Properties

Label 1008.2.df.e.929.22
Level $1008$
Weight $2$
Character 1008.929
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 929.22
Character \(\chi\) \(=\) 1008.929
Dual form 1008.2.df.e.689.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67230 + 0.451026i) q^{3} -0.203178 q^{5} +(1.27132 - 2.32029i) q^{7} +(2.59315 + 1.50850i) q^{9} +4.46863i q^{11} +(1.25586 - 0.725070i) q^{13} +(-0.339774 - 0.0916388i) q^{15} +(-1.60586 - 2.78143i) q^{17} +(6.20156 + 3.58047i) q^{19} +(3.17254 - 3.30681i) q^{21} -1.26655i q^{23} -4.95872 q^{25} +(3.65614 + 3.69224i) q^{27} +(-0.944433 - 0.545269i) q^{29} +(5.60021 + 3.23328i) q^{31} +(-2.01547 + 7.47288i) q^{33} +(-0.258305 + 0.471432i) q^{35} +(3.02855 - 5.24561i) q^{37} +(2.42719 - 0.646106i) q^{39} +(-0.370687 - 0.642048i) q^{41} +(4.69802 - 8.13721i) q^{43} +(-0.526872 - 0.306494i) q^{45} +(0.0465845 + 0.0806866i) q^{47} +(-3.76748 - 5.89967i) q^{49} +(-1.43098 - 5.37566i) q^{51} +(9.35260 - 5.39973i) q^{53} -0.907929i q^{55} +(8.75596 + 8.78468i) q^{57} +(-5.16447 + 8.94512i) q^{59} +(-7.34727 + 4.24195i) q^{61} +(6.79689 - 4.09907i) q^{63} +(-0.255163 + 0.147318i) q^{65} +(-4.02663 + 6.97432i) q^{67} +(0.571249 - 2.11805i) q^{69} +15.6777i q^{71} +(0.984428 - 0.568360i) q^{73} +(-8.29245 - 2.23651i) q^{75} +(10.3685 + 5.68108i) q^{77} +(-5.86893 - 10.1653i) q^{79} +(4.44886 + 7.82353i) q^{81} +(2.29931 - 3.98252i) q^{83} +(0.326276 + 0.565127i) q^{85} +(-1.33344 - 1.33782i) q^{87} +(-3.52692 + 6.10881i) q^{89} +(-0.0857700 - 3.83575i) q^{91} +(7.90692 + 7.93285i) q^{93} +(-1.26002 - 0.727474i) q^{95} +(-3.17914 - 1.83548i) q^{97} +(-6.74093 + 11.5878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.67230 + 0.451026i 0.965501 + 0.260400i
\(4\) 0 0
\(5\) −0.203178 −0.0908641 −0.0454320 0.998967i \(-0.514466\pi\)
−0.0454320 + 0.998967i \(0.514466\pi\)
\(6\) 0 0
\(7\) 1.27132 2.32029i 0.480515 0.876987i
\(8\) 0 0
\(9\) 2.59315 + 1.50850i 0.864383 + 0.502833i
\(10\) 0 0
\(11\) 4.46863i 1.34734i 0.739031 + 0.673672i \(0.235284\pi\)
−0.739031 + 0.673672i \(0.764716\pi\)
\(12\) 0 0
\(13\) 1.25586 0.725070i 0.348312 0.201098i −0.315629 0.948883i \(-0.602216\pi\)
0.663942 + 0.747784i \(0.268882\pi\)
\(14\) 0 0
\(15\) −0.339774 0.0916388i −0.0877293 0.0236610i
\(16\) 0 0
\(17\) −1.60586 2.78143i −0.389478 0.674596i 0.602901 0.797816i \(-0.294011\pi\)
−0.992379 + 0.123220i \(0.960678\pi\)
\(18\) 0 0
\(19\) 6.20156 + 3.58047i 1.42274 + 0.821417i 0.996532 0.0832106i \(-0.0265174\pi\)
0.426203 + 0.904627i \(0.359851\pi\)
\(20\) 0 0
\(21\) 3.17254 3.30681i 0.692305 0.721605i
\(22\) 0 0
\(23\) 1.26655i 0.264095i −0.991243 0.132047i \(-0.957845\pi\)
0.991243 0.132047i \(-0.0421551\pi\)
\(24\) 0 0
\(25\) −4.95872 −0.991744
\(26\) 0 0
\(27\) 3.65614 + 3.69224i 0.703625 + 0.710572i
\(28\) 0 0
\(29\) −0.944433 0.545269i −0.175377 0.101254i 0.409742 0.912202i \(-0.365619\pi\)
−0.585119 + 0.810948i \(0.698952\pi\)
\(30\) 0 0
\(31\) 5.60021 + 3.23328i 1.00583 + 0.580715i 0.909967 0.414680i \(-0.136106\pi\)
0.0958603 + 0.995395i \(0.469440\pi\)
\(32\) 0 0
\(33\) −2.01547 + 7.47288i −0.350849 + 1.30086i
\(34\) 0 0
\(35\) −0.258305 + 0.471432i −0.0436616 + 0.0796866i
\(36\) 0 0
\(37\) 3.02855 5.24561i 0.497891 0.862373i −0.502106 0.864806i \(-0.667441\pi\)
0.999997 + 0.00243316i \(0.000774500\pi\)
\(38\) 0 0
\(39\) 2.42719 0.646106i 0.388662 0.103460i
\(40\) 0 0
\(41\) −0.370687 0.642048i −0.0578915 0.100271i 0.835627 0.549297i \(-0.185104\pi\)
−0.893519 + 0.449026i \(0.851771\pi\)
\(42\) 0 0
\(43\) 4.69802 8.13721i 0.716442 1.24091i −0.245959 0.969280i \(-0.579103\pi\)
0.962401 0.271633i \(-0.0875638\pi\)
\(44\) 0 0
\(45\) −0.526872 0.306494i −0.0785414 0.0456895i
\(46\) 0 0
\(47\) 0.0465845 + 0.0806866i 0.00679504 + 0.0117694i 0.869403 0.494104i \(-0.164504\pi\)
−0.862608 + 0.505873i \(0.831170\pi\)
\(48\) 0 0
\(49\) −3.76748 5.89967i −0.538211 0.842810i
\(50\) 0 0
\(51\) −1.43098 5.37566i −0.200377 0.752744i
\(52\) 0 0
\(53\) 9.35260 5.39973i 1.28468 0.741710i 0.306979 0.951716i \(-0.400682\pi\)
0.977700 + 0.210007i \(0.0673486\pi\)
\(54\) 0 0
\(55\) 0.907929i 0.122425i
\(56\) 0 0
\(57\) 8.75596 + 8.78468i 1.15976 + 1.16356i
\(58\) 0 0
\(59\) −5.16447 + 8.94512i −0.672356 + 1.16456i 0.304878 + 0.952392i \(0.401384\pi\)
−0.977234 + 0.212164i \(0.931949\pi\)
\(60\) 0 0
\(61\) −7.34727 + 4.24195i −0.940722 + 0.543126i −0.890186 0.455596i \(-0.849426\pi\)
−0.0505352 + 0.998722i \(0.516093\pi\)
\(62\) 0 0
\(63\) 6.79689 4.09907i 0.856327 0.516434i
\(64\) 0 0
\(65\) −0.255163 + 0.147318i −0.0316491 + 0.0182726i
\(66\) 0 0
\(67\) −4.02663 + 6.97432i −0.491931 + 0.852049i −0.999957 0.00929244i \(-0.997042\pi\)
0.508026 + 0.861342i \(0.330375\pi\)
\(68\) 0 0
\(69\) 0.571249 2.11805i 0.0687703 0.254983i
\(70\) 0 0
\(71\) 15.6777i 1.86060i 0.366802 + 0.930299i \(0.380453\pi\)
−0.366802 + 0.930299i \(0.619547\pi\)
\(72\) 0 0
\(73\) 0.984428 0.568360i 0.115219 0.0665215i −0.441283 0.897368i \(-0.645477\pi\)
0.556502 + 0.830846i \(0.312143\pi\)
\(74\) 0 0
\(75\) −8.29245 2.23651i −0.957529 0.258250i
\(76\) 0 0
\(77\) 10.3685 + 5.68108i 1.18160 + 0.647419i
\(78\) 0 0
\(79\) −5.86893 10.1653i −0.660306 1.14368i −0.980535 0.196344i \(-0.937093\pi\)
0.320229 0.947340i \(-0.396240\pi\)
\(80\) 0 0
\(81\) 4.44886 + 7.82353i 0.494317 + 0.869281i
\(82\) 0 0
\(83\) 2.29931 3.98252i 0.252382 0.437139i −0.711799 0.702383i \(-0.752119\pi\)
