Properties

Label 3024.2.df.e.17.11
Level $3024$
Weight $2$
Character 3024.17
Analytic conductor $24.147$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3024,2,Mod(17,3024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3024, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3024.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.11
Character \(\chi\) \(=\) 3024.17
Dual form 3024.2.df.e.1601.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.203178 q^{5} +(1.27132 + 2.32029i) q^{7} +4.46863i q^{11} +(1.25586 + 0.725070i) q^{13} +(1.60586 - 2.78143i) q^{17} +(6.20156 - 3.58047i) q^{19} -1.26655i q^{23} -4.95872 q^{25} +(0.944433 - 0.545269i) q^{29} +(5.60021 - 3.23328i) q^{31} +(0.258305 + 0.471432i) q^{35} +(3.02855 + 5.24561i) q^{37} +(0.370687 - 0.642048i) q^{41} +(4.69802 + 8.13721i) q^{43} +(-0.0465845 + 0.0806866i) q^{47} +(-3.76748 + 5.89967i) q^{49} +(-9.35260 - 5.39973i) q^{53} +0.907929i q^{55} +(5.16447 + 8.94512i) q^{59} +(-7.34727 - 4.24195i) q^{61} +(0.255163 + 0.147318i) q^{65} +(-4.02663 - 6.97432i) q^{67} +15.6777i q^{71} +(0.984428 + 0.568360i) q^{73} +(-10.3685 + 5.68108i) q^{77} +(-5.86893 + 10.1653i) q^{79} +(-2.29931 - 3.98252i) q^{83} +(0.326276 - 0.565127i) q^{85} +(3.52692 + 6.10881i) q^{89} +(-0.0857700 + 3.83575i) q^{91} +(1.26002 - 0.727474i) q^{95} +(-3.17914 + 1.83548i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} - 18 q^{31} + 6 q^{41} + 6 q^{43} + 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} - 6 q^{79} + 18 q^{89} - 6 q^{91} - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.203178 0.0908641 0.0454320 0.998967i \(-0.485534\pi\)
0.0454320 + 0.998967i \(0.485534\pi\)
\(6\) 0 0
\(7\) 1.27132 + 2.32029i 0.480515 + 0.876987i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.46863i 1.34734i 0.739031 + 0.673672i \(0.235284\pi\)
−0.739031 + 0.673672i \(0.764716\pi\)
\(12\) 0 0
\(13\) 1.25586 + 0.725070i 0.348312 + 0.201098i 0.663942 0.747784i \(-0.268882\pi\)
−0.315629 + 0.948883i \(0.602216\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.60586 2.78143i 0.389478 0.674596i −0.602901 0.797816i \(-0.705989\pi\)
0.992379 + 0.123220i \(0.0393220\pi\)
\(18\) 0 0
\(19\) 6.20156 3.58047i 1.42274 0.821417i 0.426203 0.904627i \(-0.359851\pi\)
0.996532 + 0.0832106i \(0.0265174\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.26655i 0.264095i −0.991243 0.132047i \(-0.957845\pi\)
0.991243 0.132047i \(-0.0421551\pi\)
\(24\) 0 0
\(25\) −4.95872 −0.991744
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.944433 0.545269i 0.175377 0.101254i −0.409742 0.912202i \(-0.634381\pi\)
0.585119 + 0.810948i \(0.301048\pi\)
\(30\) 0 0
\(31\) 5.60021 3.23328i 1.00583 0.580715i 0.0958603 0.995395i \(-0.469440\pi\)
0.909967 + 0.414680i \(0.136106\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.258305 + 0.471432i 0.0436616 + 0.0796866i
\(36\) 0 0
\(37\) 3.02855 + 5.24561i 0.497891 + 0.862373i 0.999997 0.00243316i \(-0.000774500\pi\)
−0.502106 + 0.864806i \(0.667441\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.370687 0.642048i 0.0578915 0.100271i −0.835627 0.549297i \(-0.814896\pi\)
0.893519 + 0.449026i \(0.148229\pi\)
\(42\) 0 0
\(43\) 4.69802 + 8.13721i 0.716442 + 1.24091i 0.962401 + 0.271633i \(0.0875638\pi\)
−0.245959 + 0.969280i \(0.579103\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.0465845 + 0.0806866i −0.00679504 + 0.0117694i −0.869403 0.494104i \(-0.835496\pi\)
0.862608 + 0.505873i \(0.168830\pi\)
\(48\) 0 0
\(49\) −3.76748 + 5.89967i −0.538211 + 0.842810i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.35260 5.39973i −1.28468 0.741710i −0.306979 0.951716i \(-0.599318\pi\)
−0.977700 + 0.210007i \(0.932651\pi\)
\(54\) 0 0
\(55\) 0.907929i 0.122425i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.16447 + 8.94512i 0.672356 + 1.16456i 0.977234 + 0.212164i \(0.0680511\pi\)
−0.304878 + 0.952392i \(0.598616\pi\)
\(60\) 0 0
\(61\) −7.34727 4.24195i −0.940722 0.543126i −0.0505352 0.998722i \(-0.516093\pi\)
−0.890186 + 0.455596i \(0.849426\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.255163 + 0.147318i 0.0316491 + 0.0182726i
\(66\) 0 0
\(67\) −4.02663 6.97432i −0.491931 0.852049i 0.508026 0.861342i \(-0.330375\pi\)
−0.999957 + 0.00929244i \(0.997042\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.6777i 1.86060i 0.366802 + 0.930299i \(0.380453\pi\)
−0.366802 + 0.930299i \(0.619547\pi\)
\(72\) 0 0
\(73\) 0.984428 + 0.568360i 0.115219 + 0.0665215i 0.556502 0.830846i \(-0.312143\pi\)
−0.441283 + 0.897368i \(0.645477\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.3685 + 5.68108i −1.18160 + 0.647419i
