Properties

Label 504.2.bs.a.353.23
Level $504$
Weight $2$
Character 504.353
Analytic conductor $4.024$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [504,2,Mod(257,504)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(504, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("504.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.23
Character \(\chi\) \(=\) 504.353
Dual form 504.2.bs.a.257.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72860 + 0.109329i) q^{3} +(2.05742 - 3.56356i) q^{5} +(1.89056 + 1.85089i) q^{7} +(2.97609 + 0.377972i) q^{9} +(-5.04147 + 2.91069i) q^{11} +(2.52259 - 1.45642i) q^{13} +(3.94605 - 5.93502i) q^{15} +(-1.58162 + 2.73945i) q^{17} +(0.722488 - 0.417129i) q^{19} +(3.06566 + 3.40613i) q^{21} +(-6.14668 - 3.54879i) q^{23} +(-5.96595 - 10.3333i) q^{25} +(5.10314 + 0.978735i) q^{27} +(-1.91234 - 1.10409i) q^{29} +4.23424i q^{31} +(-9.03289 + 4.48023i) q^{33} +(10.4854 - 2.92907i) q^{35} +(1.82507 + 3.16112i) q^{37} +(4.51977 - 2.24177i) q^{39} +(-2.04811 - 3.54743i) q^{41} +(0.155460 - 0.269265i) q^{43} +(7.47000 - 9.82783i) q^{45} +1.00467 q^{47} +(0.148439 + 6.99843i) q^{49} +(-3.03349 + 4.56249i) q^{51} +(1.94801 + 1.12469i) q^{53} +23.9541i q^{55} +(1.29450 - 0.642058i) q^{57} +5.03496 q^{59} +4.60348i q^{61} +(4.92690 + 6.22299i) q^{63} -11.9859i q^{65} -9.99453 q^{67} +(-10.2371 - 6.80644i) q^{69} +11.4186i q^{71} +(-3.04990 - 1.76086i) q^{73} +(-9.18299 - 18.5144i) q^{75} +(-14.9186 - 3.82834i) q^{77} -1.15870 q^{79} +(8.71427 + 2.24976i) q^{81} +(7.57669 - 13.1232i) q^{83} +(6.50813 + 11.2724i) q^{85} +(-3.18496 - 2.11760i) q^{87} +(-4.82266 - 8.35309i) q^{89} +(7.46478 + 1.91558i) q^{91} +(-0.462926 + 7.31930i) q^{93} -3.43284i q^{95} +(-5.06969 - 2.92699i) q^{97} +(-16.1040 + 6.75696i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} + 8 q^{15} + 8 q^{21} - 12 q^{23} - 24 q^{25} - 18 q^{27} + 18 q^{29} - 10 q^{39} + 6 q^{41} - 6 q^{43} + 6 q^{45} + 36 q^{47} + 6 q^{49} - 12 q^{51} + 12 q^{53} + 4 q^{57} + 46 q^{63} - 54 q^{75}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72860 + 0.109329i 0.998006 + 0.0631212i
\(4\) 0 0
\(5\) 2.05742 3.56356i 0.920106 1.59367i 0.120858 0.992670i \(-0.461436\pi\)
0.799248 0.601001i \(-0.205231\pi\)
\(6\) 0 0
\(7\) 1.89056 + 1.85089i 0.714565 + 0.699569i
\(8\) 0 0
\(9\) 2.97609 + 0.377972i 0.992031 + 0.125991i
\(10\) 0 0
\(11\) −5.04147 + 2.91069i −1.52006 + 0.877607i −0.520339 + 0.853960i \(0.674194\pi\)
−0.999720 + 0.0236471i \(0.992472\pi\)
\(12\) 0 0
\(13\) 2.52259 1.45642i 0.699641 0.403938i −0.107573 0.994197i \(-0.534308\pi\)
0.807214 + 0.590259i \(0.200975\pi\)
\(14\) 0 0
\(15\) 3.94605 5.93502i 1.01887 1.53241i
\(16\) 0 0
\(17\) −1.58162 + 2.73945i −0.383600 + 0.664415i −0.991574 0.129542i \(-0.958649\pi\)
0.607974 + 0.793957i \(0.291983\pi\)
\(18\) 0 0
\(19\) 0.722488 0.417129i 0.165750 0.0956959i −0.414830 0.909899i \(-0.636159\pi\)
0.580580 + 0.814203i \(0.302826\pi\)
\(20\) 0 0
\(21\) 3.06566 + 3.40613i 0.668982 + 0.743278i
\(22\) 0 0
\(23\) −6.14668 3.54879i −1.28167 0.739973i −0.304518 0.952507i \(-0.598495\pi\)
−0.977154 + 0.212533i \(0.931829\pi\)
\(24\) 0 0
\(25\) −5.96595 10.3333i −1.19319 2.06667i
\(26\) 0 0
\(27\) 5.10314 + 0.978735i 0.982100 + 0.188358i
\(28\) 0 0
\(29\) −1.91234 1.10409i −0.355113 0.205025i 0.311822 0.950141i \(-0.399061\pi\)
−0.666935 + 0.745116i \(0.732394\pi\)
\(30\) 0 0
\(31\) 4.23424i 0.760493i 0.924885 + 0.380246i \(0.124161\pi\)
−0.924885 + 0.380246i \(0.875839\pi\)
\(32\) 0 0
\(33\) −9.03289 + 4.48023i −1.57242 + 0.779909i
\(34\) 0 0
\(35\) 10.4854 2.92907i 1.77236 0.495103i
\(36\) 0 0
\(37\) 1.82507 + 3.16112i 0.300040 + 0.519684i 0.976145 0.217121i \(-0.0696667\pi\)
−0.676105 + 0.736806i \(0.736333\pi\)
\(38\) 0 0
\(39\) 4.51977 2.24177i 0.723743 0.358970i
\(40\) 0 0
\(41\) −2.04811 3.54743i −0.319861 0.554016i 0.660598 0.750740i \(-0.270303\pi\)
−0.980459 + 0.196724i \(0.936970\pi\)
\(42\) 0 0
\(43\) 0.155460 0.269265i 0.0237074 0.0410625i −0.853928 0.520391i \(-0.825786\pi\)
0.877636 + 0.479328i \(0.159120\pi\)
\(44\) 0 0
\(45\) 7.47000 9.82783i 1.11356 1.46505i
\(46\) 0 0
\(47\) 1.00467 0.146546 0.0732731 0.997312i \(-0.476656\pi\)
0.0732731 + 0.997312i \(0.476656\pi\)
\(48\) 0 0
\(49\) 0.148439 + 6.99843i 0.0212055 + 0.999775i
\(50\) 0 0
\(51\) −3.03349 + 4.56249i −0.424774 + 0.638876i
\(52\) 0 0
\(53\) 1.94801 + 1.12469i 0.267580 + 0.154487i 0.627787 0.778385i \(-0.283961\pi\)
−0.360207 + 0.932872i \(0.617294\pi\)
\(54\) 0 0
\(55\) 23.9541i 3.22997i
\(56\) 0 0
\(57\) 1.29450 0.642058i 0.171460 0.0850427i
\(58\) 0 0
\(59\) 5.03496 0.655496 0.327748 0.944765i \(-0.393710\pi\)
0.327748 + 0.944765i \(0.393710\pi\)
\(60\) 0 0
\(61\) 4.60348i 0.589416i 0.955587 + 0.294708i \(0.0952224\pi\)
−0.955587 + 0.294708i \(0.904778\pi\)
\(62\) 0 0
\(63\) 4.92690 + 6.22299i 0.620731 + 0.784023i
\(64\) 0 0
\(65\) 11.9859i 1.48666i
\(66\) 0 0
\(67\) −9.99453 −1.22103 −0.610513 0.792006i \(-0.709037\pi\)
−0.610513 + 0.792006i \(0.709037\pi\)
\(68\) 0 0
\(69\) −10.2371 6.80644i −1.23241 0.819398i
\(70\) 0 0
\(71\) 11.4186i 1.35514i 0.735458 + 0.677571i \(0.236967\pi\)
−0.735458 + 0.677571i \(0.763033\pi\)
\(72\) 0 0
\(73\) −3.04990 1.76086i −0.356964 0.206093i 0.310784 0.950480i \(-0.399408\pi\)
−0.667748 + 0.744387i \(0.732742\pi\)
\(74\) 0 0
\(75\) −9.18299 18.5144i −1.06036 2.13786i
\(76\) 0 0
\(77\) −14.9186 3.82834i −1.70013 0.436280i