0.964181 + 0.265245i \(0.0854527\pi\)
\(84\) 0 0
\(85\) 0.326276 + 0.565127i 0.0353896 + 0.0612966i
\(86\) 0 0
\(87\) −1.33344 1.33782i −0.142960 0.143429i
\(88\) 0 0
\(89\) −3.52692 + 6.10881i −0.373853 + 0.647532i −0.990155 0.139978i \(-0.955297\pi\)
0.616302 + 0.787510i \(0.288630\pi\)
\(90\) 0 0
\(91\) −0.0857700 3.83575i −0.00899114 0.402096i
\(92\) 0 0
\(93\) 7.90692 + 7.93285i 0.819909 + 0.822598i
\(94\) 0 0
\(95\) −1.26002 0.727474i −0.129276 0.0746373i
\(96\) 0 0
\(97\) −3.17914 1.83548i −0.322793 0.186365i 0.329844 0.944036i \(-0.393004\pi\)
−0.652637 + 0.757671i \(0.726337\pi\)
\(98\) 0 0
\(99\) −6.74093 + 11.5878i −0.677489 + 1.16462i
\(100\) 0 0
\(101\) −13.1682 −1.31029 −0.655143 0.755505i \(-0.727391\pi\)
−0.655143 + 0.755505i \(0.727391\pi\)
\(102\) 0 0
\(103\) 13.5351i 1.33365i −0.745214 0.666826i \(-0.767653\pi\)
0.745214 0.666826i \(-0.232347\pi\)
\(104\) 0 0
\(105\) −0.644591 + 0.671872i −0.0629057 + 0.0655680i
\(106\) 0 0
\(107\) −13.0095 7.51105i −1.25768 0.726121i −0.285056 0.958511i \(-0.592012\pi\)
−0.972623 + 0.232390i \(0.925345\pi\)
\(108\) 0 0
\(109\) 2.72560 + 4.72088i 0.261065 + 0.452178i 0.966525 0.256571i \(-0.0825928\pi\)
−0.705460 + 0.708750i \(0.749260\pi\)
\(110\) 0 0
\(111\) 7.43055 7.40626i 0.705277 0.702971i
\(112\) 0 0
\(113\) −6.03027 + 3.48158i −0.567280 + 0.327519i −0.756062 0.654500i \(-0.772879\pi\)
0.188782 + 0.982019i \(0.439546\pi\)
\(114\) 0 0
\(115\) 0.257336i 0.0239967i
\(116\) 0 0
\(117\) 4.35039 + 0.0142461i 0.402194 + 0.00131705i
\(118\) 0 0
\(119\) −8.49529 + 0.189961i −0.778762 + 0.0174137i
\(120\) 0 0
\(121\) −8.96868 −0.815335
\(122\) 0 0
\(123\) −0.330317 1.24088i −0.0297837 0.111887i
\(124\) 0 0
\(125\) 2.02340 0.180978
\(126\) 0 0
\(127\) −2.68718 −0.238448 −0.119224 0.992867i \(-0.538041\pi\)
−0.119224 + 0.992867i \(0.538041\pi\)
\(128\) 0 0
\(129\) 11.5266 11.4889i 1.01486 1.01154i
\(130\) 0 0
\(131\) −6.13987 −0.536443 −0.268222 0.963357i \(-0.586436\pi\)
−0.268222 + 0.963357i \(0.586436\pi\)
\(132\) 0 0
\(133\) 16.1919 9.83747i 1.40402 0.853017i
\(134\) 0 0
\(135\) −0.742849 0.750183i −0.0639342 0.0645654i
\(136\) 0 0
\(137\) 4.28221i 0.365854i 0.983127 + 0.182927i \(0.0585571\pi\)
−0.983127 + 0.182927i \(0.941443\pi\)
\(138\) 0 0
\(139\) −3.43981 + 1.98597i −0.291761 + 0.168448i −0.638736 0.769426i \(-0.720542\pi\)
0.346975 + 0.937874i \(0.387209\pi\)
\(140\) 0 0
\(141\) 0.0415112 + 0.155943i 0.00349587 + 0.0131328i
\(142\) 0 0
\(143\) 3.24007 + 5.61197i 0.270948 + 0.469296i
\(144\) 0 0
\(145\) 0.191888 + 0.110787i 0.0159355 + 0.00920034i
\(146\) 0 0
\(147\) −3.63943 11.5652i −0.300175 0.953884i
\(148\) 0 0
\(149\) 4.63300i 0.379550i −0.981828 0.189775i \(-0.939224\pi\)
0.981828 0.189775i \(-0.0607759\pi\)
\(150\) 0 0
\(151\) 15.6948 1.27722 0.638612 0.769529i \(-0.279509\pi\)
0.638612 + 0.769529i \(0.279509\pi\)
\(152\) 0 0
\(153\) 0.0315517 9.63511i 0.00255081 0.778953i
\(154\) 0 0
\(155\) −1.13784 0.656933i −0.0913936 0.0527661i
\(156\) 0 0
\(157\) −6.55598 3.78510i −0.523224 0.302084i 0.215029 0.976608i \(-0.431016\pi\)
−0.738253 + 0.674524i \(0.764349\pi\)
\(158\) 0 0
\(159\) 18.0757 4.81167i 1.43350 0.381591i
\(160\) 0 0
\(161\) −2.93877 1.61020i −0.231607 0.126901i
\(162\) 0 0
\(163\) 3.97454 6.88410i 0.311310 0.539204i −0.667337 0.744756i \(-0.732566\pi\)
0.978646 + 0.205552i \(0.0658990\pi\)
\(164\) 0 0
\(165\) 0.409500 1.51833i 0.0318795 0.118202i
\(166\) 0 0
\(167\) −1.72342 2.98506i −0.133363 0.230991i 0.791608 0.611029i \(-0.209244\pi\)
−0.924971 + 0.380038i \(0.875911\pi\)
\(168\) 0 0
\(169\) −5.44855 + 9.43716i −0.419119 + 0.725936i
\(170\) 0 0
\(171\) 10.6804 + 18.6398i 0.816753 + 1.42542i
\(172\) 0 0
\(173\) −7.21800 12.5019i −0.548775 0.950505i −0.998359 0.0572675i \(-0.981761\pi\)
0.449584 0.893238i \(-0.351572\pi\)
\(174\) 0 0
\(175\) −6.30413 + 11.5057i −0.476548 + 0.869746i
\(176\) 0 0
\(177\) −12.6710 + 12.6296i −0.952411 + 0.949297i
\(178\) 0 0
\(179\) 19.7102 11.3797i 1.47321 0.850558i 0.473665 0.880705i \(-0.342931\pi\)
0.999545 + 0.0301471i \(0.00959757\pi\)
\(180\) 0 0
\(181\) 8.95105i 0.665326i −0.943046 0.332663i \(-0.892053\pi\)
0.943046 0.332663i \(-0.107947\pi\)
\(182\) 0 0
\(183\) −14.2000 + 3.77998i −1.04970 + 0.279424i
\(184\) 0 0
\(185\) −0.615337 + 1.06579i −0.0452404 + 0.0783587i
\(186\) 0 0
\(187\) 12.4292 7.17600i 0.908913 0.524761i
\(188\) 0 0
\(189\) 13.2152 3.78928i 0.961264 0.275629i
\(190\) 0 0
\(191\) −21.2572 + 12.2729i −1.53812 + 0.888033i −0.539170 + 0.842197i \(0.681262\pi\)
−0.998949 + 0.0458359i \(0.985405\pi\)
\(192\) 0 0
\(193\) −2.28259 + 3.95356i −0.164305 + 0.284584i −0.936408 0.350913i \(-0.885871\pi\)
0.772104 + 0.635497i \(0.219205\pi\)
\(194\) 0 0
\(195\) −0.493153 + 0.131275i −0.0353154 + 0.00940078i
\(196\) 0 0
\(197\) 12.1315i 0.864333i −0.901794 0.432166i \(-0.857749\pi\)
0.901794 0.432166i \(-0.142251\pi\)
\(198\) 0 0
\(199\) −12.8273 + 7.40587i −0.909306 + 0.524988i −0.880208 0.474589i \(-0.842597\pi\)
−0.0290981 + 0.999577i \(0.509264\pi\)
\(200\) 0 0
\(201\) −9.87932 + 9.84702i −0.696834 + 0.694555i
\(202\) 0 0
\(203\) −2.46586 + 1.49814i −0.173070 + 0.105149i
\(204\) 0 0
\(205\) 0.0753154 + 0.130450i 0.00526026 + 0.00911104i
\(206\) 0 0
\(207\) 1.91059 3.28436i 0.132796 0.228279i
\(208\) 0 0
\(209\) −15.9998 + 27.7125i −1.10673 + 1.91691i
\(210\) 0 0
\(211\) 3.77116 + 6.53184i 0.259617 + 0.449670i 0.966139 0.258021i \(-0.0830703\pi\)
