pi\)
\(48\) 0 0
\(49\) 5.98660 3.62776i 0.855228 0.518252i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.94801 + 1.12469i 0.267580 + 0.154487i 0.627787 0.778385i \(-0.283961\pi\)
−0.360207 + 0.932872i \(0.617294\pi\)
\(54\) 0 0
\(55\) 23.9541i 3.22997i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.51748 + 4.36040i 0.327748 + 0.567676i 0.982065 0.188545i \(-0.0603770\pi\)
−0.654317 + 0.756221i \(0.727044\pi\)
\(60\) 0 0
\(61\) −3.98673 2.30174i −0.510449 0.294708i 0.222569 0.974917i \(-0.428556\pi\)
−0.733018 + 0.680209i \(0.761889\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.3801 + 5.99293i 1.28749 + 0.743331i
\(66\) 0 0
\(67\) −4.99726 8.65551i −0.610513 1.05744i −0.991154 0.132717i \(-0.957630\pi\)
0.380641 0.924723i \(-0.375703\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4186i 1.35514i −0.735458 0.677571i \(-0.763033\pi\)
0.735458 0.677571i \(-0.236967\pi\)
\(72\) 0 0
\(73\) −3.04990 1.76086i −0.356964 0.206093i 0.310784 0.950480i \(-0.399408\pi\)
−0.667748 + 0.744387i \(0.732742\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.14384 + 14.8340i 0.472234 + 1.69049i
\(78\) 0 0
\(79\) −0.579351 + 1.00346i −0.0651820 + 0.112899i −0.896775 0.442487i \(-0.854096\pi\)
0.831593 + 0.555386i \(0.187429\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.57669 13.1232i −0.831650 1.44046i −0.896729 0.442579i \(-0.854063\pi\)
0.0650797 0.997880i \(-0.479270\pi\)
\(84\) 0 0
\(85\) 6.50813 11.2724i 0.705905 1.22266i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.82266 8.35309i −0.511201 0.885426i −0.999916 0.0129824i \(-0.995867\pi\)
0.488715 0.872444i \(-0.337466\pi\)
\(90\) 0 0
\(91\) −7.46478 1.91558i −0.782521 0.200808i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.97292 1.71642i 0.305015 0.176101i
\(96\) 0 0
\(97\) 5.06969 2.92699i 0.514749 0.297190i −0.220035 0.975492i \(-0.570617\pi\)
0.734784 + 0.678302i \(0.237284\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.85264 −0.582359 −0.291180 0.956668i \(-0.594048\pi\)
−0.291180 + 0.956668i \(0.594048\pi\)
\(102\) 0 0
\(103\) 0.780268i 0.0768821i −0.999261 0.0384410i \(-0.987761\pi\)
0.999261 0.0384410i \(-0.0122392\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.15538 + 4.13116i −0.691737 + 0.399374i −0.804262 0.594274i \(-0.797439\pi\)
0.112526 + 0.993649i \(0.464106\pi\)
\(108\) 0 0
\(109\) 3.63584 6.29745i 0.348250 0.603187i −0.637689 0.770294i \(-0.720109\pi\)
0.985939 + 0.167107i \(0.0534427\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0816 + 9.28474i 1.51283 + 0.873435i 0.999887 + 0.0150145i \(0.00477945\pi\)
0.512947 + 0.858421i \(0.328554\pi\)
\(114\) 0 0
\(115\) 29.2054i 2.72342i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.08026 + 8.10650i −0.190697 + 0.743122i
\(120\) 0 0
\(121\) −22.8885 −2.08077
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −28.5237 −2.55124
\(126\) 0 0
\(127\) −4.38363 −0.388984 −0.194492 0.980904i \(-0.562306\pi\)
−0.194492 + 0.980904i \(0.562306\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −15.7084 −1.37245 −0.686224 0.727391i \(-0.740733\pi\)
−0.686224 + 0.727391i \(0.740733\pi\)
\(132\) 0 0
\(133\) −1.54412 + 1.57721i −0.133892 + 0.136762i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.4638i 1.57747i −0.614734 0.788734i \(-0.710737\pi\)
0.614734 0.788734i \(-0.289263\pi\)
\(138\) 0 0
\(139\) −3.80522 2.19695i −0.322755 0.186343i 0.329865 0.944028i \(-0.392997\pi\)
−0.652620 + 0.757685i \(0.726330\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.47837 14.6850i 0.708997 1.22802i
\(144\) 0 0
\(145\) −7.86898 + 4.54316i −0.653483 + 0.377289i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.5051i 1.67984i −0.542706 0.839922i \(-0.682600\pi\)
0.542706 0.839922i \(-0.317400\pi\)
\(150\) 0 0
\(151\) −5.41552 −0.440709 −0.220354 0.975420i \(-0.570721\pi\)
−0.220354 + 0.975420i \(0.570721\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.0890 8.71162i 1.21197 0.699734i
\(156\) 0 0
\(157\) 9.74596 5.62683i 0.777812 0.449070i −0.0578423 0.998326i \(-0.518422\pi\)
0.835654 + 0.549256i \(0.185089\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −5.05227 18.0860i −0.398175 1.42538i
\(162\) 0 0
\(163\) 1.25819 + 2.17924i 0.0985487 + 0.170691i 0.911084 0.412220i \(-0.135247\pi\)