\(78\) 0 0
\(79\) −1.15870 −0.130364 −0.0651820 0.997873i \(-0.520763\pi\)
−0.0651820 + 0.997873i \(0.520763\pi\)
\(80\) 0 0
\(81\) 8.71427 + 2.24976i 0.968253 + 0.249973i
\(82\) 0 0
\(83\) 7.57669 13.1232i 0.831650 1.44046i −0.0650797 0.997880i \(-0.520730\pi\)
0.896729 0.442579i \(-0.145937\pi\)
\(84\) 0 0
\(85\) 6.50813 + 11.2724i 0.705905 + 1.22266i
\(86\) 0 0
\(87\) −3.18496 2.11760i −0.341464 0.227031i
\(88\) 0 0
\(89\) −4.82266 8.35309i −0.511201 0.885426i −0.999916 0.0129824i \(-0.995867\pi\)
0.488715 0.872444i \(-0.337466\pi\)
\(90\) 0 0
\(91\) 7.46478 + 1.91558i 0.782521 + 0.200808i
\(92\) 0 0
\(93\) −0.462926 + 7.31930i −0.0480032 + 0.758976i
\(94\) 0 0
\(95\) 3.43284i 0.352201i
\(96\) 0 0
\(97\) −5.06969 2.92699i −0.514749 0.297190i 0.220035 0.975492i \(-0.429383\pi\)
−0.734784 + 0.678302i \(0.762716\pi\)
\(98\) 0 0
\(99\) −16.1040 + 6.75696i −1.61852 + 0.679100i
\(100\) 0 0
\(101\) 2.92632 + 5.06853i 0.291180 + 0.504338i 0.974089 0.226165i \(-0.0726189\pi\)
−0.682909 + 0.730503i \(0.739286\pi\)
\(102\) 0 0
\(103\) −0.675732 0.390134i −0.0665818 0.0384410i 0.466340 0.884606i \(-0.345573\pi\)
−0.532921 + 0.846165i \(0.678906\pi\)
\(104\) 0 0
\(105\) 18.4453 3.91682i 1.80008 0.382242i
\(106\) 0 0
\(107\) 7.15538 4.13116i 0.691737 0.399374i −0.112526 0.993649i \(-0.535894\pi\)
0.804262 + 0.594274i \(0.202561\pi\)
\(108\) 0 0
\(109\) 3.63584 6.29745i 0.348250 0.603187i −0.637689 0.770294i \(-0.720109\pi\)
0.985939 + 0.167107i \(0.0534427\pi\)
\(110\) 0 0
\(111\) 2.80921 + 5.66383i 0.266639 + 0.537587i
\(112\) 0 0
\(113\) −16.0816 + 9.28474i −1.51283 + 0.873435i −0.512947 + 0.858421i \(0.671446\pi\)
−0.999887 + 0.0150145i \(0.995221\pi\)
\(114\) 0 0
\(115\) −25.2926 + 14.6027i −2.35855 + 1.36171i
\(116\) 0 0
\(117\) 8.05795 3.38097i 0.744958 0.312571i
\(118\) 0 0
\(119\) −8.06057 + 2.25169i −0.738911 + 0.206412i
\(120\) 0 0
\(121\) 11.4443 19.8220i 1.04039 1.80200i
\(122\) 0 0
\(123\) −3.15252 6.35600i −0.284253 0.573101i
\(124\) 0 0
\(125\) −28.5237 −2.55124
\(126\) 0 0
\(127\) 4.38363 0.388984 0.194492 0.980904i \(-0.437694\pi\)
0.194492 + 0.980904i \(0.437694\pi\)
\(128\) 0 0
\(129\) 0.298166 0.448454i 0.0262521 0.0394841i
\(130\) 0 0
\(131\) −7.85419 + 13.6039i −0.686224 + 1.18857i 0.286827 + 0.957982i \(0.407400\pi\)
−0.973051 + 0.230592i \(0.925934\pi\)
\(132\) 0 0
\(133\) 2.13797 + 0.548636i 0.185385 + 0.0475728i
\(134\) 0 0
\(135\) 13.9871 16.1717i 1.20382 1.39184i
\(136\) 0 0
\(137\) −15.9901 + 9.23190i −1.36613 + 0.788734i −0.990431 0.138008i \(-0.955930\pi\)
−0.375697 + 0.926743i \(0.622597\pi\)
\(138\) 0 0
\(139\) −3.80522 + 2.19695i −0.322755 + 0.186343i −0.652620 0.757685i \(-0.726330\pi\)
0.329865 + 0.944028i \(0.392997\pi\)
\(140\) 0 0
\(141\) 1.73667 + 0.109840i 0.146254 + 0.00925018i
\(142\) 0 0
\(143\) −8.47837 + 14.6850i −0.708997 + 1.22802i
\(144\) 0 0
\(145\) −7.86898 + 4.54316i −0.653483 + 0.377289i
\(146\) 0 0
\(147\) −0.508542 + 12.1137i −0.0419438 + 0.999120i
\(148\) 0 0
\(149\) 17.7580 + 10.2526i 1.45479 + 0.839922i 0.998747 0.0500363i \(-0.0159337\pi\)
0.456041 + 0.889959i \(0.349267\pi\)
\(150\) 0 0
\(151\) −2.70776 4.68998i −0.220354 0.381665i 0.734561 0.678542i \(-0.237388\pi\)
−0.954916 + 0.296877i \(0.904055\pi\)
\(152\) 0 0
\(153\) −5.74250 + 7.55506i −0.464253 + 0.610790i
\(154\) 0 0
\(155\) 15.0890 + 8.71162i 1.21197 + 0.699734i
\(156\) 0 0
\(157\) 11.2537i 0.898140i 0.893497 + 0.449070i \(0.148245\pi\)
−0.893497 + 0.449070i \(0.851755\pi\)
\(158\) 0 0
\(159\) 3.24437 + 2.15710i 0.257295 + 0.171069i
\(160\) 0 0
\(161\) −5.05227 18.0860i −0.398175 1.42538i
\(162\) 0 0
\(163\) −1.25819 2.17924i −0.0985487 0.170691i 0.812535 0.582912i \(-0.198087\pi\)
−0.911084 + 0.412220i \(0.864753\pi\)
\(164\) 0 0
\(165\) −2.61888 + 41.4069i −0.203879 + 3.22352i
\(166\) 0 0
\(167\) −9.38259 16.2511i −0.726047 1.25755i −0.958542 0.284952i \(-0.908022\pi\)
0.232495 0.972598i \(-0.425311\pi\)
\(168\) 0 0
\(169\) −2.25769 + 3.91043i −0.173668 + 0.300803i
\(170\) 0 0
\(171\) 2.30786 0.968334i 0.176486 0.0740503i
\(172\) 0 0
\(173\) 9.71715 0.738781 0.369391 0.929274i \(-0.379566\pi\)
0.369391 + 0.929274i \(0.379566\pi\)
\(174\) 0 0
\(175\) 7.84683 30.5781i 0.593165 2.31149i
\(176\) 0 0
\(177\) 8.70341 + 0.550468i 0.654189 + 0.0413757i
\(178\) 0 0
\(179\) 9.24569 + 5.33800i 0.691055 + 0.398981i 0.804007 0.594619i \(-0.202697\pi\)
−0.112952 + 0.993600i \(0.536031\pi\)
\(180\) 0 0
\(181\) 4.34901i 0.323259i 0.986851 + 0.161630i \(0.0516750\pi\)
−0.986851 + 0.161630i \(0.948325\pi\)
\(182\) 0 0
\(183\) −0.503295 + 7.95757i −0.0372046 + 0.588240i
\(184\) 0 0
\(185\) 15.0198 1.10427
\(186\) 0 0
\(187\) 18.4145i 1.34660i
\(188\) 0 0
\(189\) 7.83627 + 11.2957i 0.570005 + 0.821641i
\(190\) 0 0
\(191\) 24.7918i 1.79387i −0.442159 0.896937i \(-0.645787\pi\)
0.442159 0.896937i \(-0.354213\pi\)
\(192\) 0 0
\(193\) 26.6512 1.91840 0.959198 0.282736i \(-0.0912419\pi\)
0.959198 + 0.282736i \(0.0912419\pi\)
\(194\) 0 0
\(195\) 1.31040 20.7187i 0.0938400 1.48370i
\(196\) 0 0
\(197\) 6.11068i 0.435368i 0.976019 + 0.217684i \(0.0698502\pi\)
−0.976019 + 0.217684i \(0.930150\pi\)
\(198\) 0 0
\(199\) −0.385220 0.222407i −0.0273075 0.0157660i 0.486284 0.873801i \(-0.338352\pi\)
−0.513592 + 0.858035i \(0.671685\pi\)
\(200\) 0 0
\(201\) −17.2765 1.09269i −1.21859 0.0770727i
\(202\) 0 0
\(203\) −1.57185 5.62688i −0.110322 0.394930i
\(204\) 0 0