−0.706522 + 0.707691i \(0.749737\pi\)
\(212\) 0 0
\(213\) −7.07105 + 26.2177i −0.484500 + 1.79641i
\(214\) 0 0
\(215\) −0.954536 + 1.65331i −0.0650988 + 0.112754i
\(216\) 0 0
\(217\) 14.6218 8.88356i 0.992594 0.603055i
\(218\) 0 0
\(219\) 1.90260 0.506463i 0.128566 0.0342236i
\(220\) 0 0
\(221\) −4.03346 2.32872i −0.271320 0.156647i
\(222\) 0 0
\(223\) −25.2846 14.5980i −1.69318 0.977557i −0.951924 0.306334i \(-0.900898\pi\)
−0.741255 0.671224i \(-0.765769\pi\)
\(224\) 0 0
\(225\) −12.8587 7.48023i −0.857247 0.498682i
\(226\) 0 0
\(227\) −29.1575 −1.93525 −0.967625 0.252391i \(-0.918783\pi\)
−0.967625 + 0.252391i \(0.918783\pi\)
\(228\) 0 0
\(229\) 17.4121i 1.15062i −0.817934 0.575312i \(-0.804881\pi\)
0.817934 0.575312i \(-0.195119\pi\)
\(230\) 0 0
\(231\) 14.7769 + 14.1769i 0.972250 + 0.932773i
\(232\) 0 0
\(233\) 14.3517 + 8.28596i 0.940212 + 0.542831i 0.890027 0.455908i \(-0.150686\pi\)
0.0501850 + 0.998740i \(0.484019\pi\)
\(234\) 0 0
\(235\) −0.00946495 0.0163938i −0.000617425 0.00106941i
\(236\) 0 0
\(237\) −5.22978 19.6464i −0.339711 1.27617i
\(238\) 0 0
\(239\) 8.45527 4.88165i 0.546926 0.315768i −0.200955 0.979600i \(-0.564405\pi\)
0.747881 + 0.663833i \(0.231071\pi\)
\(240\) 0 0
\(241\) 10.8582i 0.699437i −0.936855 0.349719i \(-0.886277\pi\)
0.936855 0.349719i \(-0.113723\pi\)
\(242\) 0 0
\(243\) 3.91119 + 15.0898i 0.250903 + 0.968012i
\(244\) 0 0
\(245\) 0.765469 + 1.19869i 0.0489040 + 0.0765812i
\(246\) 0 0
\(247\) 10.3844 0.660741
\(248\) 0 0
\(249\) 5.64135 5.62291i 0.357506 0.356337i
\(250\) 0 0
\(251\) 27.4155 1.73045 0.865224 0.501385i \(-0.167176\pi\)
0.865224 + 0.501385i \(0.167176\pi\)
\(252\) 0 0
\(253\) 5.65976 0.355826
\(254\) 0 0
\(255\) 0.290743 + 1.09222i 0.0182070 + 0.0683974i
\(256\) 0 0
\(257\) −27.3169 −1.70398 −0.851989 0.523559i \(-0.824604\pi\)
−0.851989 + 0.523559i \(0.824604\pi\)
\(258\) 0 0
\(259\) −8.32106 13.6960i −0.517045 0.851027i
\(260\) 0 0
\(261\) −1.62652 2.83864i −0.100679 0.175708i
\(262\) 0 0
\(263\) 13.8160i 0.851928i 0.904740 + 0.425964i \(0.140065\pi\)
−0.904740 + 0.425964i \(0.859935\pi\)
\(264\) 0 0
\(265\) −1.90025 + 1.09711i −0.116731 + 0.0673948i
\(266\) 0 0
\(267\) −8.65329 + 8.62500i −0.529573 + 0.527841i
\(268\) 0 0
\(269\) 10.7471 + 18.6145i 0.655260 + 1.13494i 0.981828 + 0.189770i \(0.0607744\pi\)
−0.326568 + 0.945174i \(0.605892\pi\)
\(270\) 0 0
\(271\) −27.2614 15.7394i −1.65601 0.956101i −0.974527 0.224271i \(-0.928000\pi\)
−0.681488 0.731829i \(-0.738667\pi\)
\(272\) 0 0
\(273\) 1.58659 6.45319i 0.0960249 0.390565i
\(274\) 0 0
\(275\) 22.1587i 1.33622i
\(276\) 0 0
\(277\) −11.8408 −0.711445 −0.355722 0.934592i \(-0.615765\pi\)
−0.355722 + 0.934592i \(0.615765\pi\)
\(278\) 0 0
\(279\) 9.64478 + 16.8323i 0.577418 + 1.00772i
\(280\) 0 0
\(281\) −19.4588 11.2346i −1.16082 0.670198i −0.209317 0.977848i \(-0.567124\pi\)
−0.951500 + 0.307650i \(0.900457\pi\)
\(282\) 0 0
\(283\) 1.17672 + 0.679378i 0.0699486 + 0.0403848i 0.534566 0.845126i \(-0.320475\pi\)
−0.464618 + 0.885511i \(0.653808\pi\)
\(284\) 0 0
\(285\) −1.77902 1.78486i −0.105380 0.105726i
\(286\) 0 0
\(287\) −1.96100 + 0.0438493i −0.115754 + 0.00258834i
\(288\) 0 0
\(289\) 3.34242 5.78925i 0.196613 0.340544i
\(290\) 0 0
\(291\) −4.48862 4.50334i −0.263128 0.263991i
\(292\) 0 0
\(293\) −8.10060 14.0307i −0.473242 0.819680i 0.526289 0.850306i \(-0.323583\pi\)
−0.999531 + 0.0306263i \(0.990250\pi\)
\(294\) 0 0
\(295\) 1.04931 1.81745i 0.0610931 0.105816i
\(296\) 0 0
\(297\) −16.4993 + 16.3380i −0.957384 + 0.948025i
\(298\) 0 0
\(299\) −0.918339 1.59061i −0.0531089 0.0919873i
\(300\) 0 0
\(301\) −12.9080 21.2458i −0.744003 1.22459i
\(302\) 0 0
\(303\) −22.0211 5.93921i −1.26508 0.341199i
\(304\) 0 0
\(305\) 1.49281 0.861872i 0.0854778 0.0493506i
\(306\) 0 0
\(307\) 9.22930i 0.526744i 0.964694 + 0.263372i \(0.0848346\pi\)
−0.964694 + 0.263372i \(0.915165\pi\)
\(308\) 0 0
\(309\) 6.10468 22.6347i 0.347283 1.28764i
\(310\) 0 0
\(311\) 0.313334 0.542711i 0.0177676 0.0307743i −0.857005 0.515308i \(-0.827677\pi\)
0.874772 + 0.484534i \(0.161011\pi\)
\(312\) 0 0
\(313\) −4.43528 + 2.56071i −0.250697 + 0.144740i −0.620083 0.784536i \(-0.712901\pi\)
0.369387 + 0.929276i \(0.379568\pi\)
\(314\) 0 0
\(315\) −1.38098 + 0.832841i −0.0778094 + 0.0469253i
\(316\) 0 0
\(317\) −3.62803 + 2.09464i −0.203770 + 0.117647i −0.598413 0.801188i \(-0.704202\pi\)
0.394643 + 0.918835i \(0.370868\pi\)
\(318\) 0 0
\(319\) 2.43661 4.22033i 0.136424 0.236293i
\(320\) 0 0
\(321\) −18.3681 18.4283i −1.02521 1.02857i
\(322\) 0 0
\(323\) 22.9990i 1.27970i
\(324\) 0 0
\(325\) −6.22744 + 3.59542i −0.345436 + 0.199438i
\(326\) 0 0
\(327\) 2.42877 + 9.12403i 0.134311 + 0.504560i
\(328\) 0 0
\(329\) 0.246440 0.00551057i 0.0135867 0.000303808i
\(330\) 0 0
\(331\) 12.9710 + 22.4664i 0.712949 + 1.23486i 0.963745 + 0.266824i \(0.0859741\pi\)
−0.250797 + 0.968040i \(0.580693\pi\)
\(332\) 0 0
\(333\) 15.7665 9.03408i 0.863999 0.495065i
\(334\) 0 0
\(335\) 0.818123 1.41703i 0.0446989 0.0774207i
\(336\) 0 0
\(337\) 8.40130 + 14.5515i 0.457648 + 0.792669i 0.998836 0.0482321i \(-0.0153587\pi\)
−0.541188 + 0.840901i \(0.682025\pi\)
\(338\) 0 0
\(339\) −11.6547 + 3.10242i −0.632996 + 0.168500i
\(340\) 0 0
\(341\) −14.4484 + 25.0253i −0.782423 + 1.35520i
\(342\) 0 0
\(343\) −18.4786 + 1.24124i −0.997752 + 0.0670206i
\(344\) 0 0
\(345\) −0.116065 + 0.430342i −0.00624875 + 0.0231688i
\(346\) 0 0