−0.812535 + 0.582912i \(0.801913\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.38259 16.2511i 0.726047 1.25755i −0.232495 0.972598i \(-0.574689\pi\)
0.958542 0.284952i \(-0.0919777\pi\)
\(168\) 0 0
\(169\) −2.25769 3.91043i −0.173668 0.300803i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.85857 + 8.41530i −0.369391 + 0.639803i −0.989470 0.144735i \(-0.953767\pi\)
0.620080 + 0.784539i \(0.287100\pi\)
\(174\) 0 0
\(175\) 30.4048 8.49349i 2.29839 0.642048i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.24569 5.33800i −0.691055 0.398981i 0.112952 0.993600i \(-0.463969\pi\)
−0.804007 + 0.594619i \(0.797303\pi\)
\(180\) 0 0
\(181\) 4.34901i 0.323259i 0.986851 + 0.161630i \(0.0516750\pi\)
−0.986851 + 0.161630i \(0.948325\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −7.50988 13.0075i −0.552137 0.956330i
\(186\) 0 0
\(187\) −15.9474 9.20724i −1.16619 0.673300i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.4704 12.3959i −1.55354 0.896937i −0.997849 0.0655476i \(-0.979121\pi\)
−0.555691 0.831389i \(-0.687546\pi\)
\(192\) 0 0
\(193\) −13.3256 23.0806i −0.959198 1.66138i −0.724455 0.689322i \(-0.757909\pi\)
−0.234743 0.972058i \(-0.575425\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.11068i 0.435368i 0.976019 + 0.217684i \(0.0698502\pi\)
−0.976019 + 0.217684i \(0.930150\pi\)
\(198\) 0 0
\(199\) 0.385220 + 0.222407i 0.0273075 + 0.0157660i 0.513592 0.858035i \(-0.328315\pi\)
−0.486284 + 0.873801i \(0.661648\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.08710 4.17470i 0.286858 0.293007i
\(204\) 0 0
\(205\) 8.42765 14.5971i 0.588613 1.01951i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.42827 4.20588i −0.167967 0.290927i
\(210\) 0 0
\(211\) 4.23912 7.34236i 0.291833 0.505469i −0.682410 0.730969i \(-0.739068\pi\)
0.974243 + 0.225500i \(0.0724016\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.639693 + 1.10798i 0.0436267 + 0.0755636i
\(216\) 0 0
\(217\) −7.83710 + 8.00509i −0.532017 + 0.543421i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 7.97958 4.60701i 0.536764 0.309901i
\(222\) 0 0
\(223\) 7.25738 4.19005i 0.485990 0.280587i −0.236919 0.971529i \(-0.576138\pi\)
0.722909 + 0.690943i \(0.242804\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.22151 −0.147447 −0.0737233 0.997279i \(-0.523488\pi\)
−0.0737233 + 0.997279i \(0.523488\pi\)
\(228\) 0 0
\(229\) 23.6040i 1.55980i 0.625907 + 0.779898i \(0.284729\pi\)
−0.625907 + 0.779898i \(0.715271\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.69275 3.86406i 0.438457 0.253143i −0.264486 0.964390i \(-0.585202\pi\)
0.702943 + 0.711246i \(0.251869\pi\)
\(234\) 0 0
\(235\) −2.06703 + 3.58020i −0.134838 + 0.233546i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.2873 + 9.40346i 1.05354 + 0.608259i 0.923637 0.383268i \(-0.125201\pi\)
0.129899 + 0.991527i \(0.458535\pi\)
\(240\) 0 0
\(241\) 24.9125i 1.60476i 0.596815 + 0.802379i \(0.296433\pi\)
−0.596815 + 0.802379i \(0.703567\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −24.6339 + 14.9277i −1.57380 + 0.953694i
\(246\) 0 0
\(247\) 2.43006 0.154621
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −3.39294 −0.214161 −0.107080 0.994250i \(-0.534150\pi\)
−0.107080 + 0.994250i \(0.534150\pi\)
\(252\) 0 0
\(253\) 41.3177 2.59762
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.95421 −0.309035 −0.154518 0.987990i \(-0.549382\pi\)
−0.154518 + 0.987990i \(0.549382\pi\)
\(258\) 0 0
\(259\) 6.90082 + 6.75600i 0.428796 + 0.419797i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.91442i 0.179711i −0.995955 0.0898553i \(-0.971360\pi\)
0.995955 0.0898553i \(-0.0286405\pi\)
\(264\) 0 0
\(265\) −8.01576 4.62790i −0.492404 0.284290i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.41429 16.3060i 0.573999 0.994196i −0.422150 0.906526i \(-0.638724\pi\)
0.996150 0.0876702i \(-0.0279422\pi\)
\(270\) 0 0
\(271\) 13.6959 7.90734i 0.831967 0.480336i −0.0225585 0.999746i \(-0.507181\pi\)
0.854526 + 0.519409i \(0.173848\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 69.4602i 4.18861i
\(276\) 0 0
\(277\) −4.90462 −0.294690 −0.147345 0.989085i \(-0.547073\pi\)
−0.147345 + 0.989085i \(0.547073\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2.77186 + 1.60034i −0.165355 + 0.0954680i −0.580394 0.814336i \(-0.697101\pi\)