\(205\) −16.8553 −1.17723
\(206\) 0 0
\(207\) −16.9518 12.8848i −1.17823 0.895556i
\(208\) 0 0
\(209\) −2.42827 + 4.20588i −0.167967 + 0.290927i
\(210\) 0 0
\(211\) −4.23912 7.34236i −0.291833 0.505469i 0.682410 0.730969i \(-0.260932\pi\)
−0.974243 + 0.225500i \(0.927598\pi\)
\(212\) 0 0
\(213\) −1.24839 + 19.7382i −0.0855382 + 1.35244i
\(214\) 0 0
\(215\) −0.639693 1.10798i −0.0436267 0.0755636i
\(216\) 0 0
\(217\) −7.83710 + 8.00509i −0.532017 + 0.543421i
\(218\) 0 0
\(219\) −5.07953 3.37726i −0.343243 0.228214i
\(220\) 0 0
\(221\) 9.21402i 0.619802i
\(222\) 0 0
\(223\) 7.25738 + 4.19005i 0.485990 + 0.280587i 0.722909 0.690943i \(-0.242804\pi\)
−0.236919 + 0.971529i \(0.576138\pi\)
\(224\) 0 0
\(225\) −13.8495 33.0079i −0.923302 2.20053i
\(226\) 0 0
\(227\) −1.11075 1.92388i −0.0737233 0.127693i 0.826807 0.562486i \(-0.190155\pi\)
−0.900530 + 0.434793i \(0.856822\pi\)
\(228\) 0 0
\(229\) −20.4417 11.8020i −1.35082 0.779898i −0.362458 0.932000i \(-0.618062\pi\)
−0.988365 + 0.152102i \(0.951396\pi\)
\(230\) 0 0
\(231\) −25.3696 8.24870i −1.66920 0.542724i
\(232\) 0 0
\(233\) 6.69275 3.86406i 0.438457 0.253143i −0.264486 0.964390i \(-0.585202\pi\)
0.702943 + 0.711246i \(0.251869\pi\)
\(234\) 0 0
\(235\) 2.06703 3.58020i 0.134838 0.233546i
\(236\) 0 0
\(237\) −2.00293 0.126680i −0.130104 0.00822874i
\(238\) 0 0
\(239\) 16.2873 9.40346i 1.05354 0.608259i 0.129899 0.991527i \(-0.458535\pi\)
0.923637 + 0.383268i \(0.125201\pi\)
\(240\) 0 0
\(241\) 21.5749 12.4563i 1.38976 0.802379i 0.396473 0.918047i \(-0.370234\pi\)
0.993288 + 0.115668i \(0.0369008\pi\)
\(242\) 0 0
\(243\) 14.8175 + 4.84165i 0.950543 + 0.310592i
\(244\) 0 0
\(245\) 25.2447 + 13.8697i 1.61282 + 0.886105i
\(246\) 0 0
\(247\) 1.21503 2.10449i 0.0773104 0.133906i
\(248\) 0 0
\(249\) 14.5318 21.8564i 0.920915 1.38509i
\(250\) 0 0
\(251\) 3.39294 0.214161 0.107080 0.994250i \(-0.465850\pi\)
0.107080 + 0.994250i \(0.465850\pi\)
\(252\) 0 0
\(253\) 41.3177 2.59762
\(254\) 0 0
\(255\) 10.0175 + 20.1970i 0.627322 + 1.26478i
\(256\) 0 0
\(257\) 2.47711 4.29047i 0.154518 0.267632i −0.778366 0.627811i \(-0.783951\pi\)
0.932883 + 0.360179i \(0.117284\pi\)
\(258\) 0 0
\(259\) −2.40046 + 9.35428i −0.149157 + 0.581247i
\(260\) 0 0
\(261\) −5.27400 4.00869i −0.326452 0.248132i
\(262\) 0 0
\(263\) 2.52396 1.45721i 0.155634 0.0898553i −0.420160 0.907450i \(-0.638026\pi\)
0.575794 + 0.817595i \(0.304693\pi\)
\(264\) 0 0
\(265\) 8.01576 4.62790i 0.492404 0.284290i
\(266\) 0 0
\(267\) −7.42320 14.9664i −0.454292 0.915928i
\(268\) 0 0
\(269\) 9.41429 16.3060i 0.573999 0.994196i −0.422150 0.906526i \(-0.638724\pi\)
0.996150 0.0876702i \(-0.0279422\pi\)
\(270\) 0 0
\(271\) −13.6959 + 7.90734i −0.831967 + 0.480336i −0.854526 0.519409i \(-0.826152\pi\)
0.0225585 + 0.999746i \(0.492819\pi\)
\(272\) 0 0
\(273\) 12.6942 + 4.12739i 0.768286 + 0.249801i
\(274\) 0 0
\(275\) 60.1543 + 34.7301i 3.62744 + 2.09430i
\(276\) 0 0
\(277\) 2.45231 + 4.24753i 0.147345 + 0.255209i 0.930245 0.366938i \(-0.119594\pi\)
−0.782900 + 0.622147i \(0.786261\pi\)
\(278\) 0 0
\(279\) −1.60043 + 12.6015i −0.0958150 + 0.754433i
\(280\) 0 0
\(281\) 2.77186 + 1.60034i 0.165355 + 0.0954680i 0.580394 0.814336i \(-0.302899\pi\)
−0.415039 + 0.909804i \(0.636232\pi\)
\(282\) 0 0
\(283\) 5.06740i 0.301226i 0.988593 + 0.150613i \(0.0481247\pi\)
−0.988593 + 0.150613i \(0.951875\pi\)
\(284\) 0 0
\(285\) 0.375309 5.93399i 0.0222314 0.351499i
\(286\) 0 0
\(287\) 2.69382 10.4975i 0.159011 0.619646i
\(288\) 0 0
\(289\) 3.49694 + 6.05687i 0.205702 + 0.356287i
\(290\) 0 0
\(291\) −8.44344 5.61384i −0.494963 0.329089i
\(292\) 0 0
\(293\) 12.3751 + 21.4343i 0.722961 + 1.25221i 0.959808 + 0.280658i \(0.0905527\pi\)
−0.236847 + 0.971547i \(0.576114\pi\)
\(294\) 0 0
\(295\) 10.3590 17.9424i 0.603126 1.04464i
\(296\) 0 0
\(297\) −28.5761 + 9.91942i −1.65816 + 0.575583i
\(298\) 0 0
\(299\) −20.6741 −1.19561
\(300\) 0 0
\(301\) 0.792285 0.221322i 0.0456665 0.0127568i
\(302\) 0 0
\(303\) 4.50429 + 9.08138i 0.258765 + 0.521712i
\(304\) 0 0
\(305\) 16.4048 + 9.47130i 0.939335 + 0.542325i
\(306\) 0 0
\(307\) 19.8011i 1.13011i 0.825054 + 0.565055i \(0.191145\pi\)
−0.825054 + 0.565055i \(0.808855\pi\)
\(308\) 0 0
\(309\) −1.12541 0.748261i −0.0640226 0.0425671i
\(310\) 0 0
\(311\) −12.0490 −0.683235 −0.341617 0.939839i \(-0.610975\pi\)
−0.341617 + 0.939839i \(0.610975\pi\)
\(312\) 0 0
\(313\) 30.0873i 1.70064i −0.526269 0.850318i \(-0.676410\pi\)
0.526269 0.850318i \(-0.323590\pi\)
\(314\) 0 0
\(315\) 32.3127 4.75399i 1.82061 0.267857i
\(316\) 0 0
\(317\) 12.6887i 0.712669i −0.934358 0.356335i \(-0.884026\pi\)
0.934358 0.356335i \(-0.115974\pi\)
\(318\) 0 0
\(319\) 12.8547 0.719724
\(320\) 0 0
\(321\) 12.8204 6.35882i 0.715566 0.354915i
\(322\) 0 0
\(323\) 2.63896i 0.146836i
\(324\) 0 0
\(325\) −30.0993 17.3778i −1.66961 0.963950i
\(326\) 0 0
\(327\) 6.97339 10.4883i 0.385629 0.580002i
\(328\) 0 0
\(329\) 1.89939 + 1.85953i 0.104717 + 0.102519i
\(330\) 0 0
\(331\) −5.90816 −0.324742 −0.162371 0.986730i \(-0.551914\pi\)
−0.162371 + 0.986730i \(0.551914\pi\)
\(332\) 0 0
\(333\) 4.23677 + 10.0976i 0.232174 + 0.553346i
\(334\) 0 0
\(335\) −20.5629 + 35.6161i −1.12347 + 1.94591i
\(336\) 0 0
\(337\) −10.5675 18.3034i −0.575647 0.997051i −0.995971 0.0896763i \(-0.971417\pi\)
0.420323 0.907374i \(-0.361917\pi\)
\(338\) 0 0
\(339\) −28.8138 + 14.2914i −1.56495 + 0.776201i
\(340\) 0 0