\(78\) 0 0
\(79\) −5.86893 + 10.1653i −0.660306 + 1.14368i 0.320229 + 0.947340i \(0.396240\pi\)
−0.980535 + 0.196344i \(0.937093\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.29931 3.98252i −0.252382 0.437139i 0.711799 0.702383i \(-0.247881\pi\)
−0.964181 + 0.265245i \(0.914547\pi\)
\(84\) 0 0
\(85\) 0.326276 0.565127i 0.0353896 0.0612966i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.52692 + 6.10881i 0.373853 + 0.647532i 0.990155 0.139978i \(-0.0447032\pi\)
−0.616302 + 0.787510i \(0.711370\pi\)
\(90\) 0 0
\(91\) −0.0857700 + 3.83575i −0.00899114 + 0.402096i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.26002 0.727474i 0.129276 0.0746373i
\(96\) 0 0
\(97\) −3.17914 + 1.83548i −0.322793 + 0.186365i −0.652637 0.757671i \(-0.726337\pi\)
0.329844 + 0.944036i \(0.393004\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.1682 1.31029 0.655143 0.755505i \(-0.272609\pi\)
0.655143 + 0.755505i \(0.272609\pi\)
\(102\) 0 0
\(103\) 13.5351i 1.33365i 0.745214 + 0.666826i \(0.232347\pi\)
−0.745214 + 0.666826i \(0.767653\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.0095 7.51105i 1.25768 0.726121i 0.285056 0.958511i \(-0.407988\pi\)
0.972623 + 0.232390i \(0.0746545\pi\)
\(108\) 0 0
\(109\) 2.72560 4.72088i 0.261065 0.452178i −0.705460 0.708750i \(-0.749260\pi\)
0.966525 + 0.256571i \(0.0825928\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.03027 + 3.48158i 0.567280 + 0.327519i 0.756062 0.654500i \(-0.227121\pi\)
−0.188782 + 0.982019i \(0.560454\pi\)
\(114\) 0 0
\(115\) 0.257336i 0.0239967i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.49529 + 0.189961i 0.778762 + 0.0174137i
\(120\) 0 0
\(121\) −8.96868 −0.815335
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.02340 −0.180978
\(126\) 0 0
\(127\) −2.68718 −0.238448 −0.119224 0.992867i \(-0.538041\pi\)
−0.119224 + 0.992867i \(0.538041\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.13987 0.536443 0.268222 0.963357i \(-0.413564\pi\)
0.268222 + 0.963357i \(0.413564\pi\)
\(132\) 0 0
\(133\) 16.1919 + 9.83747i 1.40402 + 0.853017i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.28221i 0.365854i 0.983127 + 0.182927i \(0.0585571\pi\)
−0.983127 + 0.182927i \(0.941443\pi\)
\(138\) 0 0
\(139\) −3.43981 1.98597i −0.291761 0.168448i 0.346975 0.937874i \(-0.387209\pi\)
−0.638736 + 0.769426i \(0.720542\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3.24007 + 5.61197i −0.270948 + 0.469296i
\(144\) 0 0
\(145\) 0.191888 0.110787i 0.0159355 0.00920034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.63300i 0.379550i −0.981828 0.189775i \(-0.939224\pi\)
0.981828 0.189775i \(-0.0607759\pi\)
\(150\) 0 0
\(151\) 15.6948 1.27722 0.638612 0.769529i \(-0.279509\pi\)
0.638612 + 0.769529i \(0.279509\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.13784 0.656933i 0.0913936 0.0527661i
\(156\) 0 0
\(157\) −6.55598 + 3.78510i −0.523224 + 0.302084i −0.738253 0.674524i \(-0.764349\pi\)
0.215029 + 0.976608i \(0.431016\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.93877 1.61020i 0.231607 0.126901i
\(162\) 0 0
\(163\) 3.97454 + 6.88410i 0.311310 + 0.539204i 0.978646 0.205552i \(-0.0658990\pi\)
−0.667337 + 0.744756i \(0.732566\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.72342 2.98506i 0.133363 0.230991i −0.791608 0.611029i \(-0.790756\pi\)
0.924971 + 0.380038i \(0.124089\pi\)
\(168\) 0 0
\(169\) −5.44855 9.43716i −0.419119 0.725936i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.21800 12.5019i 0.548775 0.950505i −0.449584 0.893238i \(-0.648428\pi\)
0.998359 0.0572675i \(-0.0182388\pi\)
\(174\) 0 0
\(175\) −6.30413 11.5057i −0.476548 0.869746i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.7102 11.3797i −1.47321 0.850558i −0.473665 0.880705i \(-0.657069\pi\)
−0.999545 + 0.0301471i \(0.990402\pi\)
\(180\) 0 0
\(181\) 8.95105i 0.665326i 0.943046 + 0.332663i \(0.107947\pi\)
−0.943046 + 0.332663i \(0.892053\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.615337 + 1.06579i 0.0452404 + 0.0783587i
\(186\) 0 0
\(187\) 12.4292 + 7.17600i 0.908913 + 0.524761i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.2572 + 12.2729i 1.53812 + 0.888033i 0.998949 + 0.0458359i \(0.0145951\pi\)
0.539170 + 0.842197i \(0.318738\pi\)
\(192\) 0 0
\(193\) −2.28259 3.95356i −0.164305 0.284584i 0.772104 0.635497i \(-0.219205\pi\)
−0.936408 + 0.350913i \(0.885871\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.1315i 0.864333i −0.901794 0.432166i \(-0.857749\pi\)
0.901794 0.432166i \(-0.142251\pi\)
\(198\) 0 0
\(199\) −12.8273 7.40587i −0.909306 0.524988i −0.0290981 0.999577i \(-0.509264\pi\)