0.415039 + 0.909804i \(0.363768\pi\)
\(282\) 0 0
\(283\) −4.38850 + 2.53370i −0.260869 + 0.150613i −0.624731 0.780840i \(-0.714791\pi\)
0.363862 + 0.931453i \(0.381458\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.69382 + 10.4975i −0.159011 + 0.619646i
\(288\) 0 0
\(289\) 3.49694 + 6.05687i 0.205702 + 0.356287i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.3751 21.4343i 0.722961 1.25221i −0.236847 0.971547i \(-0.576114\pi\)
0.959808 0.280658i \(-0.0905527\pi\)
\(294\) 0 0
\(295\) −10.3590 17.9424i −0.603126 1.04464i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3370 + 17.9043i −0.597807 + 1.03543i
\(300\) 0 0
\(301\) −0.587813 0.575477i −0.0338810 0.0331700i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.4048 + 9.47130i 0.939335 + 0.542325i
\(306\) 0 0
\(307\) 19.8011i 1.13011i −0.825054 0.565055i \(-0.808855\pi\)
0.825054 0.565055i \(-0.191145\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.02449 10.4347i −0.341617 0.591699i 0.643116 0.765769i \(-0.277641\pi\)
−0.984733 + 0.174070i \(0.944308\pi\)
\(312\) 0 0
\(313\) 26.0564 + 15.0437i 1.47279 + 0.850318i 0.999532 0.0306036i \(-0.00974294\pi\)
0.473262 + 0.880922i \(0.343076\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.9888 + 6.34436i 0.617190 + 0.356335i 0.775774 0.631011i \(-0.217360\pi\)
−0.158584 + 0.987345i \(0.550693\pi\)
\(318\) 0 0
\(319\) 6.42734 + 11.1325i 0.359862 + 0.623299i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.63896i 0.146836i
\(324\) 0 0
\(325\) −30.0993 17.3778i −1.66961 0.963950i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.660706 2.57469i 0.0364259 0.141947i
\(330\) 0 0
\(331\) −2.95408 + 5.11662i −0.162371 + 0.281235i −0.935719 0.352748i \(-0.885247\pi\)
0.773348 + 0.633982i \(0.218581\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.5629 + 35.6161i 1.12347 + 1.94591i
\(336\) 0 0
\(337\) −10.5675 + 18.3034i −0.575647 + 0.997051i 0.420323 + 0.907374i \(0.361917\pi\)
−0.995971 + 0.0896763i \(0.971417\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.3246 21.3468i −0.667414 1.15599i
\(342\) 0 0
\(343\) 12.6727 13.5057i 0.684259 0.729239i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 25.6322 14.7988i 1.37601 0.794439i 0.384333 0.923195i \(-0.374432\pi\)
0.991676 + 0.128756i \(0.0410982\pi\)
\(348\) 0 0
\(349\) −6.60232 + 3.81185i −0.353414 + 0.204044i −0.666188 0.745784i \(-0.732075\pi\)
0.312774 + 0.949828i \(0.398742\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.4945 −0.558568 −0.279284 0.960208i \(-0.590097\pi\)
−0.279284 + 0.960208i \(0.590097\pi\)
\(354\) 0 0
\(355\) 46.9858i 2.49375i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.65028 2.68484i 0.245432 0.141700i −0.372239 0.928137i \(-0.621410\pi\)
0.617671 + 0.786437i \(0.288076\pi\)
\(360\) 0 0
\(361\) −9.15201 + 15.8517i −0.481685 + 0.834302i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.5498 + 7.24566i 0.656889 + 0.379255i
\(366\) 0 0
\(367\) 11.1054i 0.579698i −0.957072 0.289849i \(-0.906395\pi\)
0.957072 0.289849i \(-0.0936051\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.76450 + 1.47926i 0.299278 + 0.0767995i
\(372\) 0 0
\(373\) −35.4042 −1.83316 −0.916580 0.399850i \(-0.869062\pi\)
−0.916580 + 0.399850i \(0.869062\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.43208 −0.331269
\(378\) 0 0
\(379\) 26.5906 1.36587 0.682933 0.730481i \(-0.260704\pi\)
0.682933 + 0.730481i \(0.260704\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.5913 −1.25655 −0.628277 0.777989i \(-0.716240\pi\)
−0.628277 + 0.777989i \(0.716240\pi\)
\(384\) 0 0
\(385\) −17.0512 61.0396i −0.869011 3.11087i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.0987i 0.968344i 0.874973 + 0.484172i \(0.160879\pi\)
−0.874973 + 0.484172i \(0.839121\pi\)
\(390\) 0 0
\(391\) 19.4435 + 11.2257i 0.983298 + 0.567708i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.38394 4.12910i 0.119949 0.207757i
\(396\) 0 0
\(397\) 17.8857 10.3263i 0.897655 0.518261i 0.0212165 0.999775i \(-0.493246\pi\)
0.876439 + 0.481513i \(0.159913\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.4357i 0.770823i 0.922745 + 0.385412i \(0.125941\pi\)
−0.922745 + 0.385412i \(0.874059\pi\)
\(402\) 0 0
\(403\) 12.3337 0.614384
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −18.4021 + 10.6244i −0.912157 + 0.526634i