\(341\) −12.3246 21.3468i −0.667414 1.15599i
\(342\) 0 0
\(343\) −12.6727 + 13.5057i −0.684259 + 0.729239i
\(344\) 0 0
\(345\) −45.3172 + 22.4769i −2.43980 + 1.21012i
\(346\) 0 0
\(347\) 29.5975i 1.58888i −0.607344 0.794439i \(-0.707765\pi\)
0.607344 0.794439i \(-0.292235\pi\)
\(348\) 0 0
\(349\) 6.60232 + 3.81185i 0.353414 + 0.204044i 0.666188 0.745784i \(-0.267925\pi\)
−0.312774 + 0.949828i \(0.601258\pi\)
\(350\) 0 0
\(351\) 14.2986 4.96336i 0.763202 0.264925i
\(352\) 0 0
\(353\) 5.24727 + 9.08854i 0.279284 + 0.483734i 0.971207 0.238237i \(-0.0765695\pi\)
−0.691923 + 0.721971i \(0.743236\pi\)
\(354\) 0 0
\(355\) 40.6909 + 23.4929i 2.15965 + 1.24687i
\(356\) 0 0
\(357\) −14.1796 + 3.01102i −0.750467 + 0.159360i
\(358\) 0 0
\(359\) −4.65028 + 2.68484i −0.245432 + 0.141700i −0.617671 0.786437i \(-0.711924\pi\)
0.372239 + 0.928137i \(0.378590\pi\)
\(360\) 0 0
\(361\) −9.15201 + 15.8517i −0.481685 + 0.834302i
\(362\) 0 0
\(363\) 21.9496 33.0131i 1.15206 1.73274i
\(364\) 0 0
\(365\) −12.5498 + 7.24566i −0.656889 + 0.379255i
\(366\) 0 0
\(367\) 9.61757 5.55271i 0.502033 0.289849i −0.227520 0.973773i \(-0.573062\pi\)
0.729553 + 0.683925i \(0.239728\pi\)
\(368\) 0 0
\(369\) −4.75454 11.3316i −0.247512 0.589901i
\(370\) 0 0
\(371\) 1.60117 + 5.73184i 0.0831286 + 0.297582i
\(372\) 0 0
\(373\) 17.7021 30.6610i 0.916580 1.58756i 0.112010 0.993707i \(-0.464271\pi\)
0.804571 0.593857i \(-0.202395\pi\)
\(374\) 0 0
\(375\) −49.3059 3.11847i −2.54615 0.161037i
\(376\) 0 0
\(377\) −6.43208 −0.331269
\(378\) 0 0
\(379\) −26.5906 −1.36587 −0.682933 0.730481i \(-0.739296\pi\)
−0.682933 + 0.730481i \(0.739296\pi\)
\(380\) 0 0
\(381\) 7.57753 + 0.479259i 0.388209 + 0.0245532i
\(382\) 0 0
\(383\) −12.2956 + 21.2967i −0.628277 + 1.08821i 0.359620 + 0.933099i \(0.382906\pi\)
−0.987897 + 0.155110i \(0.950427\pi\)
\(384\) 0 0
\(385\) −44.3363 + 45.2866i −2.25958 + 2.30802i
\(386\) 0 0
\(387\) 0.564438 0.742597i 0.0286920 0.0377483i
\(388\) 0 0
\(389\) 16.5400 9.54936i 0.838611 0.484172i −0.0181812 0.999835i \(-0.505788\pi\)
0.856792 + 0.515663i \(0.172454\pi\)
\(390\) 0 0
\(391\) 19.4435 11.2257i 0.983298 0.567708i
\(392\) 0 0
\(393\) −15.0640 + 22.6569i −0.759880 + 1.14289i
\(394\) 0 0
\(395\) −2.38394 + 4.12910i −0.119949 + 0.207757i
\(396\) 0 0
\(397\) 17.8857 10.3263i 0.897655 0.518261i 0.0212165 0.999775i \(-0.493246\pi\)
0.876439 + 0.481513i \(0.159913\pi\)
\(398\) 0 0
\(399\) 3.63570 + 1.18211i 0.182013 + 0.0591797i
\(400\) 0 0
\(401\) −13.3677 7.71786i −0.667553 0.385412i 0.127596 0.991826i \(-0.459274\pi\)
−0.795149 + 0.606414i \(0.792607\pi\)
\(402\) 0 0
\(403\) 6.16683 + 10.6813i 0.307192 + 0.532072i
\(404\) 0 0
\(405\) 25.9461 26.4251i 1.28927 1.31307i
\(406\) 0 0
\(407\) −18.4021 10.6244i −0.912157 0.526634i
\(408\) 0 0
\(409\) 18.6613i 0.922741i −0.887208 0.461370i \(-0.847358\pi\)
0.887208 0.461370i \(-0.152642\pi\)
\(410\) 0 0
\(411\) −28.6498 + 14.2100i −1.41319 + 0.700930i
\(412\) 0 0
\(413\) 9.51889 + 9.31914i 0.468394 + 0.458565i
\(414\) 0 0
\(415\) −31.1769 53.9999i −1.53041 2.65075i
\(416\) 0 0
\(417\) −6.81789 + 3.38161i −0.333874 + 0.165598i
\(418\) 0 0
\(419\) −14.3576 24.8681i −0.701414 1.21488i −0.967970 0.251065i \(-0.919219\pi\)
0.266557 0.963819i \(-0.414114\pi\)
\(420\) 0 0
\(421\) 12.8338 22.2287i 0.625479 1.08336i −0.362969 0.931801i \(-0.618237\pi\)
0.988448 0.151560i \(-0.0484296\pi\)
\(422\) 0 0
\(423\) 2.98999 + 0.379737i 0.145379 + 0.0184635i
\(424\) 0 0
\(425\) 37.7436 1.83083
\(426\) 0 0
\(427\) −8.52053 + 8.70317i −0.412337 + 0.421176i
\(428\) 0 0
\(429\) −16.2612 + 24.4575i −0.785097 + 1.18082i
\(430\) 0 0
\(431\) 17.0243 + 9.82896i 0.820030 + 0.473444i 0.850427 0.526094i \(-0.176344\pi\)
−0.0303970 + 0.999538i \(0.509677\pi\)
\(432\) 0 0
\(433\) 7.07732i 0.340114i 0.985434 + 0.170057i \(0.0543952\pi\)
−0.985434 + 0.170057i \(0.945605\pi\)
\(434\) 0 0
\(435\) −14.0990 + 6.99298i −0.675995 + 0.335288i
\(436\) 0 0
\(437\) −5.92120 −0.283250
\(438\) 0 0
\(439\) 19.4414i 0.927889i −0.885864 0.463945i \(-0.846434\pi\)
0.885864 0.463945i \(-0.153566\pi\)
\(440\) 0 0
\(441\) −2.20344 + 20.8841i −0.104926 + 0.994480i
\(442\) 0 0
\(443\) 34.5199i 1.64009i 0.572299 + 0.820045i \(0.306052\pi\)
−0.572299 + 0.820045i \(0.693948\pi\)
\(444\) 0 0
\(445\) −39.6889 −1.88144
\(446\) 0 0
\(447\) 29.5754 + 19.6640i 1.39887 + 0.930076i
\(448\) 0 0
\(449\) 10.9491i 0.516720i 0.966049 + 0.258360i \(0.0831821\pi\)
−0.966049 + 0.258360i \(0.916818\pi\)
\(450\) 0 0
\(451\) 20.6510 + 11.9228i 0.972417 + 0.561425i
\(452\) 0 0
\(453\) −4.16787 8.40312i −0.195824 0.394813i
\(454\) 0 0
\(455\) 22.1845 22.6600i 1.04002 1.06232i
\(456\) 0 0
\(457\) −19.1923 −0.897776 −0.448888 0.893588i \(-0.648180\pi\)
−0.448888 + 0.893588i \(0.648180\pi\)
\(458\) 0 0
\(459\) −10.7524 + 12.4318i −0.501881 + 0.580268i
\(460\) 0 0
\(461\) −16.2492 + 28.1444i −0.756799 + 1.31081i 0.187676 + 0.982231i \(0.439905\pi\)
−0.944475 + 0.328584i \(0.893429\pi\)
\(462\) 0 0
\(463\) 13.9136 + 24.0991i 0.646621 + 1.11998i 0.983924 + 0.178585i \(0.0571519\pi\)
−0.337303 + 0.941396i \(0.609515\pi\)
\(464\) 0 0
\(465\) 25.1303 + 16.7085i 1.16539 + 0.774840i
\(466\) 0 0
\(467\) 0.0869153 + 0.150542i 0.00402196 + 0.00696624i 0.868029 0.496513i \(-0.165386\pi\)
−0.864007 + 0.503479i \(0.832053\pi\)
\(468\) 0 0
\(469\) −18.8953 18.4987i −0.872502 0.854192i
\(470\) 0 0
\(471\) −1.23035 + 19.4530i −0.0566917 + 0.896349i
\(472\) 0 0