−0.880208 + 0.474589i \(0.842597\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.46586 + 1.49814i 0.173070 + 0.105149i
\(204\) 0 0
\(205\) 0.0753154 0.130450i 0.00526026 0.00911104i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 15.9998 + 27.7125i 1.10673 + 1.91691i
\(210\) 0 0
\(211\) 3.77116 6.53184i 0.259617 0.449670i −0.706522 0.707691i \(-0.749737\pi\)
0.966139 + 0.258021i \(0.0830703\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.954536 + 1.65331i 0.0650988 + 0.112754i
\(216\) 0 0
\(217\) 14.6218 + 8.88356i 0.992594 + 0.603055i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.03346 2.32872i 0.271320 0.156647i
\(222\) 0 0
\(223\) −25.2846 + 14.5980i −1.69318 + 0.977557i −0.741255 + 0.671224i \(0.765769\pi\)
−0.951924 + 0.306334i \(0.900898\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 29.1575 1.93525 0.967625 0.252391i \(-0.0812169\pi\)
0.967625 + 0.252391i \(0.0812169\pi\)
\(228\) 0 0
\(229\) 17.4121i 1.15062i 0.817934 + 0.575312i \(0.195119\pi\)
−0.817934 + 0.575312i \(0.804881\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.3517 + 8.28596i −0.940212 + 0.542831i −0.890027 0.455908i \(-0.849314\pi\)
−0.0501850 + 0.998740i \(0.515981\pi\)
\(234\) 0 0
\(235\) −0.00946495 + 0.0163938i −0.000617425 + 0.00106941i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.45527 4.88165i −0.546926 0.315768i 0.200955 0.979600i \(-0.435595\pi\)
−0.747881 + 0.663833i \(0.768929\pi\)
\(240\) 0 0
\(241\) 10.8582i 0.699437i 0.936855 + 0.349719i \(0.113723\pi\)
−0.936855 + 0.349719i \(0.886277\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.765469 + 1.19869i −0.0489040 + 0.0765812i
\(246\) 0 0
\(247\) 10.3844 0.660741
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −27.4155 −1.73045 −0.865224 0.501385i \(-0.832824\pi\)
−0.865224 + 0.501385i \(0.832824\pi\)
\(252\) 0 0
\(253\) 5.65976 0.355826
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.3169 1.70398 0.851989 0.523559i \(-0.175396\pi\)
0.851989 + 0.523559i \(0.175396\pi\)
\(258\) 0 0
\(259\) −8.32106 + 13.6960i −0.517045 + 0.851027i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.8160i 0.851928i 0.904740 + 0.425964i \(0.140065\pi\)
−0.904740 + 0.425964i \(0.859935\pi\)
\(264\) 0 0
\(265\) −1.90025 1.09711i −0.116731 0.0673948i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −10.7471 + 18.6145i −0.655260 + 1.13494i 0.326568 + 0.945174i \(0.394108\pi\)
−0.981828 + 0.189770i \(0.939226\pi\)
\(270\) 0 0
\(271\) −27.2614 + 15.7394i −1.65601 + 0.956101i −0.681488 + 0.731829i \(0.738667\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 22.1587i 1.33622i
\(276\) 0 0
\(277\) −11.8408 −0.711445 −0.355722 0.934592i \(-0.615765\pi\)
−0.355722 + 0.934592i \(0.615765\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 19.4588 11.2346i 1.16082 0.670198i 0.209317 0.977848i \(-0.432876\pi\)
0.951500 + 0.307650i \(0.0995425\pi\)
\(282\) 0 0
\(283\) 1.17672 0.679378i 0.0699486 0.0403848i −0.464618 0.885511i \(-0.653808\pi\)
0.534566 + 0.845126i \(0.320475\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.96100 + 0.0438493i 0.115754 + 0.00258834i
\(288\) 0 0
\(289\) 3.34242 + 5.78925i 0.196613 + 0.340544i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.10060 14.0307i 0.473242 0.819680i −0.526289 0.850306i \(-0.676417\pi\)
0.999531 + 0.0306263i \(0.00975018\pi\)
\(294\) 0 0
\(295\) 1.04931 + 1.81745i 0.0610931 + 0.105816i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.918339 1.59061i 0.0531089 0.0919873i
\(300\) 0 0
\(301\) −12.9080 + 21.2458i −0.744003 + 1.22459i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.49281 0.861872i −0.0854778 0.0493506i
\(306\) 0 0
\(307\) 9.22930i 0.526744i −0.964694 0.263372i \(-0.915165\pi\)
0.964694 0.263372i \(-0.0848346\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.313334 0.542711i −0.0177676 0.0307743i 0.857005 0.515308i \(-0.172323\pi\)
−0.874772 + 0.484534i \(0.838989\pi\)
\(312\) 0 0
\(313\) −4.43528 2.56071i −0.250697 0.144740i 0.369387 0.929276i \(-0.379568\pi\)
−0.620083 + 0.784536i \(0.712901\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.62803 + 2.09464i 0.203770 + 0.117647i 0.598413 0.801188i \(-0.295798\pi\)
−0.394643 + 0.918835i \(0.629132\pi\)
\(318\) 0 0
\(319\) 2.43661 + 4.22033i 0.136424 + 0.236293i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22.9990i 1.27970i
\(324\) 0 0
\(325\) −6.22744 3.59542i −0.345436 0.199438i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.246440 0.00551057i −0.0135867 0.000303808i
\(330\) 0 0