\(408\) 0 0
\(409\) −16.1611 + 9.33064i −0.799117 + 0.461370i −0.843162 0.537659i \(-0.819309\pi\)
0.0440453 + 0.999030i \(0.485975\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.51889 + 9.31914i 0.468394 + 0.458565i
\(414\) 0 0
\(415\) 31.1769 + 53.9999i 1.53041 + 2.65075i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 14.3576 24.8681i 0.701414 1.21488i −0.266557 0.963819i \(-0.585886\pi\)
0.967970 0.251065i \(-0.0807807\pi\)
\(420\) 0 0
\(421\) 12.8338 + 22.2287i 0.625479 + 1.08336i 0.988448 + 0.151560i \(0.0484296\pi\)
−0.362969 + 0.931801i \(0.618237\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −18.8718 + 32.6869i −0.915416 + 1.58555i
\(426\) 0 0
\(427\) −11.7974 3.02741i −0.570918 0.146507i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −17.0243 9.82896i −0.820030 0.473444i 0.0303970 0.999538i \(-0.490323\pi\)
−0.850427 + 0.526094i \(0.823656\pi\)
\(432\) 0 0
\(433\) 7.07732i 0.340114i 0.985434 + 0.170057i \(0.0543952\pi\)
−0.985434 + 0.170057i \(0.945605\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.96060 + 5.12791i 0.141625 + 0.245301i
\(438\) 0 0
\(439\) −16.8368 9.72072i −0.803575 0.463945i 0.0411444 0.999153i \(-0.486900\pi\)
−0.844720 + 0.535209i \(0.820233\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.8951 + 17.2600i 1.42036 + 0.820045i 0.996329 0.0856030i \(-0.0272817\pi\)
0.424030 + 0.905648i \(0.360615\pi\)
\(444\) 0 0
\(445\) 19.8445 + 34.3716i 0.940718 + 1.62937i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.9491i 0.516720i 0.966049 + 0.258360i \(0.0831821\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(450\) 0 0
\(451\) −20.6510 11.9228i −0.972417 0.561425i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 30.7164 + 7.88231i 1.44001 + 0.369529i
\(456\) 0 0
\(457\) 9.59613 16.6210i 0.448888 0.777497i −0.549426 0.835542i \(-0.685154\pi\)
0.998314 + 0.0580457i \(0.0184869\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.2492 28.1444i −0.756799 1.31081i −0.944475 0.328584i \(-0.893429\pi\)
0.187676 0.982231i \(-0.439905\pi\)
\(462\) 0 0
\(463\) −13.9136 + 24.0991i −0.646621 + 1.11998i 0.337303 + 0.941396i \(0.390485\pi\)
−0.983924 + 0.178585i \(0.942848\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.0869153 0.150542i −0.00402196 0.00696624i 0.864007 0.503479i \(-0.167947\pi\)
−0.868029 + 0.496513i \(0.834614\pi\)
\(468\) 0 0
\(469\) −18.8953 18.4987i −0.872502 0.854192i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.56749 0.904992i 0.0720734 0.0416116i
\(474\) 0 0
\(475\) −8.62066 + 4.97714i −0.395543 + 0.228367i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.93195 −0.133964 −0.0669822 0.997754i \(-0.521337\pi\)
−0.0669822 + 0.997754i \(0.521337\pi\)
\(480\) 0 0
\(481\) 10.6323i 0.484790i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.8610 + 12.0441i −0.947247 + 0.546893i
\(486\) 0 0
\(487\) −18.7014 + 32.3917i −0.847440 + 1.46781i 0.0360460 + 0.999350i \(0.488524\pi\)
−0.883486 + 0.468458i \(0.844810\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.27844 4.20221i −0.328472 0.189643i 0.326691 0.945131i \(-0.394066\pi\)
−0.655162 + 0.755488i \(0.727400\pi\)
\(492\) 0 0
\(493\) 6.98503i 0.314590i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −8.12812 29.0969i −0.364596 1.30517i
\(498\) 0 0
\(499\) 0.0352479 0.00157791 0.000788956 1.00000i \(-0.499749\pi\)
0.000788956 1.00000i \(0.499749\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.9085 −0.664736 −0.332368 0.943150i \(-0.607848\pi\)
−0.332368 + 0.943150i \(0.607848\pi\)
\(504\) 0 0
\(505\) 24.0827 1.07166
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.4128 0.638836 0.319418 0.947614i \(-0.396513\pi\)
0.319418 + 0.947614i \(0.396513\pi\)
\(510\) 0 0
\(511\) −9.02517 2.31600i −0.399250 0.102454i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.21068i 0.141479i
\(516\) 0 0
\(517\) 5.06501 + 2.92429i 0.222759 + 0.128610i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10.4159 18.0409i 0.456330 0.790386i −0.542434 0.840098i \(-0.682497\pi\)
0.998764 + 0.0497124i \(0.0158305\pi\)
\(522\) 0 0
\(523\) −12.6684 + 7.31408i −0.553949 + 0.319822i −0.750713 0.660628i \(-0.770290\pi\)
0.196764 + 0.980451i \(0.436957\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 13.3940i 0.583450i