\(473\) 1.80998i 0.0832232i
\(474\) 0 0
\(475\) −8.62066 4.97714i −0.395543 0.228367i
\(476\) 0 0
\(477\) 5.37237 + 4.08346i 0.245984 + 0.186969i
\(478\) 0 0
\(479\) −1.46598 2.53915i −0.0669822 0.116017i 0.830589 0.556885i \(-0.188004\pi\)
−0.897572 + 0.440869i \(0.854670\pi\)
\(480\) 0 0
\(481\) 9.20782 + 5.31614i 0.419840 + 0.242395i
\(482\) 0 0
\(483\) −6.75601 31.8158i −0.307409 1.44767i
\(484\) 0 0
\(485\) −20.8610 + 12.0441i −0.947247 + 0.546893i
\(486\) 0 0
\(487\) 18.7014 32.3917i 0.847440 1.46781i −0.0360460 0.999350i \(-0.511476\pi\)
0.883486 0.468458i \(-0.155190\pi\)
\(488\) 0 0
\(489\) −1.93664 3.90459i −0.0875780 0.176572i
\(490\) 0 0
\(491\) −7.27844 + 4.20221i −0.328472 + 0.189643i −0.655162 0.755488i \(-0.727400\pi\)
0.326691 + 0.945131i \(0.394066\pi\)
\(492\) 0 0
\(493\) 6.04921 3.49251i 0.272443 0.157295i
\(494\) 0 0
\(495\) −9.05397 + 71.2896i −0.406946 + 3.20423i
\(496\) 0 0
\(497\) −21.1346 + 21.5876i −0.948015 + 0.968336i
\(498\) 0 0
\(499\) 0.0176239 0.0305256i 0.000788956 0.00136651i −0.865631 0.500683i \(-0.833082\pi\)
0.866420 + 0.499317i \(0.166416\pi\)
\(500\) 0 0
\(501\) −14.4420 29.1174i −0.645221 1.30087i
\(502\) 0 0
\(503\) 14.9085 0.664736 0.332368 0.943150i \(-0.392152\pi\)
0.332368 + 0.943150i \(0.392152\pi\)
\(504\) 0 0
\(505\) 24.0827 1.07166
\(506\) 0 0
\(507\) −4.33016 + 6.51273i −0.192309 + 0.289241i
\(508\) 0 0
\(509\) −7.20640 + 12.4818i −0.319418 + 0.553248i −0.980367 0.197183i \(-0.936821\pi\)
0.660949 + 0.750431i \(0.270154\pi\)
\(510\) 0 0
\(511\) −2.50687 8.97403i −0.110897 0.396988i
\(512\) 0 0
\(513\) 4.09522 1.42154i 0.180808 0.0627627i
\(514\) 0 0
\(515\) −2.78053 + 1.60534i −0.122525 + 0.0707397i
\(516\) 0 0
\(517\) −5.06501 + 2.92429i −0.222759 + 0.128610i
\(518\) 0 0
\(519\) 16.7970 + 1.06237i 0.737308 + 0.0466328i
\(520\) 0 0
\(521\) 10.4159 18.0409i 0.456330 0.790386i −0.542434 0.840098i \(-0.682497\pi\)
0.998764 + 0.0497124i \(0.0158305\pi\)
\(522\) 0 0
\(523\) 12.6684 7.31408i 0.553949 0.319822i −0.196764 0.980451i \(-0.563043\pi\)
0.750713 + 0.660628i \(0.229710\pi\)
\(524\) 0 0
\(525\) 16.9071 51.9993i 0.737886 2.26944i
\(526\) 0 0
\(527\) −11.5995 6.69698i −0.505282 0.291725i
\(528\) 0 0
\(529\) 13.6878 + 23.7079i 0.595121 + 1.03078i
\(530\) 0 0
\(531\) 14.9845 + 1.90307i 0.650272 + 0.0825864i
\(532\) 0 0
\(533\) −10.3331 5.96582i −0.447576 0.258408i
\(534\) 0 0
\(535\) 33.9981i 1.46987i
\(536\) 0 0
\(537\) 15.3985 + 10.2381i 0.664493 + 0.441806i
\(538\) 0 0
\(539\) −21.1186 34.8503i −0.909643 1.50111i
\(540\) 0 0
\(541\) 3.60713 + 6.24773i 0.155083 + 0.268611i 0.933089 0.359645i \(-0.117102\pi\)
−0.778006 + 0.628256i \(0.783769\pi\)
\(542\) 0 0
\(543\) −0.475473 + 7.51768i −0.0204045 + 0.322615i
\(544\) 0 0
\(545\) −14.9609 25.9130i −0.640854 1.10999i
\(546\) 0 0
\(547\) 3.81987 6.61620i 0.163326 0.282888i −0.772734 0.634730i \(-0.781111\pi\)
0.936059 + 0.351842i \(0.114445\pi\)
\(548\) 0 0
\(549\) −1.73999 + 13.7004i −0.0742609 + 0.584719i
\(550\) 0 0
\(551\) −1.84219 −0.0784801
\(552\) 0 0
\(553\) −2.19060 2.14462i −0.0931536 0.0911987i
\(554\) 0 0
\(555\) 25.9631 + 1.64210i 1.10207 + 0.0697032i
\(556\) 0 0
\(557\) 8.13965 + 4.69943i 0.344888 + 0.199121i 0.662432 0.749122i \(-0.269525\pi\)
−0.317543 + 0.948244i \(0.602858\pi\)
\(558\) 0 0
\(559\) 0.905659i 0.0383053i
\(560\) 0 0
\(561\) 2.01324 31.8312i 0.0849990 1.34391i
\(562\) 0 0
\(563\) 4.12705 0.173934 0.0869671 0.996211i \(-0.472282\pi\)
0.0869671 + 0.996211i \(0.472282\pi\)
\(564\) 0 0
\(565\) 76.4104i 3.21461i
\(566\) 0 0
\(567\) 12.3108 + 20.3824i 0.517005 + 0.855982i
\(568\) 0 0
\(569\) 18.2143i 0.763583i −0.924248 0.381792i \(-0.875307\pi\)
0.924248 0.381792i \(-0.124693\pi\)
\(570\) 0 0
\(571\) −45.1826 −1.89083 −0.945417 0.325864i \(-0.894345\pi\)
−0.945417 + 0.325864i \(0.894345\pi\)
\(572\) 0 0
\(573\) 2.71047 42.8551i 0.113231 1.79030i
\(574\) 0 0
\(575\) 84.6876i 3.53172i
\(576\) 0 0
\(577\) 7.04322 + 4.06641i 0.293213 + 0.169287i 0.639390 0.768883i \(-0.279187\pi\)
−0.346177 + 0.938169i \(0.612520\pi\)
\(578\) 0 0
\(579\) 46.0692 + 2.91375i 1.91457 + 0.121091i
\(580\) 0 0
\(581\) 38.6138 10.7866i 1.60197 0.447505i
\(582\) 0 0
\(583\) −13.0945 −0.542317
\(584\) 0 0
\(585\) 4.53032 35.6710i 0.187306 1.47482i
\(586\) 0 0
\(587\) −12.4379 + 21.5430i −0.513366 + 0.889175i 0.486514 + 0.873673i \(0.338268\pi\)
−0.999880 + 0.0155026i \(0.995065\pi\)
\(588\) 0 0
\(589\) 1.76622 + 3.05919i 0.0727760 + 0.126052i
\(590\) 0 0
\(591\) −0.668075 + 10.5629i −0.0274809 + 0.434499i
\(592\) 0 0
\(593\) 15.6229 + 27.0596i 0.641554 + 1.11120i 0.985086 + 0.172063i \(0.0550432\pi\)
−0.343532 + 0.939141i \(0.611623\pi\)
\(594\) 0 0
\(595\) −8.55993 + 33.3570i −0.350923 + 1.36750i
\(596\) 0 0
\(597\) −0.641575 0.426568i −0.0262579 0.0174583i
\(598\) 0 0
\(599\) 6.39849i 0.261435i 0.991420 + 0.130718i \(0.0417281\pi\)
−0.991420 + 0.130718i \(0.958272\pi\)
\(600\) 0 0
\(601\) −36.0541 20.8158i −1.47068 0.849095i −0.471218 0.882017i \(-0.656186\pi\)
−0.999458 + 0.0329215i \(0.989519\pi\)
\(602\) 0 0
\(603\) −29.7447 3.77765i −1.21130 0.153838i
\(604\) 0 0
\(605\) −47.0913 81.5645i −1.91453 3.31607i
\(606\) 0 0
\(607\) −21.7167 12.5381i −0.881452 0.508907i −0.0103153 0.999947i \(-0.503284\pi\)
−0.871137 + 0.491040i \(0.836617\pi\)
\(608\) 0 0
\(609\) −2.10192 9.89846i −0.0851739 0.401106i
\(610\) 0 0
\(611\) 2.53437 1.46322i 0.102530 0.0591956i
\(612\) 0 0