\(347\) 25.0574 + 14.4669i 1.34515 + 0.776624i 0.987558 0.157253i \(-0.0502639\pi\)
0.357594 + 0.933877i \(0.383597\pi\)
\(348\) 0 0
\(349\) 20.7481 + 11.9789i 1.11062 + 0.641217i 0.938990 0.343944i \(-0.111763\pi\)
0.171630 + 0.985161i \(0.445097\pi\)
\(350\) 0 0
\(351\) 7.26872 + 1.98597i 0.387976 + 0.106003i
\(352\) 0 0
\(353\) 15.5894 0.829743 0.414871 0.909880i \(-0.363827\pi\)
0.414871 + 0.909880i \(0.363827\pi\)
\(354\) 0 0
\(355\) 3.18536i 0.169062i
\(356\) 0 0
\(357\) −14.2923 3.51393i −0.756430 0.185977i
\(358\) 0 0
\(359\) 11.7053 + 6.75809i 0.617785 + 0.356678i 0.776006 0.630726i \(-0.217243\pi\)
−0.158221 + 0.987404i \(0.550576\pi\)
\(360\) 0 0
\(361\) 16.1396 + 27.9545i 0.849451 + 1.47129i
\(362\) 0 0
\(363\) −14.9983 4.04511i −0.787207 0.212313i
\(364\) 0 0
\(365\) −0.200014 + 0.115478i −0.0104692 + 0.00604442i
\(366\) 0 0
\(367\) 19.1785i 1.00111i 0.865705 + 0.500554i \(0.166870\pi\)
−0.865705 + 0.500554i \(0.833130\pi\)
\(368\) 0 0
\(369\) 0.00728320 2.22411i 0.000379148 0.115782i
\(370\) 0 0
\(371\) −0.638745 28.5655i −0.0331620 1.48305i
\(372\) 0 0
\(373\) 2.53539 0.131278 0.0656388 0.997843i \(-0.479091\pi\)
0.0656388 + 0.997843i \(0.479091\pi\)
\(374\) 0 0
\(375\) 3.38372 + 0.912605i 0.174734 + 0.0471267i
\(376\) 0 0
\(377\) −1.58143 −0.0814479
\(378\) 0 0
\(379\) −6.11511 −0.314112 −0.157056 0.987590i \(-0.550200\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(380\) 0 0
\(381\) −4.49375 1.21199i −0.230222 0.0620920i
\(382\) 0 0
\(383\) −5.67449 −0.289953 −0.144976 0.989435i \(-0.546311\pi\)
−0.144976 + 0.989435i \(0.546311\pi\)
\(384\) 0 0
\(385\) −2.10666 1.15427i −0.107365 0.0588271i
\(386\) 0 0
\(387\) 24.4577 14.0141i 1.24325 0.712374i
\(388\) 0 0
\(389\) 7.88653i 0.399863i 0.979810 + 0.199932i \(0.0640720\pi\)
−0.979810 + 0.199932i \(0.935928\pi\)
\(390\) 0 0
\(391\) −3.52283 + 2.03391i −0.178157 + 0.102859i
\(392\) 0 0
\(393\) −10.2677 2.76925i −0.517936 0.139690i
\(394\) 0 0
\(395\) 1.19244 + 2.06536i 0.0599981 + 0.103920i
\(396\) 0 0
\(397\) 10.2548 + 5.92061i 0.514674 + 0.297147i 0.734753 0.678335i \(-0.237298\pi\)
−0.220079 + 0.975482i \(0.570632\pi\)
\(398\) 0 0
\(399\) 31.5146 9.14818i 1.57771 0.457982i
\(400\) 0 0
\(401\) 38.1732i 1.90628i −0.302534 0.953139i \(-0.597832\pi\)
0.302534 0.953139i \(-0.402168\pi\)
\(402\) 0 0
\(403\) 9.37742 0.467123
\(404\) 0 0
\(405\) −0.903911 1.58957i −0.0449157 0.0789865i
\(406\) 0 0
\(407\) 23.4407 + 13.5335i 1.16191 + 0.670831i
\(408\) 0 0
\(409\) 11.2828 + 6.51411i 0.557897 + 0.322102i 0.752301 0.658820i \(-0.228944\pi\)
−0.194404 + 0.980922i \(0.562277\pi\)
\(410\) 0 0
\(411\) −1.93139 + 7.16112i −0.0952684 + 0.353232i
\(412\) 0 0
\(413\) 14.1896 + 23.3552i 0.698222 + 1.14923i
\(414\) 0 0
\(415\) −0.467170 + 0.809162i −0.0229325 + 0.0397202i
\(416\) 0 0
\(417\) −6.64811 + 1.76969i −0.325559 + 0.0866622i
\(418\) 0 0
\(419\) −15.1454 26.2325i −0.739899 1.28154i −0.952540 0.304412i \(-0.901540\pi\)
0.212641 0.977130i \(-0.431793\pi\)
\(420\) 0 0
\(421\) −3.20295 + 5.54767i −0.156102 + 0.270377i −0.933460 0.358682i \(-0.883226\pi\)
0.777358 + 0.629059i \(0.216560\pi\)
\(422\) 0 0
\(423\) −0.000915285 0.279505i −4.45027e−5 0.0135900i
\(424\) 0 0
\(425\) 7.96301 + 13.7923i 0.386263 + 0.669027i
\(426\) 0 0
\(427\) 0.501789 + 22.4407i 0.0242833 + 1.08598i
\(428\) 0 0
\(429\) 2.88721 + 10.8462i 0.139396 + 0.523661i
\(430\) 0 0
\(431\) −10.0071 + 5.77758i −0.482023 + 0.278296i −0.721259 0.692665i \(-0.756436\pi\)
0.239236 + 0.970961i \(0.423103\pi\)
\(432\) 0 0
\(433\) 0.696999i 0.0334956i −0.999860 0.0167478i \(-0.994669\pi\)
0.999860 0.0167478i \(-0.00533125\pi\)
\(434\) 0 0
\(435\) 0.270926 + 0.271815i 0.0129899 + 0.0130325i
\(436\) 0 0
\(437\) 4.53486 7.85460i 0.216932 0.375737i
\(438\) 0 0
\(439\) −20.4771 + 11.8224i −0.977316 + 0.564254i −0.901459 0.432865i \(-0.857503\pi\)
−0.0758575 + 0.997119i \(0.524169\pi\)
\(440\) 0 0
\(441\) −0.869976 20.9820i −0.0414274 0.999142i
\(442\) 0 0
\(443\) −11.3308 + 6.54184i −0.538343 + 0.310812i −0.744407 0.667726i \(-0.767268\pi\)
0.206064 + 0.978538i \(0.433934\pi\)
\(444\) 0 0
\(445\) 0.716594 1.24118i 0.0339698 0.0588374i
\(446\) 0 0
\(447\) 2.08961 7.74775i 0.0988349 0.366456i
\(448\) 0 0
\(449\) 11.5463i 0.544906i −0.962169 0.272453i \(-0.912165\pi\)
0.962169 0.272453i \(-0.0878348\pi\)
\(450\) 0 0
\(451\) 2.86908 1.65646i 0.135100 0.0779998i
\(452\) 0 0
\(453\) 26.2463 + 7.07876i 1.23316 + 0.332589i
\(454\) 0 0
\(455\) 0.0174266 + 0.779341i 0.000816971 + 0.0365361i
\(456\) 0 0
\(457\) 5.51833 + 9.55803i 0.258137 + 0.447106i 0.965743 0.259501i \(-0.0835582\pi\)
−0.707606 + 0.706607i \(0.750225\pi\)
\(458\) 0 0
\(459\) 4.39845 16.0985i 0.205302 0.751415i
\(460\) 0 0
\(461\) −6.69369 + 11.5938i −0.311756 + 0.539978i −0.978743 0.205092i \(-0.934251\pi\)
0.666986 + 0.745070i \(0.267584\pi\)
\(462\) 0 0
\(463\) −10.6622 18.4675i −0.495515 0.858258i 0.504471 0.863428i \(-0.331687\pi\)
−0.999987 + 0.00517079i \(0.998354\pi\)
\(464\) 0 0
\(465\) −1.60651 1.61178i −0.0745003 0.0747447i
\(466\) 0 0
\(467\) −7.97308 + 13.8098i −0.368950 + 0.639041i −0.989402 0.145204i \(-0.953616\pi\)
0.620451 + 0.784245i \(0.286949\pi\)
\(468\) 0 0
\(469\) 11.0633 + 18.2096i 0.510856 + 0.840839i
\(470\) 0 0
\(471\) −9.25636 9.28673i −0.426511 0.427910i
\(472\) 0 0
\(473\) 36.3622 + 20.9937i 1.67194 + 0.965293i
\(474\) 0 0
\(475\) −30.7518 17.7546i −1.41099 0.814635i
\(476\) 0 0