\(331\) 12.9710 22.4664i 0.712949 1.23486i −0.250797 0.968040i \(-0.580693\pi\)
0.963745 0.266824i \(-0.0859741\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.818123 1.41703i −0.0446989 0.0774207i
\(336\) 0 0
\(337\) 8.40130 14.5515i 0.457648 0.792669i −0.541188 0.840901i \(-0.682025\pi\)
0.998836 + 0.0482321i \(0.0153587\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.4484 + 25.0253i 0.782423 + 1.35520i
\(342\) 0 0
\(343\) −18.4786 1.24124i −0.997752 0.0670206i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −25.0574 + 14.4669i −1.34515 + 0.776624i −0.987558 0.157253i \(-0.949736\pi\)
−0.357594 + 0.933877i \(0.616403\pi\)
\(348\) 0 0
\(349\) 20.7481 11.9789i 1.11062 0.641217i 0.171630 0.985161i \(-0.445097\pi\)
0.938990 + 0.343944i \(0.111763\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.5894 −0.829743 −0.414871 0.909880i \(-0.636173\pi\)
−0.414871 + 0.909880i \(0.636173\pi\)
\(354\) 0 0
\(355\) 3.18536i 0.169062i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11.7053 + 6.75809i −0.617785 + 0.356678i −0.776006 0.630726i \(-0.782757\pi\)
0.158221 + 0.987404i \(0.449424\pi\)
\(360\) 0 0
\(361\) 16.1396 27.9545i 0.849451 1.47129i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.200014 + 0.115478i 0.0104692 + 0.00604442i
\(366\) 0 0
\(367\) 19.1785i 1.00111i −0.865705 0.500554i \(-0.833130\pi\)
0.865705 0.500554i \(-0.166870\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.638745 28.5655i 0.0331620 1.48305i
\(372\) 0 0
\(373\) 2.53539 0.131278 0.0656388 0.997843i \(-0.479091\pi\)
0.0656388 + 0.997843i \(0.479091\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.58143 0.0814479
\(378\) 0 0
\(379\) −6.11511 −0.314112 −0.157056 0.987590i \(-0.550200\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.67449 0.289953 0.144976 0.989435i \(-0.453689\pi\)
0.144976 + 0.989435i \(0.453689\pi\)
\(384\) 0 0
\(385\) −2.10666 + 1.15427i −0.107365 + 0.0588271i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7.88653i 0.399863i 0.979810 + 0.199932i \(0.0640720\pi\)
−0.979810 + 0.199932i \(0.935928\pi\)
\(390\) 0 0
\(391\) −3.52283 2.03391i −0.178157 0.102859i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.19244 + 2.06536i −0.0599981 + 0.103920i
\(396\) 0 0
\(397\) 10.2548 5.92061i 0.514674 0.297147i −0.220079 0.975482i \(-0.570632\pi\)
0.734753 + 0.678335i \(0.237298\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 38.1732i 1.90628i −0.302534 0.953139i \(-0.597832\pi\)
0.302534 0.953139i \(-0.402168\pi\)
\(402\) 0 0
\(403\) 9.37742 0.467123
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −23.4407 + 13.5335i −1.16191 + 0.670831i
\(408\) 0 0
\(409\) 11.2828 6.51411i 0.557897 0.322102i −0.194404 0.980922i \(-0.562277\pi\)
0.752301 + 0.658820i \(0.228944\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.1896 + 23.3552i −0.698222 + 1.14923i
\(414\) 0 0
\(415\) −0.467170 0.809162i −0.0229325 0.0397202i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.1454 26.2325i 0.739899 1.28154i −0.212641 0.977130i \(-0.568207\pi\)
0.952540 0.304412i \(-0.0984601\pi\)
\(420\) 0 0
\(421\) −3.20295 5.54767i −0.156102 0.270377i 0.777358 0.629059i \(-0.216560\pi\)
−0.933460 + 0.358682i \(0.883226\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.96301 + 13.7923i −0.386263 + 0.669027i
\(426\) 0 0
\(427\) 0.501789 22.4407i 0.0242833 1.08598i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.0071 + 5.77758i 0.482023 + 0.278296i 0.721259 0.692665i \(-0.243564\pi\)
−0.239236 + 0.970961i \(0.576897\pi\)
\(432\) 0 0
\(433\) 0.696999i 0.0334956i 0.999860 + 0.0167478i \(0.00533125\pi\)
−0.999860 + 0.0167478i \(0.994669\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.53486 7.85460i −0.216932 0.375737i
\(438\) 0 0
\(439\) −20.4771 11.8224i −0.977316 0.564254i −0.0758575 0.997119i \(-0.524169\pi\)
−0.901459 + 0.432865i \(0.857503\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.3308 + 6.54184i 0.538343 + 0.310812i 0.744407 0.667726i \(-0.232732\pi\)
−0.206064 + 0.978538i \(0.566066\pi\)
\(444\) 0 0
\(445\) 0.716594 + 1.24118i 0.0339698 + 0.0588374i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.5463i 0.544906i −0.962169 0.272453i \(-0.912165\pi\)
0.962169 0.272453i \(-0.0878348\pi\)
\(450\) 0 0
\(451\) 2.86908 + 1.65646i 0.135100 + 0.0779998i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.0174266 + 0.779341i −0.000816971 + 0.0365361i
\(456\) 0 0
\(457\) 5.51833 9.55803i 0.258137 0.447106i −0.707606 0.706607i \(-0.750225\pi\)
0.965743 + 0.259501i \(0.0835582\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.69369 + 11.5938i 0.311756 + 0.539978i 0.978743 0.205092i \(-0.0657494\pi\)