\(528\) 0 0
\(529\) −27.3756 −1.19024
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.3331 5.96582i 0.447576 0.258408i
\(534\) 0 0
\(535\) 29.4432 16.9991i 1.27294 0.734934i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.1186 + 34.8503i 0.909643 + 1.50111i
\(540\) 0 0
\(541\) 3.60713 + 6.24773i 0.155083 + 0.268611i 0.933089 0.359645i \(-0.117102\pi\)
−0.778006 + 0.628256i \(0.783769\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.9609 + 25.9130i −0.640854 + 1.10999i
\(546\) 0 0
\(547\) −3.81987 6.61620i −0.163326 0.282888i 0.772734 0.634730i \(-0.218889\pi\)
−0.936059 + 0.351842i \(0.885555\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.921096 + 1.59539i −0.0392400 + 0.0679657i
\(552\) 0 0
\(553\) −0.762002 + 2.96942i −0.0324036 + 0.126273i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.13965 + 4.69943i 0.344888 + 0.199121i 0.662432 0.749122i \(-0.269525\pi\)
−0.317543 + 0.948244i \(0.602858\pi\)
\(558\) 0 0
\(559\) 0.905659i 0.0383053i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.06352 + 3.57413i 0.0869671 + 0.150631i 0.906228 0.422790i \(-0.138949\pi\)
−0.819261 + 0.573421i \(0.805616\pi\)
\(564\) 0 0
\(565\) −66.1734 38.2052i −2.78394 1.60731i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.7740 + 9.10715i 0.661282 + 0.381792i 0.792765 0.609527i \(-0.208641\pi\)
−0.131483 + 0.991318i \(0.541974\pi\)
\(570\) 0 0
\(571\) −22.5913 39.1293i −0.945417 1.63751i −0.754915 0.655823i \(-0.772322\pi\)
−0.190502 0.981687i \(-0.561012\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 84.6876i 3.53172i
\(576\) 0 0
\(577\) 7.04322 + 4.06641i 0.293213 + 0.169287i 0.639390 0.768883i \(-0.279187\pi\)
−0.346177 + 0.938169i \(0.612520\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −28.6484 28.0472i −1.18853 1.16359i
\(582\) 0 0
\(583\) −6.54723 + 11.3401i −0.271158 + 0.469660i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.4379 + 21.5430i 0.513366 + 0.889175i 0.999880 + 0.0155026i \(0.00493481\pi\)
−0.486514 + 0.873673i \(0.661732\pi\)
\(588\) 0 0
\(589\) 1.76622 3.05919i 0.0727760 0.126052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.6229 + 27.0596i 0.641554 + 1.11120i 0.985086 + 0.172063i \(0.0550432\pi\)
−0.343532 + 0.939141i \(0.611623\pi\)
\(594\) 0 0
\(595\) 8.55993 33.3570i 0.350923 1.36750i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.54125 + 3.19925i −0.226410 + 0.130718i −0.608915 0.793236i \(-0.708395\pi\)
0.382505 + 0.923953i \(0.375061\pi\)
\(600\) 0 0
\(601\) 36.0541 20.8158i 1.47068 0.849095i 0.471218 0.882017i \(-0.343814\pi\)
0.999458 + 0.0329215i \(0.0104811\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 94.1826 3.82907
\(606\) 0 0
\(607\) 25.0762i 1.01781i −0.860822 0.508907i \(-0.830050\pi\)
0.860822 0.508907i \(-0.169950\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.53437 + 1.46322i −0.102530 + 0.0591956i
\(612\) 0 0
\(613\) 15.3779 26.6352i 0.621106 1.07579i −0.368174 0.929757i \(-0.620017\pi\)
0.989280 0.146030i \(-0.0466497\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10.1910 + 5.88375i 0.410272 + 0.236871i 0.690907 0.722944i \(-0.257212\pi\)
−0.280634 + 0.959815i \(0.590545\pi\)
\(618\) 0 0
\(619\) 7.09698i 0.285252i −0.989777 0.142626i \(-0.954445\pi\)
0.989777 0.142626i \(-0.0455546\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.2351 17.8524i −0.730572 0.715241i
\(624\) 0 0
\(625\) 57.7108 2.30843
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −11.5463 −0.460381
\(630\) 0 0
\(631\) −13.0686 −0.520252 −0.260126 0.965575i \(-0.583764\pi\)
−0.260126 + 0.965575i \(0.583764\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.0379 0.715814
\(636\) 0 0
\(637\) −20.3853 + 0.432378i −0.807694 + 0.0171314i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 12.6115i 0.498123i 0.968488 + 0.249062i \(0.0801221\pi\)
−0.968488 + 0.249062i \(0.919878\pi\)
\(642\) 0 0
\(643\) −12.3449 7.12736i −0.486837 0.281076i 0.236424 0.971650i \(-0.424025\pi\)
−0.723261 + 0.690574i \(0.757358\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20.0060 + 34.6515i −0.786519 + 1.36229i 0.141569 + 0.989928i \(0.454785\pi\)
−0.928088 + 0.372362i \(0.878548\pi\)
\(648\) 0 0
\(649\) −25.3836 + 14.6552i −0.996392 + 0.575267i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14.6331i 0.572638i 0.958134 + 0.286319i \(0.0924317\pi\)