\(613\) 15.3779 26.6352i 0.621106 1.07579i −0.368174 0.929757i \(-0.620017\pi\)
0.989280 0.146030i \(-0.0466497\pi\)
\(614\) 0 0
\(615\) −29.1360 1.84278i −1.17488 0.0743079i
\(616\) 0 0
\(617\) −10.1910 + 5.88375i −0.410272 + 0.236871i −0.690907 0.722944i \(-0.742788\pi\)
0.280634 + 0.959815i \(0.409455\pi\)
\(618\) 0 0
\(619\) 6.14617 3.54849i 0.247035 0.142626i −0.371371 0.928485i \(-0.621112\pi\)
0.618406 + 0.785859i \(0.287779\pi\)
\(620\) 0 0
\(621\) −27.8941 24.1259i −1.11935 0.968141i
\(622\) 0 0
\(623\) 6.34309 24.7182i 0.254131 0.990315i
\(624\) 0 0
\(625\) −28.8554 + 49.9791i −1.15422 + 1.99916i
\(626\) 0 0
\(627\) −4.65732 + 7.00479i −0.185995 + 0.279744i
\(628\) 0 0
\(629\) −11.5463 −0.460381
\(630\) 0 0
\(631\) 13.0686 0.520252 0.260126 0.965575i \(-0.416236\pi\)
0.260126 + 0.965575i \(0.416236\pi\)
\(632\) 0 0
\(633\) −6.52499 13.1554i −0.259345 0.522882i
\(634\) 0 0
\(635\) 9.01897 15.6213i 0.357907 0.619913i
\(636\) 0 0
\(637\) 10.5671 + 17.4380i 0.418683 + 0.690918i
\(638\) 0 0
\(639\) −4.31592 + 33.9829i −0.170735 + 1.34434i
\(640\) 0 0
\(641\) 10.9219 6.30573i 0.431387 0.249062i −0.268550 0.963266i \(-0.586545\pi\)
0.699937 + 0.714204i \(0.253211\pi\)
\(642\) 0 0
\(643\) −12.3449 + 7.12736i −0.486837 + 0.281076i −0.723261 0.690574i \(-0.757358\pi\)
0.236424 + 0.971650i \(0.424025\pi\)
\(644\) 0 0
\(645\) −0.984636 1.98519i −0.0387700 0.0781667i
\(646\) 0 0
\(647\) 20.0060 34.6515i 0.786519 1.36229i −0.141569 0.989928i \(-0.545215\pi\)
0.928088 0.372362i \(-0.121452\pi\)
\(648\) 0 0
\(649\) −25.3836 + 14.6552i −0.996392 + 0.575267i
\(650\) 0 0
\(651\) −14.4224 + 12.9808i −0.565258 + 0.508756i
\(652\) 0 0
\(653\) −12.6726 7.31656i −0.495919 0.286319i 0.231108 0.972928i \(-0.425765\pi\)
−0.727027 + 0.686609i \(0.759098\pi\)
\(654\) 0 0
\(655\) 32.3187 + 55.9777i 1.26280 + 2.18723i
\(656\) 0 0
\(657\) −8.41123 6.39326i −0.328153 0.249425i
\(658\) 0 0
\(659\) −23.7553 13.7151i −0.925374 0.534265i −0.0400285 0.999199i \(-0.512745\pi\)
−0.885346 + 0.464934i \(0.846078\pi\)
\(660\) 0 0
\(661\) 35.6097i 1.38506i 0.721391 + 0.692528i \(0.243503\pi\)
−0.721391 + 0.692528i \(0.756497\pi\)
\(662\) 0 0
\(663\) −1.00736 + 15.9273i −0.0391227 + 0.618566i
\(664\) 0 0
\(665\) 6.35379 6.48998i 0.246389 0.251671i
\(666\) 0 0
\(667\) 7.83637 + 13.5730i 0.303426 + 0.525548i
\(668\) 0 0
\(669\) 12.0870 + 8.03635i 0.467310 + 0.310703i
\(670\) 0 0
\(671\) −13.3993 23.2083i −0.517275 0.895947i
\(672\) 0 0
\(673\) 6.35937 11.0147i 0.245136 0.424587i −0.717034 0.697038i \(-0.754501\pi\)
0.962170 + 0.272451i \(0.0878342\pi\)
\(674\) 0 0
\(675\) −20.3315 58.5716i −0.782560 2.25442i
\(676\) 0 0
\(677\) 28.0556 1.07826 0.539131 0.842222i \(-0.318753\pi\)
0.539131 + 0.842222i \(0.318753\pi\)
\(678\) 0 0
\(679\) −4.16703 14.9171i −0.159916 0.572464i
\(680\) 0 0
\(681\) −1.70971 3.44705i −0.0655162 0.132091i
\(682\) 0 0
\(683\) 14.4564 + 8.34638i 0.553157 + 0.319365i 0.750394 0.660990i \(-0.229864\pi\)
−0.197237 + 0.980356i \(0.563197\pi\)
\(684\) 0 0
\(685\) 75.9756i 2.90288i
\(686\) 0 0
\(687\) −34.0451 22.6358i −1.29890 0.863608i
\(688\) 0 0
\(689\) 6.55205 0.249613
\(690\) 0 0
\(691\) 30.4437i 1.15813i −0.815281 0.579066i \(-0.803417\pi\)
0.815281 0.579066i \(-0.196583\pi\)
\(692\) 0 0
\(693\) −42.9520 17.0323i −1.63161 0.647004i
\(694\) 0 0
\(695\) 18.0802i 0.685820i
\(696\) 0 0
\(697\) 12.9574 0.490795
\(698\) 0 0
\(699\) 11.9915 5.94769i 0.453561 0.224962i
\(700\) 0 0
\(701\) 6.16940i 0.233015i −0.993190 0.116507i \(-0.962830\pi\)
0.993190 0.116507i \(-0.0371699\pi\)
\(702\) 0 0
\(703\) 2.63719 + 1.52258i 0.0994633 + 0.0574252i
\(704\) 0 0
\(705\) 3.96448 5.96274i 0.149311 0.224570i
\(706\) 0 0
\(707\) −3.84890 + 14.9987i −0.144753 + 0.564082i
\(708\) 0 0
\(709\) 25.4973 0.957572 0.478786 0.877932i \(-0.341077\pi\)
0.478786 + 0.877932i \(0.341077\pi\)
\(710\) 0 0
\(711\) −3.44840 0.437957i −0.129325 0.0164247i
\(712\) 0 0
\(713\) 15.0264 26.0265i 0.562744 0.974702i
\(714\) 0 0
\(715\) 34.8871 + 60.4263i 1.30471 + 2.25982i
\(716\) 0 0
\(717\) 29.1822 14.4741i 1.08983 0.540546i
\(718\) 0 0
\(719\) −12.1263 21.0034i −0.452236 0.783296i 0.546289 0.837597i \(-0.316040\pi\)
−0.998525 + 0.0543012i \(0.982707\pi\)
\(720\) 0 0
\(721\) −0.555418 1.98827i −0.0206849 0.0740472i
\(722\) 0 0
\(723\) 38.6561 19.1731i 1.43764 0.713055i
\(724\) 0 0
\(725\) 26.3478i 0.978534i
\(726\) 0 0
\(727\) 13.5251 + 7.80870i 0.501617 + 0.289609i 0.729381 0.684108i \(-0.239808\pi\)
−0.227764 + 0.973716i \(0.573141\pi\)
\(728\) 0 0
\(729\) 25.0842 + 9.98925i 0.929043 + 0.369972i
\(730\) 0 0
\(731\) 0.491758 + 0.851750i 0.0181883 + 0.0315031i
\(732\) 0 0
\(733\) 30.9202 + 17.8518i 1.14206 + 0.659371i 0.946941 0.321408i \(-0.104156\pi\)
0.195123 + 0.980779i \(0.437489\pi\)
\(734\) 0 0
\(735\) 42.1215 + 26.7352i 1.55368 + 0.986141i
\(736\) 0 0
\(737\) 50.3871 29.0910i 1.85603 1.07158i
\(738\) 0 0
\(739\) 7.27883 12.6073i 0.267756 0.463767i −0.700526 0.713627i \(-0.747051\pi\)
0.968282 + 0.249860i \(0.0803846\pi\)
\(740\) 0 0
\(741\) 2.33038 3.50498i 0.0856085 0.128759i
\(742\) 0 0
\(743\) 0.0287226 0.0165830i 0.00105373 0.000608372i −0.499473 0.866329i \(-0.666473\pi\)
0.500527 + 0.865721i \(0.333140\pi\)
\(744\) 0 0
\(745\) 73.0711 42.1876i 2.67712 1.54564i
\(746\) 0 0
\(747\) 27.5091 36.1921i 1.00651 1.32420i
\(748\) 0 0
\(749\) 21.1740 + 5.43359i 0.773681 + 0.198539i
\(750\) 0 0