−0.666986 + 0.745070i \(0.732416\pi\)
\(462\) 0 0
\(463\) −10.6622 + 18.4675i −0.495515 + 0.858258i −0.999987 0.00517079i \(-0.998354\pi\)
0.504471 + 0.863428i \(0.331687\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.97308 + 13.8098i 0.368950 + 0.639041i 0.989402 0.145204i \(-0.0463839\pi\)
−0.620451 + 0.784245i \(0.713051\pi\)
\(468\) 0 0
\(469\) 11.0633 18.2096i 0.510856 0.840839i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −36.3622 + 20.9937i −1.67194 + 0.965293i
\(474\) 0 0
\(475\) −30.7518 + 17.7546i −1.41099 + 0.814635i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.7187 −1.40357 −0.701787 0.712387i \(-0.747614\pi\)
−0.701787 + 0.712387i \(0.747614\pi\)
\(480\) 0 0
\(481\) 8.78365i 0.400500i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.645933 + 0.372930i −0.0293303 + 0.0169339i
\(486\) 0 0
\(487\) −0.423250 + 0.733091i −0.0191793 + 0.0332195i −0.875456 0.483298i \(-0.839439\pi\)
0.856276 + 0.516518i \(0.172772\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.78204 + 1.02886i 0.0804225 + 0.0464319i 0.539672 0.841875i \(-0.318548\pi\)
−0.459249 + 0.888307i \(0.651882\pi\)
\(492\) 0 0
\(493\) 3.50250i 0.157745i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −36.3767 + 19.9314i −1.63172 + 0.894045i
\(498\) 0 0
\(499\) 41.1863 1.84375 0.921877 0.387483i \(-0.126655\pi\)
0.921877 + 0.387483i \(0.126655\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.48781 0.0663383 0.0331692 0.999450i \(-0.489440\pi\)
0.0331692 + 0.999450i \(0.489440\pi\)
\(504\) 0 0
\(505\) 2.67549 0.119058
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.7882 −0.744123 −0.372062 0.928208i \(-0.621349\pi\)
−0.372062 + 0.928208i \(0.621349\pi\)
\(510\) 0 0
\(511\) −0.0672325 + 3.00673i −0.00297419 + 0.133010i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.75004i 0.121181i
\(516\) 0 0
\(517\) −0.360559 0.208169i −0.0158574 0.00915526i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.00777 + 1.74551i −0.0441512 + 0.0764722i −0.887257 0.461276i \(-0.847392\pi\)
0.843105 + 0.537749i \(0.180725\pi\)
\(522\) 0 0
\(523\) 37.4865 21.6429i 1.63917 0.946376i 0.658052 0.752973i \(-0.271381\pi\)
0.981119 0.193403i \(-0.0619526\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.7688i 0.904704i
\(528\) 0 0
\(529\) 21.3958 0.930254
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.931059 0.537547i 0.0403286 0.0232837i
\(534\) 0 0
\(535\) 2.64325 1.52608i 0.114278 0.0659783i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −26.3635 16.8355i −1.13556 0.725155i
\(540\) 0 0
\(541\) 12.3502 + 21.3912i 0.530977 + 0.919679i 0.999347 + 0.0361463i \(0.0115082\pi\)
−0.468370 + 0.883533i \(0.655158\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.553783 0.959181i 0.0237215 0.0410868i
\(546\) 0 0
\(547\) 5.52320 + 9.56646i 0.236155 + 0.409032i 0.959608 0.281342i \(-0.0907794\pi\)
−0.723453 + 0.690374i \(0.757446\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.90464 6.76304i 0.166343 0.288115i
\(552\) 0 0
\(553\) −31.0477 0.694248i −1.32028 0.0295224i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.3351 12.8952i −0.946369 0.546386i −0.0544176 0.998518i \(-0.517330\pi\)
−0.891951 + 0.452132i \(0.850664\pi\)
\(558\) 0 0
\(559\) 13.6256i 0.576300i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.9859 32.8846i −0.800161 1.38592i −0.919510 0.393067i \(-0.871414\pi\)
0.119349 0.992852i \(-0.461919\pi\)
\(564\) 0 0
\(565\) 1.22522 + 0.707381i 0.0515454 + 0.0297597i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.8834 11.4797i −0.833555 0.481253i 0.0215131 0.999769i \(-0.493152\pi\)
−0.855068 + 0.518515i \(0.826485\pi\)
\(570\) 0 0
\(571\) −5.91228 10.2404i −0.247421 0.428546i 0.715388 0.698727i \(-0.246250\pi\)
−0.962810 + 0.270181i \(0.912916\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.28048i 0.261914i
\(576\) 0 0
\(577\) −22.4185 12.9433i −0.933293 0.538837i −0.0454415 0.998967i \(-0.514469\pi\)
−0.887852 + 0.460130i \(0.847803\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.31743 10.3981i 0.262091 0.431387i
\(582\) 0 0
\(583\) 24.1294 41.7933i 0.999338 1.73090i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.28769 2.23034i −0.0531487 0.0920562i 0.838227 0.545321i \(-0.183592\pi\)
−0.891376 + 0.453265i \(0.850259\pi\)
\(588\) 0 0
\(589\) 23.1534 40.1028i 0.954018 1.65241i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −11.0904 19.2092i −0.455430 0.788828i 0.543283 0.839550i \(-0.317181\pi\)
−0.998713 + 0.0507220i \(0.983848\pi\)
\(594\) 0 0