−0.958134 + 0.286319i \(0.907568\pi\)
\(654\) 0 0
\(655\) 64.6375 2.52559
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −23.7553 + 13.7151i −0.925374 + 0.534265i −0.885346 0.464934i \(-0.846078\pi\)
−0.0400285 + 0.999199i \(0.512745\pi\)
\(660\) 0 0
\(661\) 30.8389 17.8048i 1.19949 0.692528i 0.239051 0.971007i \(-0.423164\pi\)
0.960442 + 0.278479i \(0.0898304\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.35379 6.48998i 0.246389 0.251671i
\(666\) 0 0
\(667\) −7.83637 13.5730i −0.303426 0.525548i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 13.3993 23.2083i 0.517275 0.895947i
\(672\) 0 0
\(673\) 6.35937 + 11.0147i 0.245136 + 0.424587i 0.962170 0.272451i \(-0.0878342\pi\)
−0.717034 + 0.697038i \(0.754501\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.0278 + 24.2968i −0.539131 + 0.933803i 0.459820 + 0.888012i \(0.347914\pi\)
−0.998951 + 0.0457904i \(0.985419\pi\)
\(678\) 0 0
\(679\) 10.8350 11.0673i 0.415810 0.424723i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.4564 8.34638i −0.553157 0.319365i 0.197237 0.980356i \(-0.436803\pi\)
−0.750394 + 0.660990i \(0.770136\pi\)
\(684\) 0 0
\(685\) 75.9756i 2.90288i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.27603 5.67424i −0.124807 0.216171i
\(690\) 0 0
\(691\) −26.3650 15.2218i −1.00297 0.579066i −0.0938458 0.995587i \(-0.529916\pi\)
−0.909126 + 0.416521i \(0.863249\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.6579 + 9.04009i 0.593938 + 0.342910i
\(696\) 0 0
\(697\) −6.47868 11.2214i −0.245398 0.425041i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.16940i 0.233015i −0.993190 0.116507i \(-0.962830\pi\)
0.993190 0.116507i \(-0.0371699\pi\)
\(702\) 0 0
\(703\) −2.63719 1.52258i −0.0994633 0.0574252i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.9137 + 4.16608i −0.560886 + 0.156682i
\(708\) 0 0
\(709\) −12.7487 + 22.0813i −0.478786 + 0.829282i −0.999704 0.0243250i \(-0.992256\pi\)
0.520918 + 0.853607i \(0.325590\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 15.0264 + 26.0265i 0.562744 + 0.974702i
\(714\) 0 0
\(715\) −34.8871 + 60.4263i −1.30471 + 2.25982i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.1263 + 21.0034i 0.452236 + 0.783296i 0.998525 0.0543012i \(-0.0172931\pi\)
−0.546289 + 0.837597i \(0.683960\pi\)
\(720\) 0 0
\(721\) −0.555418 1.98827i −0.0206849 0.0740472i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 22.8179 13.1739i 0.847435 0.489267i
\(726\) 0 0
\(727\) 13.5251 7.80870i 0.501617 0.289609i −0.227764 0.973716i \(-0.573141\pi\)
0.729381 + 0.684108i \(0.239808\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0.983516 0.0363767
\(732\) 0 0
\(733\) 35.7036i 1.31874i −0.751818 0.659371i \(-0.770823\pi\)
0.751818 0.659371i \(-0.229177\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.3871 29.0910i 1.85603 1.07158i
\(738\) 0 0
\(739\) −7.27883 + 12.6073i −0.267756 + 0.463767i −0.968282 0.249860i \(-0.919615\pi\)
0.700526 + 0.713627i \(0.252949\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0.0287226 + 0.0165830i 0.00105373 + 0.000608372i 0.500527 0.865721i \(-0.333140\pi\)
−0.499473 + 0.866329i \(0.666473\pi\)
\(744\) 0 0
\(745\) 84.3753i 3.09127i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −15.2926 + 15.6204i −0.558780 + 0.570758i
\(750\) 0 0
\(751\) −23.7899 −0.868106 −0.434053 0.900887i \(-0.642917\pi\)
−0.434053 + 0.900887i \(0.642917\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.2840 0.810998
\(756\) 0 0
\(757\) −33.2060 −1.20689 −0.603446 0.797404i \(-0.706206\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.5675 1.54307 0.771535 0.636187i \(-0.219489\pi\)
0.771535 + 0.636187i \(0.219489\pi\)
\(762\) 0 0
\(763\) 4.78210 18.6352i 0.173124 0.674641i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.6660i 0.529559i
\(768\) 0 0
\(769\) 27.1091 + 15.6514i 0.977578 + 0.564405i 0.901538 0.432700i \(-0.142439\pi\)
0.0760402 + 0.997105i \(0.475772\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.165130 + 0.286014i −0.00593932 + 0.0102872i −0.868980 0.494848i \(-0.835224\pi\)
0.863040 + 0.505135i \(0.168557\pi\)
\(774\) 0 0
\(775\) −43.7539 + 25.2613i −1.57168 + 0.907413i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.41730i 0.122438i