\(477\) 32.3982 + 0.106093i 1.48341 + 0.00485767i
\(478\) 0 0
\(479\) 30.7187 1.40357 0.701787 0.712387i \(-0.252386\pi\)
0.701787 + 0.712387i \(0.252386\pi\)
\(480\) 0 0
\(481\) 8.78365i 0.400500i
\(482\) 0 0
\(483\) −4.18825 4.01819i −0.190572 0.182834i
\(484\) 0 0
\(485\) 0.645933 + 0.372930i 0.0293303 + 0.0169339i
\(486\) 0 0
\(487\) −0.423250 0.733091i −0.0191793 0.0332195i 0.856276 0.516518i \(-0.172772\pi\)
−0.875456 + 0.483298i \(0.839439\pi\)
\(488\) 0 0
\(489\) 9.75151 9.71963i 0.440979 0.439537i
\(490\) 0 0
\(491\) −1.78204 + 1.02886i −0.0804225 + 0.0464319i −0.539672 0.841875i \(-0.681452\pi\)
0.459249 + 0.888307i \(0.348118\pi\)
\(492\) 0 0
\(493\) 3.50250i 0.157745i
\(494\) 0 0
\(495\) 1.36961 2.35440i 0.0615594 0.105822i
\(496\) 0 0
\(497\) 36.3767 + 19.9314i 1.63172 + 0.894045i
\(498\) 0 0
\(499\) 41.1863 1.84375 0.921877 0.387483i \(-0.126655\pi\)
0.921877 + 0.387483i \(0.126655\pi\)
\(500\) 0 0
\(501\) −1.53574 5.76921i −0.0686116 0.257749i
\(502\) 0 0
\(503\) −1.48781 −0.0663383 −0.0331692 0.999450i \(-0.510560\pi\)
−0.0331692 + 0.999450i \(0.510560\pi\)
\(504\) 0 0
\(505\) 2.67549 0.119058
\(506\) 0 0
\(507\) −13.3680 + 13.3243i −0.593694 + 0.591753i
\(508\) 0 0
\(509\) 16.7882 0.744123 0.372062 0.928208i \(-0.378651\pi\)
0.372062 + 0.928208i \(0.378651\pi\)
\(510\) 0 0
\(511\) −0.0672325 3.00673i −0.00297419 0.133010i
\(512\) 0 0
\(513\) 9.45383 + 35.9884i 0.417397 + 1.58892i
\(514\) 0 0
\(515\) 2.75004i 0.121181i
\(516\) 0 0
\(517\) −0.360559 + 0.208169i −0.0158574 + 0.00915526i
\(518\) 0 0
\(519\) −6.43193 24.1625i −0.282330 1.06061i
\(520\) 0 0
\(521\) 1.00777 + 1.74551i 0.0441512 + 0.0764722i 0.887257 0.461276i \(-0.152608\pi\)
−0.843105 + 0.537749i \(0.819275\pi\)
\(522\) 0 0
\(523\) 37.4865 + 21.6429i 1.63917 + 0.946376i 0.981119 + 0.193403i \(0.0619526\pi\)
0.658052 + 0.752973i \(0.271381\pi\)
\(524\) 0 0
\(525\) −15.7317 + 16.3975i −0.686589 + 0.715647i
\(526\) 0 0
\(527\) 20.7688i 0.904704i
\(528\) 0 0
\(529\) 21.3958 0.930254
\(530\) 0 0
\(531\) −26.8860 + 15.4054i −1.16675 + 0.668539i
\(532\) 0 0
\(533\) −0.931059 0.537547i −0.0403286 0.0232837i
\(534\) 0 0
\(535\) 2.64325 + 1.52608i 0.114278 + 0.0659783i
\(536\) 0 0
\(537\) 38.0939 10.1404i 1.64387 0.437590i
\(538\) 0 0
\(539\) 26.3635 16.8355i 1.13556 0.725155i
\(540\) 0 0
\(541\) 12.3502 21.3912i 0.530977 0.919679i −0.468370 0.883533i \(-0.655158\pi\)
0.999347 0.0361463i \(-0.0115082\pi\)
\(542\) 0 0
\(543\) 4.03716 14.9688i 0.173251 0.642373i
\(544\) 0 0
\(545\) −0.553783 0.959181i −0.0237215 0.0410868i
\(546\) 0 0
\(547\) 5.52320 9.56646i 0.236155 0.409032i −0.723453 0.690374i \(-0.757446\pi\)
0.959608 + 0.281342i \(0.0907794\pi\)
\(548\) 0 0
\(549\) −25.4516 0.0833452i −1.08625 0.00355709i
\(550\) 0 0
\(551\) −3.90464 6.76304i −0.166343 0.288115i
\(552\) 0 0
\(553\) −31.0477 + 0.694248i −1.32028 + 0.0295224i
\(554\) 0 0
\(555\) −1.50973 + 1.50479i −0.0640843 + 0.0638748i
\(556\) 0 0
\(557\) 22.3351 12.8952i 0.946369 0.546386i 0.0544176 0.998518i \(-0.482670\pi\)
0.891951 + 0.452132i \(0.149336\pi\)
\(558\) 0 0
\(559\) 13.6256i 0.576300i
\(560\) 0 0
\(561\) 24.0219 6.39450i 1.01420 0.269976i
\(562\) 0 0
\(563\) 18.9859 32.8846i 0.800161 1.38592i −0.119349 0.992852i \(-0.538081\pi\)
0.919510 0.393067i \(-0.128586\pi\)
\(564\) 0 0
\(565\) 1.22522 0.707381i 0.0515454 0.0297597i
\(566\) 0 0
\(567\) 23.8088 0.376393i 0.999875 0.0158070i
\(568\) 0 0
\(569\) 19.8834 11.4797i 0.833555 0.481253i −0.0215131 0.999769i \(-0.506848\pi\)
0.855068 + 0.518515i \(0.173515\pi\)
\(570\) 0 0
\(571\) −5.91228 + 10.2404i −0.247421 + 0.428546i −0.962810 0.270181i \(-0.912916\pi\)
0.715388 + 0.698727i \(0.246250\pi\)
\(572\) 0 0
\(573\) −41.0838 + 10.9363i −1.71630 + 0.456870i
\(574\) 0 0
\(575\) 6.28048i 0.261914i
\(576\) 0 0
\(577\) −22.4185 + 12.9433i −0.933293 + 0.538837i −0.887852 0.460130i \(-0.847803\pi\)
−0.0454415 + 0.998967i \(0.514469\pi\)
\(578\) 0 0
\(579\) −5.60033 + 5.58202i −0.232742 + 0.231981i
\(580\) 0 0
\(581\) −6.31743 10.3981i −0.262091 0.431387i
\(582\) 0 0
\(583\) 24.1294 + 41.7933i 0.999338 + 1.73090i
\(584\) 0 0
\(585\) −0.883906 0.00289449i −0.0365450 0.000119672i
\(586\) 0 0
\(587\) 1.28769 2.23034i 0.0531487 0.0920562i −0.838227 0.545321i \(-0.816408\pi\)
0.891376 + 0.453265i \(0.149741\pi\)
\(588\) 0 0
\(589\) 23.1534 + 40.1028i 0.954018 + 1.65241i
\(590\) 0 0
\(591\) 5.47162 20.2874i 0.225072 0.834514i
\(592\) 0 0
\(593\) 11.0904 19.2092i 0.455430 0.788828i −0.543283 0.839550i \(-0.682819\pi\)
0.998713 + 0.0507220i \(0.0161523\pi\)
\(594\) 0 0
\(595\) 1.72606 0.0385959i 0.0707615 0.00158228i
\(596\) 0 0
\(597\) −24.7914 + 6.59934i −1.01464 + 0.270093i
\(598\) 0 0
\(599\) 22.0096 + 12.7072i 0.899287 + 0.519204i 0.876969 0.480547i \(-0.159562\pi\)
0.0223184 + 0.999751i \(0.492895\pi\)
\(600\) 0 0
\(601\) −3.04486 1.75795i −0.124203 0.0717084i 0.436612 0.899650i \(-0.356178\pi\)
−0.560814 + 0.827942i \(0.689512\pi\)
\(602\) 0 0
\(603\) −20.9624 + 12.0113i −0.853656 + 0.489138i
\(604\) 0 0
\(605\) 1.82224 0.0740847
\(606\) 0 0
\(607\) 32.7626i 1.32979i −0.746936 0.664896i \(-0.768476\pi\)
0.746936 0.664896i \(-0.231524\pi\)
\(608\) 0 0
\(609\) −4.79935 + 1.39317i −0.194480 + 0.0564543i
\(610\) 0 0
\(611\) 0.117007 + 0.0675539i 0.00473359 + 0.00273294i
\(612\) 0 0
\(613\) −0.757167 1.31145i −0.0305817 0.0529691i 0.850329 0.526251i \(-0.176403\pi\)
−0.880911 + 0.473282i \(0.843069\pi\)