\(751\) −11.8949 + 20.6027i −0.434053 + 0.751801i −0.997218 0.0745430i \(-0.976250\pi\)
0.563165 + 0.826344i \(0.309584\pi\)
\(752\) 0 0
\(753\) 5.86503 + 0.370948i 0.213734 + 0.0135181i
\(754\) 0 0
\(755\) −22.2840 −0.810998
\(756\) 0 0
\(757\) −33.2060 −1.20689 −0.603446 0.797404i \(-0.706206\pi\)
−0.603446 + 0.797404i \(0.706206\pi\)
\(758\) 0 0
\(759\) 71.4217 + 4.51723i 2.59244 + 0.163965i
\(760\) 0 0
\(761\) −21.2837 + 36.8645i −0.771535 + 1.33634i 0.165187 + 0.986262i \(0.447177\pi\)
−0.936722 + 0.350075i \(0.886156\pi\)
\(762\) 0 0
\(763\) 18.5296 5.17620i 0.670818 0.187391i
\(764\) 0 0
\(765\) 15.1081 + 36.0076i 0.546236 + 1.30186i
\(766\) 0 0
\(767\) 12.7011 7.33301i 0.458612 0.264780i
\(768\) 0 0
\(769\) −27.1091 + 15.6514i −0.977578 + 0.564405i −0.901538 0.432700i \(-0.857561\pi\)
−0.0760402 + 0.997105i \(0.524228\pi\)
\(770\) 0 0
\(771\) 4.75099 7.14568i 0.171103 0.257345i
\(772\) 0 0
\(773\) −0.165130 + 0.286014i −0.00593932 + 0.0102872i −0.868980 0.494848i \(-0.835224\pi\)
0.863040 + 0.505135i \(0.168557\pi\)
\(774\) 0 0
\(775\) 43.7539 25.2613i 1.57168 0.907413i
\(776\) 0 0
\(777\) −5.17212 + 15.9073i −0.185549 + 0.570673i
\(778\) 0 0
\(779\) −2.95947 1.70865i −0.106034 0.0612188i
\(780\) 0 0
\(781\) −33.2361 57.5666i −1.18928 2.05990i
\(782\) 0 0
\(783\) −8.67835 7.50601i −0.310139 0.268243i
\(784\) 0 0
\(785\) 40.1031 + 23.1535i 1.43134 + 0.826384i
\(786\) 0 0
\(787\) 7.50934i 0.267679i −0.991003 0.133840i \(-0.957269\pi\)
0.991003 0.133840i \(-0.0427307\pi\)
\(788\) 0 0
\(789\) 4.52222 2.24298i 0.160995 0.0798523i
\(790\) 0 0
\(791\) −47.5883 12.2119i −1.69205 0.434206i
\(792\) 0 0
\(793\) 6.70460 + 11.6127i 0.238087 + 0.412379i
\(794\) 0 0
\(795\) 14.3620 7.12342i 0.509367 0.252642i
\(796\) 0 0
\(797\) −3.58136 6.20310i −0.126858 0.219725i 0.795600 0.605823i \(-0.207156\pi\)
−0.922458 + 0.386098i \(0.873823\pi\)
\(798\) 0 0
\(799\) −1.58901 + 2.75225i −0.0562151 + 0.0973675i
\(800\) 0 0
\(801\) −11.1955 26.6824i −0.395572 0.942777i
\(802\) 0 0
\(803\) 20.5013 0.723475
\(804\) 0 0
\(805\) −74.8451 19.2065i −2.63794 0.676939i
\(806\) 0 0
\(807\) 18.0562 27.1573i 0.635610 0.955982i
\(808\) 0 0
\(809\) −39.9767 23.0806i −1.40551 0.811469i −0.410556 0.911836i \(-0.634665\pi\)
−0.994951 + 0.100366i \(0.967999\pi\)
\(810\) 0 0
\(811\) 22.8560i 0.802581i −0.915951 0.401290i \(-0.868562\pi\)
0.915951 0.401290i \(-0.131438\pi\)
\(812\) 0 0
\(813\) −24.5392 + 12.1712i −0.860628 + 0.426864i
\(814\) 0 0
\(815\) −10.3545 −0.362701
\(816\) 0 0
\(817\) 0.259387i 0.00907481i
\(818\) 0 0
\(819\) 21.4918 + 8.52243i 0.750986 + 0.297798i
\(820\) 0 0
\(821\) 1.91410i 0.0668026i −0.999442 0.0334013i \(-0.989366\pi\)
0.999442 0.0334013i \(-0.0106339\pi\)
\(822\) 0 0
\(823\) −15.0947 −0.526168 −0.263084 0.964773i \(-0.584740\pi\)
−0.263084 + 0.964773i \(0.584740\pi\)
\(824\) 0 0
\(825\) 100.186 + 66.6110i 3.48801 + 2.31910i
\(826\) 0 0
\(827\) 14.4077i 0.501004i −0.968116 0.250502i \(-0.919404\pi\)
0.968116 0.250502i \(-0.0805956\pi\)
\(828\) 0 0
\(829\) −37.1450 21.4457i −1.29010 0.744840i −0.311429 0.950270i \(-0.600807\pi\)
−0.978672 + 0.205430i \(0.934141\pi\)
\(830\) 0 0
\(831\) 3.77468 + 7.61037i 0.130942 + 0.264001i
\(832\) 0 0
\(833\) −19.4066 10.6622i −0.672400 0.369424i
\(834\) 0 0
\(835\) −77.2157 −2.67216
\(836\) 0 0
\(837\) −4.14420 + 21.6080i −0.143245 + 0.746880i
\(838\) 0 0
\(839\) 12.5327 21.7073i 0.432678 0.749421i −0.564425 0.825485i \(-0.690902\pi\)
0.997103 + 0.0760639i \(0.0242353\pi\)
\(840\) 0 0
\(841\) −12.0620 20.8919i −0.415930 0.720412i
\(842\) 0 0
\(843\) 4.61647 + 3.06938i 0.159000 + 0.105715i
\(844\) 0 0
\(845\) 9.29003 + 16.0908i 0.319587 + 0.553541i
\(846\) 0 0
\(847\) 58.3244 16.2927i 2.00405 0.559825i
\(848\) 0 0
\(849\) −0.554015 + 8.75950i −0.0190137 + 0.300625i
\(850\) 0 0
\(851\) 25.9072i 0.888086i
\(852\) 0 0
\(853\) 14.9013 + 8.60328i 0.510211 + 0.294571i 0.732920 0.680314i \(-0.238157\pi\)
−0.222709 + 0.974885i \(0.571490\pi\)
\(854\) 0 0
\(855\) 1.29752 10.2164i 0.0443741 0.349395i
\(856\) 0 0
\(857\) 24.3484 + 42.1727i 0.831726 + 1.44059i 0.896669 + 0.442702i \(0.145980\pi\)
−0.0649433 + 0.997889i \(0.520687\pi\)
\(858\) 0 0
\(859\) −2.68282 1.54893i −0.0915366 0.0528487i 0.453533 0.891239i \(-0.350163\pi\)
−0.545070 + 0.838391i \(0.683497\pi\)
\(860\) 0 0
\(861\) 5.80420 17.8514i 0.197807 0.608373i
\(862\) 0 0
\(863\) −22.2443 + 12.8427i −0.757203 + 0.437172i −0.828291 0.560299i \(-0.810686\pi\)
0.0710874 + 0.997470i \(0.477353\pi\)
\(864\) 0 0
\(865\) 19.9923 34.6276i 0.679757 1.17737i
\(866\) 0 0
\(867\) 5.38260 + 10.8522i 0.182803 + 0.368560i
\(868\) 0 0
\(869\) 5.84156 3.37262i 0.198161 0.114408i
\(870\) 0 0
\(871\) −25.2121 + 14.5562i −0.854280 + 0.493219i
\(872\) 0 0
\(873\) −13.9815 10.6272i −0.473204 0.359676i
\(874\) 0 0
\(875\) −53.9257 52.7941i −1.82302 1.78477i
\(876\) 0 0
\(877\) −0.626626 + 1.08535i −0.0211597 + 0.0366496i −0.876411 0.481563i \(-0.840069\pi\)
0.855252 + 0.518213i \(0.173403\pi\)
\(878\) 0 0
\(879\) 19.0482 + 38.4042i 0.642479 + 1.29534i
\(880\) 0 0
\(881\) −18.7429 −0.631464 −0.315732 0.948848i \(-0.602250\pi\)
−0.315732 + 0.948848i \(0.602250\pi\)
\(882\) 0 0
\(883\) 39.3701 1.32491 0.662454 0.749103i \(-0.269515\pi\)
0.662454 + 0.749103i \(0.269515\pi\)
\(884\) 0 0
\(885\) 19.8682 29.8826i 0.667862 1.00449i
\(886\) 0 0
\(887\) −18.5954 + 32.2083i −0.624374 + 1.08145i 0.364288 + 0.931286i \(0.381313\pi\)