\(780\) 0 0
\(781\) 66.4722 2.37856
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −40.1031 + 23.1535i −1.43134 + 0.826384i
\(786\) 0 0
\(787\) 6.50328 3.75467i 0.231817 0.133840i −0.379593 0.925154i \(-0.623936\pi\)
0.611410 + 0.791314i \(0.290603\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 47.5883 + 12.2119i 1.69205 + 0.434206i
\(792\) 0 0
\(793\) 6.70460 + 11.6127i 0.238087 + 0.412379i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.58136 + 6.20310i −0.126858 + 0.219725i −0.922458 0.386098i \(-0.873823\pi\)
0.795600 + 0.605823i \(0.207156\pi\)
\(798\) 0 0
\(799\) 1.58901 + 2.75225i 0.0562151 + 0.0973675i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.2506 17.7546i 0.361737 0.626547i
\(804\) 0 0
\(805\) 20.7893 + 74.4210i 0.732726 + 2.62300i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.9767 23.0806i −1.40551 0.811469i −0.410556 0.911836i \(-0.634665\pi\)
−0.994951 + 0.100366i \(0.967999\pi\)
\(810\) 0 0
\(811\) 22.8560i 0.802581i 0.915951 + 0.401290i \(0.131438\pi\)
−0.915951 + 0.401290i \(0.868562\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.17723 8.96723i −0.181351 0.314108i
\(816\) 0 0
\(817\) 0.224636 + 0.129694i 0.00785902 + 0.00453741i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.65766 + 0.957051i 0.0578527 + 0.0334013i 0.528647 0.848842i \(-0.322699\pi\)
−0.470795 + 0.882243i \(0.656033\pi\)
\(822\) 0 0
\(823\) −7.54735 13.0724i −0.263084 0.455675i 0.703976 0.710224i \(-0.251406\pi\)
−0.967060 + 0.254549i \(0.918073\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 14.4077i 0.501004i 0.968116 + 0.250502i \(0.0805956\pi\)
−0.968116 + 0.250502i \(0.919404\pi\)
\(828\) 0 0
\(829\) −37.1450 21.4457i −1.29010 0.744840i −0.311429 0.950270i \(-0.600807\pi\)
−0.978672 + 0.205430i \(0.934141\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.469548 + 22.1377i 0.0162689 + 0.767027i
\(834\) 0 0
\(835\) −38.6079 + 66.8708i −1.33608 + 2.31416i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −12.5327 21.7073i −0.432678 0.749421i 0.564425 0.825485i \(-0.309098\pi\)
−0.997103 + 0.0760639i \(0.975765\pi\)
\(840\) 0 0
\(841\) −12.0620 + 20.8919i −0.415930 + 0.720412i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 9.29003 + 16.0908i 0.319587 + 0.553541i
\(846\) 0 0
\(847\) −58.3244 + 16.2927i −2.00405 + 0.559825i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 22.4363 12.9536i 0.769105 0.444043i
\(852\) 0 0
\(853\) −14.9013 + 8.60328i −0.510211 + 0.294571i −0.732920 0.680314i \(-0.761843\pi\)
0.222709 + 0.974885i \(0.428510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −48.6968 −1.66345 −0.831726 0.555187i \(-0.812647\pi\)
−0.831726 + 0.555187i \(0.812647\pi\)
\(858\) 0 0
\(859\) 3.09785i 0.105697i −0.998603 0.0528487i \(-0.983170\pi\)
0.998603 0.0528487i \(-0.0168301\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.2443 12.8427i 0.757203 0.437172i −0.0710874 0.997470i \(-0.522647\pi\)
0.828291 + 0.560299i \(0.189314\pi\)
\(864\) 0 0
\(865\) 19.9923 34.6276i 0.679757 1.17737i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.84156 3.37262i −0.198161 0.114408i
\(870\) 0 0
\(871\) 29.1124i 0.986437i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −72.6839 + 20.3040i −2.45716 + 0.686401i
\(876\) 0 0
\(877\) 1.25325 0.0423193 0.0211597 0.999776i \(-0.493264\pi\)
0.0211597 + 0.999776i \(0.493264\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.7429 −0.631464 −0.315732 0.948848i \(-0.602250\pi\)
−0.315732 + 0.948848i \(0.602250\pi\)
\(882\) 0 0
\(883\) −39.3701 −1.32491 −0.662454 0.749103i \(-0.730485\pi\)
−0.662454 + 0.749103i \(0.730485\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −37.1909 −1.24875 −0.624374 0.781126i \(-0.714646\pi\)
−0.624374 + 0.781126i \(0.714646\pi\)
\(888\) 0 0
\(889\) −11.1703 + 3.12040i −0.374641 + 0.104655i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.838154i 0.0280478i
\(894\) 0 0
\(895\) 38.0445 + 21.9650i 1.27169 + 0.734210i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.67499 + 8.09732i −0.155920 + 0.270061i
\(900\) 0 0
\(901\) −6.16204 + 3.55766i −0.205287 + 0.118523i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.8955i 0.594866i
\(906\) 0 0
\(907\) 30.8590 1.02466 0.512328 0.858790i \(-0.328783\pi\)