\(595\) 1.72606 + 0.0385959i 0.0707615 + 0.00158228i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −22.0096 + 12.7072i −0.899287 + 0.519204i −0.876969 0.480547i \(-0.840438\pi\)
−0.0223184 + 0.999751i \(0.507105\pi\)
\(600\) 0 0
\(601\) −3.04486 + 1.75795i −0.124203 + 0.0717084i −0.560814 0.827942i \(-0.689512\pi\)
0.436612 + 0.899650i \(0.356178\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.82224 −0.0740847
\(606\) 0 0
\(607\) 32.7626i 1.32979i 0.746936 + 0.664896i \(0.231524\pi\)
−0.746936 + 0.664896i \(0.768476\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.117007 + 0.0675539i −0.00473359 + 0.00273294i
\(612\) 0 0
\(613\) −0.757167 + 1.31145i −0.0305817 + 0.0529691i −0.880911 0.473282i \(-0.843069\pi\)
0.850329 + 0.526251i \(0.176403\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.52621 + 3.76791i 0.262735 + 0.151690i 0.625582 0.780159i \(-0.284862\pi\)
−0.362846 + 0.931849i \(0.618195\pi\)
\(618\) 0 0
\(619\) 32.6456i 1.31214i −0.754702 0.656068i \(-0.772218\pi\)
0.754702 0.656068i \(-0.227782\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −9.69033 + 15.9497i −0.388235 + 0.639013i
\(624\) 0 0
\(625\) 24.3825 0.975299
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.4537 0.775672
\(630\) 0 0
\(631\) 6.79887 0.270659 0.135329 0.990801i \(-0.456791\pi\)
0.135329 + 0.990801i \(0.456791\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.545976 −0.0216664
\(636\) 0 0
\(637\) −9.00908 + 4.67746i −0.356953 + 0.185328i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.4927i 1.28338i −0.766962 0.641692i \(-0.778233\pi\)
0.766962 0.641692i \(-0.221767\pi\)
\(642\) 0 0
\(643\) −20.5970 11.8917i −0.812267 0.468963i 0.0354756 0.999371i \(-0.488705\pi\)
−0.847742 + 0.530408i \(0.822039\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.1964 + 19.3928i −0.440177 + 0.762410i −0.997702 0.0677505i \(-0.978418\pi\)
0.557525 + 0.830160i \(0.311751\pi\)
\(648\) 0 0
\(649\) −39.9725 + 23.0781i −1.56906 + 0.905895i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.7245i 1.59367i −0.604196 0.796836i \(-0.706506\pi\)
0.604196 0.796836i \(-0.293494\pi\)
\(654\) 0 0
\(655\) 1.24749 0.0487434
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −24.8786 + 14.3637i −0.969134 + 0.559530i −0.898972 0.438006i \(-0.855685\pi\)
−0.0701619 + 0.997536i \(0.522352\pi\)
\(660\) 0 0
\(661\) 32.3398 18.6714i 1.25787 0.726234i 0.285213 0.958464i \(-0.407936\pi\)
0.972661 + 0.232230i \(0.0746023\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.28985 + 1.99876i 0.127575 + 0.0775086i
\(666\) 0 0
\(667\) −0.690612 1.19617i −0.0267406 0.0463161i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.9557 32.8323i 0.731777 1.26748i
\(672\) 0 0
\(673\) −16.5131 28.6015i −0.636532 1.10251i −0.986188 0.165628i \(-0.947035\pi\)
0.349656 0.936878i \(-0.386298\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.4381 18.0793i 0.401169 0.694845i −0.592698 0.805424i \(-0.701937\pi\)
0.993867 + 0.110580i \(0.0352707\pi\)
\(678\) 0 0
\(679\) −8.30056 5.04304i −0.318546 0.193534i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.17377 0.677674i −0.0449129 0.0259305i 0.477375 0.878699i \(-0.341588\pi\)
−0.522288 + 0.852769i \(0.674922\pi\)
\(684\) 0 0
\(685\) 0.870051i 0.0332430i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −7.83036 13.5626i −0.298313 0.516693i
\(690\) 0 0
\(691\) 9.62041 + 5.55435i 0.365978 + 0.211297i 0.671700 0.740823i \(-0.265564\pi\)
−0.305722 + 0.952121i \(0.598898\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.698894 0.403507i −0.0265106 0.0153059i
\(696\) 0 0
\(697\) −1.19054 2.06208i −0.0450950 0.0781068i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0.375966i 0.0142000i −0.999975 0.00710002i \(-0.997740\pi\)
0.999975 0.00710002i \(-0.00226003\pi\)
\(702\) 0 0
\(703\) 37.5635 + 21.6873i 1.41674 + 0.817953i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.7410 + 30.5540i 0.629612 + 1.14910i
\(708\) 0 0
\(709\) −1.94936 + 3.37639i −0.0732098 + 0.126803i −0.900306 0.435257i \(-0.856658\pi\)
0.827097 + 0.562060i \(0.189991\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.09512 7.09296i −0.153364 0.265634i
\(714\) 0 0
\(715\) −0.658312 + 1.14023i −0.0246195 + 0.0426422i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.4338 + 42.3205i 0.911225 + 1.57829i 0.812336 + 0.583190i \(0.198196\pi\)
0.0988894 + 0.995098i \(0.468471\pi\)
\(720\) 0 0
\(721\) −31.4053 + 17.2075i −1.16959 + 0.640840i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.68318 + 2.70384i −0.173929 + 0.100418i
\(726\) 0 0
\(727\) 11.8420 6.83700i 0.439196 0.253570i −0.264060 0.964506i \(-0.585062\pi\)