−0.988662 + 0.150161i \(0.952021\pi\)
\(888\) 0 0
\(889\) 8.28752 + 8.11360i 0.277955 + 0.272122i
\(890\) 0 0
\(891\) −50.4811 + 14.0225i −1.69118 + 0.469771i
\(892\) 0 0
\(893\) 0.725863 0.419077i 0.0242901 0.0140239i
\(894\) 0 0
\(895\) 38.0445 21.9650i 1.27169 0.734210i
\(896\) 0 0
\(897\) −35.7372 2.26028i −1.19323 0.0754686i
\(898\) 0 0
\(899\) 4.67499 8.09732i 0.155920 0.270061i
\(900\) 0 0
\(901\) −6.16204 + 3.55766i −0.205287 + 0.118523i
\(902\) 0 0
\(903\) 1.39374 0.295957i 0.0463807 0.00984883i
\(904\) 0 0
\(905\) 15.4979 + 8.94774i 0.515169 + 0.297433i
\(906\) 0 0
\(907\) 15.4295 + 26.7247i 0.512328 + 0.887378i 0.999898 + 0.0142940i \(0.00455008\pi\)
−0.487570 + 0.873084i \(0.662117\pi\)
\(908\) 0 0
\(909\) 6.79324 + 16.1905i 0.225317 + 0.537005i
\(910\) 0 0
\(911\) −14.7486 8.51511i −0.488643 0.282118i 0.235368 0.971906i \(-0.424370\pi\)
−0.724011 + 0.689788i \(0.757704\pi\)
\(912\) 0 0
\(913\) 88.2136i 2.91945i
\(914\) 0 0
\(915\) 27.3218 + 18.1656i 0.903229 + 0.600536i
\(916\) 0 0
\(917\) −40.0280 + 11.1817i −1.32184 + 0.369252i
\(918\) 0 0
\(919\) −8.44635 14.6295i −0.278619 0.482583i 0.692422 0.721492i \(-0.256543\pi\)
−0.971042 + 0.238909i \(0.923210\pi\)
\(920\) 0 0
\(921\) −2.16484 + 34.2281i −0.0713339 + 1.12786i
\(922\) 0 0
\(923\) 16.6303 + 28.8045i 0.547393 + 0.948112i
\(924\) 0 0
\(925\) 21.7766 37.7182i 0.716010 1.24017i
\(926\) 0 0
\(927\) −1.86358 1.41648i −0.0612081 0.0465234i
\(928\) 0 0
\(929\) −6.79356 −0.222889 −0.111445 0.993771i \(-0.535548\pi\)
−0.111445 + 0.993771i \(0.535548\pi\)
\(930\) 0 0
\(931\) 3.02649 + 4.99436i 0.0991892 + 0.163684i
\(932\) 0 0
\(933\) −20.8278 1.31730i −0.681872 0.0431266i
\(934\) 0 0
\(935\) −65.6210 37.8863i −2.14604 1.23901i
\(936\) 0 0
\(937\) 5.14535i 0.168091i −0.996462 0.0840456i \(-0.973216\pi\)
0.996462 0.0840456i \(-0.0267841\pi\)
\(938\) 0 0
\(939\) 3.28942 52.0088i 0.107346 1.69724i
\(940\) 0 0
\(941\) 0.920907 0.0300207 0.0150104 0.999887i \(-0.495222\pi\)
0.0150104 + 0.999887i \(0.495222\pi\)
\(942\) 0 0
\(943\) 29.0733i 0.946756i
\(944\) 0 0
\(945\) 56.3754 4.68501i 1.83389 0.152403i
\(946\) 0 0
\(947\) 24.4835i 0.795606i 0.917471 + 0.397803i \(0.130227\pi\)
−0.917471 + 0.397803i \(0.869773\pi\)
\(948\) 0 0
\(949\) −10.2582 −0.332995
\(950\) 0 0
\(951\) 1.38725 21.9337i 0.0449846 0.711248i
\(952\) 0 0
\(953\) 9.80916i 0.317750i 0.987299 + 0.158875i \(0.0507866\pi\)
−0.987299 + 0.158875i \(0.949213\pi\)
\(954\) 0 0
\(955\) −88.3471 51.0072i −2.85884 1.65055i
\(956\) 0 0
\(957\) 22.2206 + 1.40539i 0.718289 + 0.0454299i
\(958\) 0 0
\(959\) −47.3175 12.1424i −1.52796 0.392099i
\(960\) 0 0
\(961\) 13.0712 0.421651
\(962\) 0 0
\(963\) 22.8565 9.59019i 0.736542 0.309040i
\(964\) 0 0
\(965\) 54.8327 94.9731i 1.76513 3.05729i
\(966\) 0 0
\(967\) −18.1376 31.4152i −0.583264 1.01024i −0.995089 0.0989807i \(-0.968442\pi\)
0.411825 0.911263i \(-0.364892\pi\)
\(968\) 0 0
\(969\) −0.288515 + 4.56170i −0.00926845 + 0.146543i
\(970\) 0 0
\(971\) 1.09772 + 1.90130i 0.0352274 + 0.0610157i 0.883102 0.469182i \(-0.155451\pi\)
−0.847874 + 0.530198i \(0.822118\pi\)
\(972\) 0 0
\(973\) −11.2603 2.88958i −0.360989 0.0926356i
\(974\) 0 0
\(975\) −50.1297 33.3300i −1.60543 1.06742i
\(976\) 0 0
\(977\) 42.7181i 1.36667i 0.730103 + 0.683337i \(0.239472\pi\)
−0.730103 + 0.683337i \(0.760528\pi\)
\(978\) 0 0
\(979\) 48.6266 + 28.0746i 1.55411 + 0.897267i
\(980\) 0 0
\(981\) 13.2009 17.3676i 0.421471 0.554504i
\(982\) 0 0
\(983\) 22.8781 + 39.6260i 0.729698 + 1.26387i 0.957011 + 0.290052i \(0.0936727\pi\)
−0.227313 + 0.973822i \(0.572994\pi\)
\(984\) 0 0
\(985\) 21.7757 + 12.5722i 0.693832 + 0.400584i
\(986\) 0 0
\(987\) 3.07998 + 3.42204i 0.0980368 + 0.108925i
\(988\) 0 0
\(989\) −1.91113 + 1.10339i −0.0607703 + 0.0350857i
\(990\) 0 0
\(991\) −8.30690 + 14.3880i −0.263877 + 0.457049i −0.967269 0.253754i \(-0.918335\pi\)
0.703392 + 0.710803i \(0.251668\pi\)
\(992\) 0 0
\(993\) −10.2128 0.645934i −0.324094 0.0204981i
\(994\) 0 0
\(995\) −1.58512 + 0.915169i −0.0502517 + 0.0290128i
\(996\) 0 0
\(997\) −18.6045 + 10.7413i −0.589210 + 0.340181i −0.764785 0.644285i \(-0.777155\pi\)
0.175575 + 0.984466i \(0.443822\pi\)
\(998\) 0 0
\(999\) 6.21971 + 17.9179i 0.196783 + 0.566897i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.bs.a.353.23 yes 48
3.2 odd 2 1512.2.bs.a.521.1 48
4.3 odd 2 1008.2.ca.e.353.2 48
7.5 odd 6 504.2.cx.a.425.17 yes 48
9.4 even 3 1512.2.cx.a.17.1 48
9.5 odd 6 504.2.cx.a.185.17 yes 48
12.11 even 2 3024.2.ca.e.2033.1 48
21.5 even 6 1512.2.cx.a.89.1 48
28.19 even 6 1008.2.df.e.929.8 48
36.23 even 6 1008.2.df.e.689.8 48
36.31 odd 6 3024.2.df.e.17.1 48
63.5 even 6 inner 504.2.bs.a.257.23 48
63.40 odd 6 1512.2.bs.a.1097.1 48
84.47 odd 6 3024.2.df.e.1601.1 48
252.103 even 6 3024.2.ca.e.2609.1 48
252.131 odd 6 1008.2.ca.e.257.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.23 48 63.5 even 6 inner
504.2.bs.a.353.23 yes 48 1.1 even 1 trivial
504.2.cx.a.185.17 yes 48 9.5 odd 6
504.2.cx.a.425.17 yes 48 7.5 odd 6
1008.2.ca.e.257.2 48 252.131 odd 6
1008.2.ca.e.353.2 48 4.3 odd 2
1008.2.df.e.689.8 48 36.23 even 6
1008.2.df.e.929.8 48 28.19 even 6
1512.2.bs.a.521.1 48 3.2 odd 2
1512.2.bs.a.1097.1 48 63.40 odd 6
1512.2.cx.a.17.1 48 9.4 even 3
1512.2.cx.a.89.1 48 21.5 even 6
3024.2.ca.e.2033.1 48 12.11 even 2
3024.2.ca.e.2609.1 48 252.103 even 6
3024.2.df.e.17.1 48 36.31 odd 6
3024.2.df.e.1601.1 48 84.47 odd 6