\(614\) 0 0
\(615\) 0.0671133 + 0.252121i 0.00270627 + 0.0101665i
\(616\) 0 0
\(617\) −6.52621 + 3.76791i −0.262735 + 0.151690i −0.625582 0.780159i \(-0.715138\pi\)
0.362846 + 0.931849i \(0.381805\pi\)
\(618\) 0 0
\(619\) 32.6456i 1.31214i 0.754702 + 0.656068i \(0.227782\pi\)
−0.754702 + 0.656068i \(0.772218\pi\)
\(620\) 0 0
\(621\) 4.67641 4.63070i 0.187658 0.185823i
\(622\) 0 0
\(623\) 9.69033 + 15.9497i 0.388235 + 0.639013i
\(624\) 0 0
\(625\) 24.3825 0.975299
\(626\) 0 0
\(627\) −39.2555 + 39.1272i −1.56771 + 1.56259i
\(628\) 0 0
\(629\) −19.4537 −0.775672
\(630\) 0 0
\(631\) 6.79887 0.270659 0.135329 0.990801i \(-0.456791\pi\)
0.135329 + 0.990801i \(0.456791\pi\)
\(632\) 0 0
\(633\) 3.36046 + 12.6241i 0.133566 + 0.501761i
\(634\) 0 0
\(635\) 0.545976 0.0216664
\(636\) 0 0
\(637\) −9.00908 4.67746i −0.356953 0.185328i
\(638\) 0 0
\(639\) −23.6498 + 40.6546i −0.935570 + 1.60827i
\(640\) 0 0
\(641\) 32.4927i 1.28338i −0.766962 0.641692i \(-0.778233\pi\)
0.766962 0.641692i \(-0.221767\pi\)
\(642\) 0 0
\(643\) −20.5970 + 11.8917i −0.812267 + 0.468963i −0.847742 0.530408i \(-0.822039\pi\)
0.0354756 + 0.999371i \(0.488705\pi\)
\(644\) 0 0
\(645\) −2.34195 + 2.33430i −0.0922143 + 0.0919128i
\(646\) 0 0
\(647\) 11.1964 + 19.3928i 0.440177 + 0.762410i 0.997702 0.0677505i \(-0.0215822\pi\)
−0.557525 + 0.830160i \(0.688249\pi\)
\(648\) 0 0
\(649\) −39.9725 23.0781i −1.56906 0.905895i
\(650\) 0 0
\(651\) 28.4587 8.26111i 1.11539 0.323778i
\(652\) 0 0
\(653\) 40.7245i 1.59367i −0.604196 0.796836i \(-0.706506\pi\)
0.604196 0.796836i \(-0.293494\pi\)
\(654\) 0 0
\(655\) 1.24749 0.0487434
\(656\) 0 0
\(657\) 3.41014 + 0.0111671i 0.133042 + 0.000435668i
\(658\) 0 0
\(659\) 24.8786 + 14.3637i 0.969134 + 0.559530i 0.898972 0.438006i \(-0.144315\pi\)
0.0701619 + 0.997536i \(0.477648\pi\)
\(660\) 0 0
\(661\) 32.3398 + 18.6714i 1.25787 + 0.726234i 0.972661 0.232230i \(-0.0746023\pi\)
0.285213 + 0.958464i \(0.407936\pi\)
\(662\) 0 0
\(663\) −5.69483 5.71351i −0.221169 0.221894i
\(664\) 0 0
\(665\) −3.28985 + 1.99876i −0.127575 + 0.0775086i
\(666\) 0 0
\(667\) −0.690612 + 1.19617i −0.0267406 + 0.0463161i
\(668\) 0 0
\(669\) −35.6992 35.8163i −1.38021 1.38474i
\(670\) 0 0
\(671\) −18.9557 32.8323i −0.731777 1.26748i
\(672\) 0 0
\(673\) −16.5131 + 28.6015i −0.636532 + 1.10251i 0.349656 + 0.936878i \(0.386298\pi\)
−0.986188 + 0.165628i \(0.947035\pi\)
\(674\) 0 0
\(675\) −18.1298 18.3088i −0.697816 0.704705i
\(676\) 0 0
\(677\) −10.4381 18.0793i −0.401169 0.694845i 0.592698 0.805424i \(-0.298063\pi\)
−0.993867 + 0.110580i \(0.964729\pi\)
\(678\) 0 0
\(679\) −8.30056 + 5.04304i −0.318546 + 0.193534i
\(680\) 0 0
\(681\) −48.7600 13.1508i −1.86849 0.503940i
\(682\) 0 0
\(683\) 1.17377 0.677674i 0.0449129 0.0259305i −0.477375 0.878699i \(-0.658412\pi\)
0.522288 + 0.852769i \(0.325078\pi\)
\(684\) 0 0
\(685\) 0.870051i 0.0332430i
\(686\) 0 0
\(687\) 7.85331 29.1182i 0.299623 1.11093i
\(688\) 0 0
\(689\) 7.83036 13.5626i 0.298313 0.516693i
\(690\) 0 0
\(691\) 9.62041 5.55435i 0.365978 0.211297i −0.305722 0.952121i \(-0.598898\pi\)
0.671700 + 0.740823i \(0.265564\pi\)
\(692\) 0 0
\(693\) 18.3172 + 30.3728i 0.695814 + 1.15377i
\(694\) 0 0
\(695\) 0.698894 0.403507i 0.0265106 0.0153059i
\(696\) 0 0
\(697\) −1.19054 + 2.06208i −0.0450950 + 0.0781068i
\(698\) 0 0
\(699\) 20.2631 + 20.3296i 0.766422 + 0.768936i
\(700\) 0 0
\(701\) 0.375966i 0.0142000i −0.999975 0.00710002i \(-0.997740\pi\)
0.999975 0.00710002i \(-0.00226003\pi\)
\(702\) 0 0
\(703\) 37.5635 21.6873i 1.41674 0.817953i
\(704\) 0 0
\(705\) −0.00843417 0.0316842i −0.000317649 0.00119330i
\(706\) 0 0
\(707\) −16.7410 + 30.5540i −0.629612 + 1.14910i
\(708\) 0 0
\(709\) −1.94936 3.37639i −0.0732098 0.126803i 0.827097 0.562060i \(-0.189991\pi\)
−0.900306 + 0.435257i \(0.856658\pi\)
\(710\) 0 0
\(711\) 0.115312 35.2134i 0.00432453 1.32061i
\(712\) 0 0
\(713\) 4.09512 7.09296i 0.153364 0.265634i
\(714\) 0 0
\(715\) −0.658312 1.14023i −0.0246195 0.0426422i
\(716\) 0 0
\(717\) 16.3415 4.35002i 0.610284 0.162454i
\(718\) 0 0
\(719\) −24.4338 + 42.3205i −0.911225 + 1.57829i −0.0988894 + 0.995098i \(0.531529\pi\)
−0.812336 + 0.583190i \(0.801804\pi\)
\(720\) 0 0
\(721\) −31.4053 17.2075i −1.16959 0.640840i
\(722\) 0 0
\(723\) 4.89733 18.1581i 0.182134 0.675307i
\(724\) 0 0
\(725\) 4.68318 + 2.70384i 0.173929 + 0.100418i
\(726\) 0 0
\(727\) 11.8420 + 6.83700i 0.439196 + 0.253570i 0.703257 0.710936i \(-0.251728\pi\)
−0.264060 + 0.964506i \(0.585062\pi\)
\(728\) 0 0
\(729\) −0.265242 + 26.9987i −0.00982379 + 0.999952i
\(730\) 0 0
\(731\) −30.1775 −1.11615
\(732\) 0 0
\(733\) 16.1607i 0.596910i 0.954424 + 0.298455i \(0.0964713\pi\)
−0.954424 + 0.298455i \(0.903529\pi\)
\(734\) 0 0
\(735\) 0.739452 + 2.34980i 0.0272751 + 0.0866738i
\(736\) 0 0
\(737\) −31.1657 17.9935i −1.14800 0.662800i
\(738\) 0 0
\(739\) 15.7914 + 27.3515i 0.580895 + 1.00614i 0.995374 + 0.0960807i \(0.0306307\pi\)
−0.414478 + 0.910059i \(0.636036\pi\)
\(740\) 0 0
\(741\) 17.3657 + 4.68362i 0.637946 + 0.172057i
\(742\) 0 0
\(743\) 8.63924 4.98787i 0.316943 0.182987i −0.333086 0.942896i \(-0.608090\pi\)
0.650029 + 0.759909i \(0.274757\pi\)
\(744\) 0 0
\(745\) 0.941325i 0.0344875i
\(746\) 0 0
\(747\) 11.9701 6.85877i 0.437963 0.250949i
\(748\) 0 0
\(749\) −33.9671 + 20.6369i −1.24113 + 0.754055i
\(750\) 0 0
\(751\) 20.9066 0.762892 0.381446 0.924391i \(-0.375426\pi\)