0.703257 + 0.710936i \(0.251728\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30.1775 1.11615
\(732\) 0 0
\(733\) 16.1607i 0.596910i −0.954424 0.298455i \(-0.903529\pi\)
0.954424 0.298455i \(-0.0964713\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 31.1657 17.9935i 1.14800 0.662800i
\(738\) 0 0
\(739\) 15.7914 27.3515i 0.580895 1.00614i −0.414478 0.910059i \(-0.636036\pi\)
0.995374 0.0960807i \(-0.0306307\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.63924 4.98787i −0.316943 0.182987i 0.333086 0.942896i \(-0.391910\pi\)
−0.650029 + 0.759909i \(0.725243\pi\)
\(744\) 0 0
\(745\) 0.941325i 0.0344875i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.9671 + 20.6369i 1.24113 + 0.754055i
\(750\) 0 0
\(751\) 20.9066 0.762892 0.381446 0.924391i \(-0.375426\pi\)
0.381446 + 0.924391i \(0.375426\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.18884 0.116054
\(756\) 0 0
\(757\) −50.5460 −1.83713 −0.918563 0.395274i \(-0.870650\pi\)
−0.918563 + 0.395274i \(0.870650\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 20.8424 0.755535 0.377768 0.925900i \(-0.376692\pi\)
0.377768 + 0.925900i \(0.376692\pi\)
\(762\) 0 0
\(763\) 14.4189 + 0.322417i 0.522000 + 0.0116723i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14.9784i 0.540838i
\(768\) 0 0
\(769\) 25.3167 + 14.6166i 0.912944 + 0.527088i 0.881377 0.472413i \(-0.156617\pi\)
0.0315668 + 0.999502i \(0.489950\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.9472 + 18.9612i −0.393745 + 0.681986i −0.992940 0.118617i \(-0.962154\pi\)
0.599195 + 0.800603i \(0.295487\pi\)
\(774\) 0 0
\(775\) −27.7699 + 16.0329i −0.997523 + 0.575920i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.30893i 0.190212i
\(780\) 0 0
\(781\) −70.0578 −2.50686
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.33203 + 0.769050i −0.0475423 + 0.0274486i
\(786\) 0 0
\(787\) −7.08328 + 4.08953i −0.252492 + 0.145776i −0.620905 0.783886i \(-0.713235\pi\)
0.368413 + 0.929662i \(0.379901\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.411843 + 18.4182i −0.0146435 + 0.654875i
\(792\) 0 0
\(793\) −6.15142 10.6546i −0.218443 0.378355i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.86546 + 8.42722i −0.172343 + 0.298508i −0.939239 0.343265i \(-0.888467\pi\)
0.766895 + 0.641772i \(0.221801\pi\)
\(798\) 0 0
\(799\) 0.149616 + 0.259143i 0.00529304 + 0.00916782i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.53979 + 4.39905i −0.0896273 + 0.155239i
\(804\) 0 0
\(805\) 0.597094 0.327157i 0.0210448 0.0115308i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −36.2263 20.9153i −1.27365 0.735341i −0.297976 0.954574i \(-0.596311\pi\)
−0.975673 + 0.219232i \(0.929645\pi\)
\(810\) 0 0
\(811\) 40.7323i 1.43031i −0.698968 0.715153i \(-0.746357\pi\)
0.698968 0.715153i \(-0.253643\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0.807539 + 1.39870i 0.0282869 + 0.0489943i
\(816\) 0 0
\(817\) 58.2701 + 33.6423i 2.03861 + 1.17699i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.3422 11.1672i −0.675049 0.389740i 0.122938 0.992414i \(-0.460768\pi\)
−0.797987 + 0.602675i \(0.794102\pi\)
\(822\) 0 0
\(823\) −13.5308 23.4360i −0.471654 0.816929i 0.527820 0.849356i \(-0.323009\pi\)
−0.999474 + 0.0324276i \(0.989676\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.1709i 0.770957i −0.922717 0.385479i \(-0.874036\pi\)
0.922717 0.385479i \(-0.125964\pi\)
\(828\) 0 0
\(829\) −32.2166 18.6003i −1.11893 0.646013i −0.177801 0.984066i \(-0.556898\pi\)
−0.941127 + 0.338053i \(0.890232\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.3595 + 19.9530i 0.358935 + 0.691331i
\(834\) 0 0
\(835\) 0.350162 0.606499i 0.0121179 0.0209888i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7.96294 13.7922i −0.274911 0.476160i 0.695202 0.718815i \(-0.255315\pi\)
−0.970113 + 0.242655i \(0.921982\pi\)
\(840\) 0 0
\(841\) −13.9054 + 24.0848i −0.479495 + 0.830510i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.10703 1.91743i −0.0380829 0.0659615i
\(846\) 0 0
\(847\) −11.4021 20.8099i −0.391781 0.715038i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.64384 3.83582i 0.227748 0.131490i
\(852\) 0 0
\(853\) 40.4364 23.3459i 1.38451 0.799350i 0.391824 0.920040i \(-0.371844\pi\)
0.992690 + 0.120690i \(0.0385107\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.33848 0.182359 0.0911795 0.995834i \(-0.470936\pi\)
0.0911795 + 0.995834i \(0.470936\pi\)
\(858\) 0 0
\(859\) 10.0559i 0.343102i −0.985175 0.171551i \(-0.945122\pi\)
0.985175 0.171551i \(-0.0548779\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 32.7144 18.8877i 1.11361 0.642943i 0.173849 0.984772i \(-0.444380\pi\)