0.512328 + 0.858790i \(0.328783\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −14.7486 + 8.51511i −0.488643 + 0.282118i −0.724011 0.689788i \(-0.757704\pi\)
0.235368 + 0.971906i \(0.424370\pi\)
\(912\) 0 0
\(913\) 76.3953 44.1068i 2.52831 1.45972i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −40.0280 + 11.1817i −1.32184 + 0.369252i
\(918\) 0 0
\(919\) 8.44635 + 14.6295i 0.278619 + 0.482583i 0.971042 0.238909i \(-0.0767898\pi\)
−0.692422 + 0.721492i \(0.743457\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.6303 + 28.8045i −0.547393 + 0.948112i
\(924\) 0 0
\(925\) 21.7766 + 37.7182i 0.716010 + 1.24017i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.39678 5.88339i 0.111445 0.193028i −0.804908 0.593399i \(-0.797786\pi\)
0.916353 + 0.400371i \(0.131119\pi\)
\(930\) 0 0
\(931\) −2.81200 + 5.11820i −0.0921596 + 0.167742i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 65.6210 + 37.8863i 2.14604 + 1.23901i
\(936\) 0 0
\(937\) 5.14535i 0.168091i −0.996462 0.0840456i \(-0.973216\pi\)
0.996462 0.0840456i \(-0.0267841\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −0.460454 0.797529i −0.0150104 0.0259987i 0.858423 0.512943i \(-0.171445\pi\)
−0.873433 + 0.486944i \(0.838111\pi\)
\(942\) 0 0
\(943\) 25.1782 + 14.5366i 0.819914 + 0.473378i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.2033 + 12.2417i 0.689015 + 0.397803i 0.803243 0.595652i \(-0.203106\pi\)
−0.114228 + 0.993455i \(0.536439\pi\)
\(948\) 0 0
\(949\) 5.12910 + 8.88386i 0.166498 + 0.288382i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.80916i 0.317750i 0.987299 + 0.158875i \(0.0507866\pi\)
−0.987299 + 0.158875i \(0.949213\pi\)
\(954\) 0 0
\(955\) 88.3471 + 51.0072i 2.85884 + 1.65055i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.1431 47.0494i −0.424412 1.51930i
\(960\) 0 0
\(961\) −6.53559 + 11.3200i −0.210825 + 0.365160i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 54.8327 + 94.9731i 1.76513 + 3.05729i
\(966\) 0 0
\(967\) 18.1376 31.4152i 0.583264 1.01024i −0.411825 0.911263i \(-0.635108\pi\)
0.995089 0.0989807i \(-0.0315582\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.09772 1.90130i −0.0352274 0.0610157i 0.847874 0.530198i \(-0.177882\pi\)
−0.883102 + 0.469182i \(0.844549\pi\)
\(972\) 0 0
\(973\) −11.2603 2.88958i −0.360989 0.0926356i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 36.9950 21.3591i 1.18357 0.683337i 0.226736 0.973956i \(-0.427195\pi\)
0.956839 + 0.290619i \(0.0938612\pi\)
\(978\) 0 0
\(979\) 48.6266 28.0746i 1.55411 0.897267i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.7562 1.45940 0.729698 0.683770i \(-0.239661\pi\)
0.729698 + 0.683770i \(0.239661\pi\)
\(984\) 0 0
\(985\) 25.1444i 0.801169i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.91113 + 1.10339i −0.0607703 + 0.0350857i
\(990\) 0 0
\(991\) 8.30690 14.3880i 0.263877 0.457049i −0.703392 0.710803i \(-0.748332\pi\)
0.967269 + 0.253754i \(0.0816653\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.58512 0.915169i −0.0502517 0.0290128i
\(996\) 0 0
\(997\) 21.4826i 0.680361i −0.940360 0.340181i \(-0.889512\pi\)
0.940360 0.340181i \(-0.110488\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.17.1 48
3.2 odd 2 1008.2.df.e.689.8 48
4.3 odd 2 1512.2.cx.a.17.1 48
7.5 odd 6 3024.2.ca.e.2609.1 48
9.2 odd 6 3024.2.ca.e.2033.1 48
9.7 even 3 1008.2.ca.e.353.2 48
12.11 even 2 504.2.cx.a.185.17 yes 48
21.5 even 6 1008.2.ca.e.257.2 48
28.19 even 6 1512.2.bs.a.1097.1 48
36.7 odd 6 504.2.bs.a.353.23 yes 48
36.11 even 6 1512.2.bs.a.521.1 48
63.47 even 6 inner 3024.2.df.e.1601.1 48
63.61 odd 6 1008.2.df.e.929.8 48
84.47 odd 6 504.2.bs.a.257.23 48
252.47 odd 6 1512.2.cx.a.89.1 48
252.187 even 6 504.2.cx.a.425.17 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.23 48 84.47 odd 6
504.2.bs.a.353.23 yes 48 36.7 odd 6
504.2.cx.a.185.17 yes 48 12.11 even 2
504.2.cx.a.425.17 yes 48 252.187 even 6
1008.2.ca.e.257.2 48 21.5 even 6
1008.2.ca.e.353.2 48 9.7 even 3
1008.2.df.e.689.8 48 3.2 odd 2
1008.2.df.e.929.8 48 63.61 odd 6
1512.2.bs.a.521.1 48 36.11 even 6
1512.2.bs.a.1097.1 48 28.19 even 6
1512.2.cx.a.17.1 48 4.3 odd 2
1512.2.cx.a.89.1 48 252.47 odd 6
3024.2.ca.e.2033.1 48 9.2 odd 6
3024.2.ca.e.2609.1 48 7.5 odd 6
3024.2.df.e.17.1 48 1.1 even 1 trivial
3024.2.df.e.1601.1 48 63.47 even 6 inner