0.381446 + 0.924391i \(0.375426\pi\)
\(752\) 0 0
\(753\) 45.8468 + 12.3651i 1.67075 + 0.450609i
\(754\) 0 0
\(755\) −3.18884 −0.116054
\(756\) 0 0
\(757\) −50.5460 −1.83713 −0.918563 0.395274i \(-0.870650\pi\)
−0.918563 + 0.395274i \(0.870650\pi\)
\(758\) 0 0
\(759\) 9.46480 + 2.55270i 0.343550 + 0.0926572i
\(760\) 0 0
\(761\) −20.8424 −0.755535 −0.377768 0.925900i \(-0.623308\pi\)
−0.377768 + 0.925900i \(0.623308\pi\)
\(762\) 0 0
\(763\) 14.4189 0.322417i 0.522000 0.0116723i
\(764\) 0 0
\(765\) −0.00641062 + 1.95765i −0.000231777 + 0.0707788i
\(766\) 0 0
\(767\) 14.9784i 0.540838i
\(768\) 0 0
\(769\) 25.3167 14.6166i 0.912944 0.527088i 0.0315668 0.999502i \(-0.489950\pi\)
0.881377 + 0.472413i \(0.156617\pi\)
\(770\) 0 0
\(771\) −45.6819 12.3206i −1.64519 0.443716i
\(772\) 0 0
\(773\) 10.9472 + 18.9612i 0.393745 + 0.681986i 0.992940 0.118617i \(-0.0378459\pi\)
−0.599195 + 0.800603i \(0.704513\pi\)
\(774\) 0 0
\(775\) −27.7699 16.0329i −0.997523 0.575920i
\(776\) 0 0
\(777\) −7.73802 26.6568i −0.277600 0.956306i
\(778\) 0 0
\(779\) 5.30893i 0.190212i
\(780\) 0 0
\(781\) −70.0578 −2.50686
\(782\) 0 0
\(783\) −1.43972 5.48065i −0.0514514 0.195863i
\(784\) 0 0
\(785\) 1.33203 + 0.769050i 0.0475423 + 0.0274486i
\(786\) 0 0
\(787\) −7.08328 4.08953i −0.252492 0.145776i 0.368413 0.929662i \(-0.379901\pi\)
−0.620905 + 0.783886i \(0.713235\pi\)
\(788\) 0 0
\(789\) −6.23136 + 23.1044i −0.221842 + 0.822538i
\(790\) 0 0
\(791\) 0.411843 + 18.4182i 0.0146435 + 0.654875i
\(792\) 0 0
\(793\) −6.15142 + 10.6546i −0.218443 + 0.378355i
\(794\) 0 0
\(795\) −3.67260 + 0.977627i −0.130254 + 0.0346729i
\(796\) 0 0
\(797\) 4.86546 + 8.42722i 0.172343 + 0.298508i 0.939239 0.343265i \(-0.111533\pi\)
−0.766895 + 0.641772i \(0.778199\pi\)
\(798\) 0 0
\(799\) 0.149616 0.259143i 0.00529304 0.00916782i
\(800\) 0 0
\(801\) −18.3610 + 10.5207i −0.648753 + 0.371730i
\(802\) 0 0
\(803\) 2.53979 + 4.39905i 0.0896273 + 0.155239i
\(804\) 0 0
\(805\) 0.597094 + 0.327157i 0.0210448 + 0.0115308i
\(806\) 0 0
\(807\) 9.57667 + 35.9761i 0.337115 + 1.26642i
\(808\) 0 0
\(809\) 36.2263 20.9153i 1.27365 0.735341i 0.297976 0.954574i \(-0.403689\pi\)
0.975673 + 0.219232i \(0.0703553\pi\)
\(810\) 0 0
\(811\) 40.7323i 1.43031i 0.698968 + 0.715153i \(0.253643\pi\)
−0.698968 + 0.715153i \(0.746357\pi\)
\(812\) 0 0
\(813\) −38.4903 38.6166i −1.34991 1.35434i
\(814\) 0 0
\(815\) −0.807539 + 1.39870i −0.0282869 + 0.0489943i
\(816\) 0 0
\(817\) 58.2701 33.6423i 2.03861 1.17699i
\(818\) 0 0
\(819\) 5.56381 10.0761i 0.194415 0.352086i
\(820\) 0 0
\(821\) 19.3422 11.1672i 0.675049 0.389740i −0.122938 0.992414i \(-0.539232\pi\)
0.797987 + 0.602675i \(0.205898\pi\)
\(822\) 0 0
\(823\) −13.5308 + 23.4360i −0.471654 + 0.816929i −0.999474 0.0324276i \(-0.989676\pi\)
0.527820 + 0.849356i \(0.323009\pi\)
\(824\) 0 0
\(825\) 9.99416 37.0559i 0.347952 1.29012i
\(826\) 0 0
\(827\) 22.1709i 0.770957i −0.922717 0.385479i \(-0.874036\pi\)
0.922717 0.385479i \(-0.125964\pi\)
\(828\) 0 0
\(829\) −32.2166 + 18.6003i −1.11893 + 0.646013i −0.941127 0.338053i \(-0.890232\pi\)
−0.177801 + 0.984066i \(0.556898\pi\)
\(830\) 0 0
\(831\) −19.8013 5.34052i −0.686901 0.185260i
\(832\) 0 0
\(833\) −10.3595 + 19.9530i −0.358935 + 0.691331i
\(834\) 0 0
\(835\) 0.350162 + 0.606499i 0.0121179 + 0.0209888i
\(836\) 0 0
\(837\) 8.53712 + 32.4987i 0.295086 + 1.12332i
\(838\) 0 0
\(839\) 7.96294 13.7922i 0.274911 0.476160i −0.695202 0.718815i \(-0.744685\pi\)
0.970113 + 0.242655i \(0.0780182\pi\)
\(840\) 0 0
\(841\) −13.9054 24.0848i −0.479495 0.830510i
\(842\) 0 0
\(843\) −27.4739 27.5640i −0.946250 0.949354i
\(844\) 0 0
\(845\) 1.10703 1.91743i 0.0380829 0.0659615i
\(846\) 0 0
\(847\) −11.4021 + 20.8099i −0.391781 + 0.715038i
\(848\) 0 0
\(849\) 1.66140 + 1.66685i 0.0570192 + 0.0572062i
\(850\) 0 0
\(851\) −6.64384 3.83582i −0.227748 0.131490i
\(852\) 0 0
\(853\) 40.4364 + 23.3459i 1.38451 + 0.799350i 0.992690 0.120690i \(-0.0385107\pi\)
0.391824 + 0.920040i \(0.371844\pi\)
\(854\) 0 0
\(855\) −2.17003 3.78719i −0.0742135 0.129519i
\(856\) 0 0
\(857\) −5.33848 −0.182359 −0.0911795 0.995834i \(-0.529064\pi\)
−0.0911795 + 0.995834i \(0.529064\pi\)
\(858\) 0 0
\(859\) 10.0559i 0.343102i 0.985175 + 0.171551i \(0.0548779\pi\)
−0.985175 + 0.171551i \(0.945122\pi\)
\(860\) 0 0
\(861\) −3.29915 0.811133i −0.112435 0.0276433i
\(862\) 0 0
\(863\) −32.7144 18.8877i −1.11361 0.642943i −0.173849 0.984772i \(-0.555620\pi\)
−0.939762 + 0.341829i \(0.888954\pi\)
\(864\) 0 0
\(865\) 1.46654 + 2.54012i 0.0498639 + 0.0863668i
\(866\) 0 0
\(867\) 8.20063 8.17382i 0.278508 0.277597i
\(868\) 0 0
\(869\) 45.4249 26.2261i 1.54094 0.889659i
\(870\) 0 0
\(871\) 11.6783i 0.395706i
\(872\) 0 0
\(873\) −5.47518 9.55541i −0.185307 0.323402i
\(874\) 0 0
\(875\) 2.57239 4.69486i 0.0869626 0.158715i
\(876\) 0 0
\(877\) −46.5264 −1.57109 −0.785543 0.618807i \(-0.787616\pi\)
−0.785543 + 0.618807i \(0.787616\pi\)
\(878\) 0 0
\(879\) −7.21841 27.1170i −0.243471 0.914634i
\(880\) 0 0
\(881\) 31.9474 1.07633 0.538167 0.842838i \(-0.319117\pi\)
0.538167 + 0.842838i \(0.319117\pi\)
\(882\) 0 0
\(883\) 38.2919 1.28862 0.644312 0.764763i \(-0.277144\pi\)
0.644312 + 0.764763i \(0.277144\pi\)
\(884\) 0 0
\(885\) 2.57447 2.56606i 0.0865400 0.0862570i
\(886\) 0 0
\(887\) −40.6168 −1.36378 −0.681889 0.731455i \(-0.738841\pi\)
−0.681889 + 0.731455i \(0.738841\pi\)
\(888\) 0 0
\(889\) −3.41627 + 6.23502i −0.114578 + 0.209116i
\(890\) 0 0
\(891\) −34.9605 + 19.8803i −1.17122 + 0.666016i
\(892\) 0 0
\(893\) 0.667177i 0.0223262i
\(894\) 0 0
\(895\) −4.00469 + 2.31211i −0.133862 + 0.0772852i
\(896\) 0 0
\(897\) −0.818328 3.07417i −0.0273232 0.102643i
\(898\) 0 0
\(899\) −3.52602 6.10724i −0.117599 0.203688i
\(900\) 0 0
\(901\) −30.0379 17.3424i −1.00071 0.577760i
\(902\) 0 0
\(903\) −12.0035 41.3511i −0.399453 1.37608i
\(904\) 0 0
\(905\) 1.81866i 0.0604543i
\(906\) 0 0
\(907\) 29.9969 0.996030 0.498015 0.867168i \(-0.334062\pi\)
0.498015 + 0.867168i \(0.334062\pi\)
\(908\) 0 0
\(909\) −34.1471 19.8642i −1.13259 0.658855i
\(910\) 0 0
\(911\) 34.2362 + 19.7663i 1.13430 + 0.654886i 0.945012 0.327036i \(-0.106050\pi\)
0.189284 + 0.981922i \(0.439383\pi\)
\(912\) 0 0
\(913\) 17.7964 + 10.2748i 0.588976 + 0.340045i
\(914\) 0 0
\(915\) 2.88514 0.768010i 0.0953798 0.0253896i
\(916\) 0 0
\(917\) −7.80576 + 14.2463i −0.257769 + 0.470453i
\(918\) 0 0
\(919\) −9.74272 + 16.8749i −0.321383 + 0.556651i −0.980774 0.195149i \(-0.937481\pi\)
0.659391 + 0.751800i \(0.270814\pi\)
\(920\) 0 0
\(921\) −4.16266 + 15.4341i −0.137164 + 0.508571i
\(922\) 0 0
\(923\) 11.3674 + 19.6889i 0.374163 + 0.648069i
\(924\) 0 0
\(925\) −15.0178 + 26.0115i −0.493781 + 0.855253i
\(926\) 0 0
\(927\) 20.4177 35.0985i 0.670604 1.15279i
\(928\) 0 0
\(929\) −6.93060 12.0041i −0.227386 0.393843i 0.729647 0.683824i \(-0.239684\pi\)
−0.957032 + 0.289981i \(0.906351\pi\)
\(930\) 0 0
\(931\) −2.24061 50.0765i −0.0734330 1.64119i
\(932\) 0 0
\(933\) 0.768765 0.766251i 0.0251682 0.0250859i
\(934\) 0 0
\(935\) −2.52534 + 1.45801i −0.0825876 + 0.0476819i
\(936\) 0 0
\(937\) 5.38328i 0.175864i −0.996126 0.0879320i \(-0.971974\pi\)
0.996126 0.0879320i \(-0.0280258\pi\)
\(938\) 0 0
\(939\) −8.57204 + 2.28184i −0.279738 + 0.0744649i
\(940\) 0 0
\(941\) 3.28619 5.69185i 0.107127 0.185549i −0.807478 0.589897i \(-0.799168\pi\)
0.914605 + 0.404348i \(0.132502\pi\)
\(942\) 0 0
\(943\) −0.813188 + 0.469494i −0.0264810 + 0.0152888i
\(944\) 0 0
\(945\) −2.68504 + 0.769899i −0.0873444 + 0.0250448i
\(946\) 0 0
\(947\) 27.7081 15.9973i 0.900392 0.519841i 0.0230644 0.999734i \(-0.492658\pi\)
0.877327 + 0.479893i \(0.159324\pi\)
\(948\) 0 0
\(949\) 0.824201 1.42756i 0.0267547 0.0463405i
\(950\) 0 0
\(951\) −7.01187 + 1.86653i −0.227376 + 0.0605263i
\(952\) 0 0
\(953\) 51.5312i 1.66926i −0.550812 0.834629i \(-0.685682\pi\)
0.550812 0.834629i \(-0.314318\pi\)
\(954\) 0 0
\(955\) 4.31901 2.49358i 0.139760 0.0806903i
\(956\) 0 0
\(957\) 5.97821 5.95866i 0.193248 0.192616i
\(958\) 0 0
\(959\) 9.93595 + 5.44407i 0.320849 + 0.175798i
\(960\) 0 0
\(961\) 5.40825 + 9.36736i 0.174460 + 0.302173i
\(962\) 0 0
\(963\) −22.4052 39.1022i −0.721999 1.26005i
\(964\) 0 0
\(965\) 0.463773 0.803278i 0.0149294 0.0258584i
\(966\) 0 0
\(967\) −6.01867 10.4246i −0.193547 0.335234i 0.752876 0.658162i \(-0.228666\pi\)
−0.946423 + 0.322929i \(0.895333\pi\)
\(968\) 0 0
\(969\) 10.3731 38.4611i 0.333233 1.23555i
\(970\) 0 0
\(971\) −23.4783 + 40.6656i −0.753454 + 1.30502i 0.192685 + 0.981261i \(0.438281\pi\)
−0.946139 + 0.323761i \(0.895053\pi\)
\(972\) 0 0
\(973\) 0.234925 + 10.5062i 0.00753135 + 0.336812i
\(974\) 0 0
\(975\) −12.0358 + 3.20386i −0.385453 + 0.102606i
\(976\) 0 0
\(977\) −28.4083 16.4015i −0.908863 0.524732i −0.0287976 0.999585i \(-0.509168\pi\)
−0.880065 + 0.474853i \(0.842501\pi\)
\(978\) 0 0
\(979\) −27.2980 15.7605i −0.872448 0.503708i
\(980\) 0 0
\(981\) −0.0535523 + 16.3535i −0.00170979 + 0.522128i
\(982\) 0 0
\(983\) −30.0145 −0.957314 −0.478657 0.878002i \(-0.658876\pi\)
−0.478657 + 0.878002i \(0.658876\pi\)
\(984\) 0 0
\(985\) 2.46485i 0.0785368i
\(986\) 0 0
\(987\) 0.414606 + 0.101936i 0.0131971 + 0.00324465i
\(988\) 0 0
\(989\) −10.3062 5.95029i −0.327718 0.189208i
\(990\) 0 0
\(991\) −24.9364 43.1911i −0.792131 1.37201i −0.924645 0.380831i \(-0.875638\pi\)
0.132514 0.991181i \(-0.457695\pi\)
\(992\) 0 0
\(993\) 11.5584 + 43.4207i 0.366794 + 1.37791i
\(994\) 0 0
\(995\) 2.60624 1.50471i 0.0826232 0.0477026i
\(996\) 0 0
\(997\) 1.48520i 0.0470368i −0.999723 0.0235184i \(-0.992513\pi\)
0.999723 0.0235184i \(-0.00748683\pi\)
\(998\) 0 0
\(999\) 30.4409 7.99656i 0.963107 0.253000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.929.22 48
3.2 odd 2 3024.2.df.e.1601.11 48
4.3 odd 2 504.2.cx.a.425.3 yes 48
7.3 odd 6 1008.2.ca.e.353.15 48
9.4 even 3 3024.2.ca.e.2609.11 48
9.5 odd 6 1008.2.ca.e.257.15 48
12.11 even 2 1512.2.cx.a.89.11 48
21.17 even 6 3024.2.ca.e.2033.11 48
28.3 even 6 504.2.bs.a.353.10 yes 48
36.23 even 6 504.2.bs.a.257.10 48
36.31 odd 6 1512.2.bs.a.1097.11 48
63.31 odd 6 3024.2.df.e.17.11 48
63.59 even 6 inner 1008.2.df.e.689.22 48
84.59 odd 6 1512.2.bs.a.521.11 48
252.31 even 6 1512.2.cx.a.17.11 48
252.59 odd 6 504.2.cx.a.185.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.10 48 36.23 even 6
504.2.bs.a.353.10 yes 48 28.3 even 6
504.2.cx.a.185.3 yes 48 252.59 odd 6
504.2.cx.a.425.3 yes 48 4.3 odd 2
1008.2.ca.e.257.15 48 9.5 odd 6
1008.2.ca.e.353.15 48 7.3 odd 6
1008.2.df.e.689.22 48 63.59 even 6 inner
1008.2.df.e.929.22 48 1.1 even 1 trivial
1512.2.bs.a.521.11 48 84.59 odd 6
1512.2.bs.a.1097.11 48 36.31 odd 6
1512.2.cx.a.17.11 48 252.31 even 6
1512.2.cx.a.89.11 48 12.11 even 2
3024.2.ca.e.2033.11 48 21.17 even 6
3024.2.ca.e.2609.11 48 9.4 even 3
3024.2.df.e.17.11 48 63.31 odd 6
3024.2.df.e.1601.11 48 3.2 odd 2