0.939762 + 0.341829i \(0.111046\pi\)
\(864\) 0 0
\(865\) 1.46654 2.54012i 0.0498639 0.0863668i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −45.4249 26.2261i −1.54094 0.889659i
\(870\) 0 0
\(871\) 11.6783i 0.395706i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.57239 4.69486i −0.0869626 0.158715i
\(876\) 0 0
\(877\) −46.5264 −1.57109 −0.785543 0.618807i \(-0.787616\pi\)
−0.785543 + 0.618807i \(0.787616\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.9474 −1.07633 −0.538167 0.842838i \(-0.680883\pi\)
−0.538167 + 0.842838i \(0.680883\pi\)
\(882\) 0 0
\(883\) 38.2919 1.28862 0.644312 0.764763i \(-0.277144\pi\)
0.644312 + 0.764763i \(0.277144\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.6168 1.36378 0.681889 0.731455i \(-0.261159\pi\)
0.681889 + 0.731455i \(0.261159\pi\)
\(888\) 0 0
\(889\) −3.41627 6.23502i −0.114578 0.209116i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.667177i 0.0223262i
\(894\) 0 0
\(895\) −4.00469 2.31211i −0.133862 0.0772852i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.52602 6.10724i 0.117599 0.203688i
\(900\) 0 0
\(901\) −30.0379 + 17.3424i −1.00071 + 0.577760i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.81866i 0.0604543i
\(906\) 0 0
\(907\) 29.9969 0.996030 0.498015 0.867168i \(-0.334062\pi\)
0.498015 + 0.867168i \(0.334062\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −34.2362 + 19.7663i −1.13430 + 0.654886i −0.945012 0.327036i \(-0.893950\pi\)
−0.189284 + 0.981922i \(0.560617\pi\)
\(912\) 0 0
\(913\) 17.7964 10.2748i 0.588976 0.340045i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 7.80576 + 14.2463i 0.257769 + 0.470453i
\(918\) 0 0
\(919\) −9.74272 16.8749i −0.321383 0.556651i 0.659391 0.751800i \(-0.270814\pi\)
−0.980774 + 0.195149i \(0.937481\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.3674 + 19.6889i −0.374163 + 0.648069i
\(924\) 0 0
\(925\) −15.0178 26.0115i −0.493781 0.855253i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.93060 12.0041i 0.227386 0.393843i −0.729647 0.683824i \(-0.760316\pi\)
0.957032 + 0.289981i \(0.0936489\pi\)
\(930\) 0 0
\(931\) −2.24061 + 50.0765i −0.0734330 + 1.64119i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.52534 + 1.45801i 0.0825876 + 0.0476819i
\(936\) 0 0
\(937\) 5.38328i 0.175864i 0.996126 + 0.0879320i \(0.0280258\pi\)
−0.996126 + 0.0879320i \(0.971974\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.28619 5.69185i −0.107127 0.185549i 0.807478 0.589897i \(-0.200832\pi\)
−0.914605 + 0.404348i \(0.867498\pi\)
\(942\) 0 0
\(943\) −0.813188 0.469494i −0.0264810 0.0152888i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −27.7081 15.9973i −0.900392 0.519841i −0.0230644 0.999734i \(-0.507342\pi\)
−0.877327 + 0.479893i \(0.840676\pi\)
\(948\) 0 0
\(949\) 0.824201 + 1.42756i 0.0267547 + 0.0463405i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51.5312i 1.66926i −0.550812 0.834629i \(-0.685682\pi\)
0.550812 0.834629i \(-0.314318\pi\)
\(954\) 0 0
\(955\) 4.31901 + 2.49358i 0.139760 + 0.0806903i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.93595 + 5.44407i −0.320849 + 0.175798i
\(960\) 0 0
\(961\) 5.40825 9.36736i 0.174460 0.302173i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.463773 0.803278i −0.0149294 0.0258584i
\(966\) 0 0
\(967\) −6.01867 + 10.4246i −0.193547 + 0.335234i −0.946423 0.322929i \(-0.895333\pi\)
0.752876 + 0.658162i \(0.228666\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.4783 + 40.6656i 0.753454 + 1.30502i 0.946139 + 0.323761i \(0.104947\pi\)
−0.192685 + 0.981261i \(0.561719\pi\)
\(972\) 0 0
\(973\) 0.234925 10.5062i 0.00753135 0.336812i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.4083 16.4015i 0.908863 0.524732i 0.0287976 0.999585i \(-0.490832\pi\)
0.880065 + 0.474853i \(0.157499\pi\)
\(978\) 0 0
\(979\) −27.2980 + 15.7605i −0.872448 + 0.503708i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.0145 0.957314 0.478657 0.878002i \(-0.341124\pi\)
0.478657 + 0.878002i \(0.341124\pi\)
\(984\) 0 0
\(985\) 2.46485i 0.0785368i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 10.3062 5.95029i 0.327718 0.189208i
\(990\) 0 0
\(991\) −24.9364 + 43.1911i −0.792131 + 1.37201i 0.132514 + 0.991181i \(0.457695\pi\)
−0.924645 + 0.380831i \(0.875638\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.60624 1.50471i −0.0826232 0.0477026i
\(996\) 0 0
\(997\) 1.48520i 0.0470368i 0.999723 + 0.0235184i \(0.00748683\pi\)
−0.999723 + 0.0235184i \(0.992513\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.df.e.17.11 48
3.2 odd 2 1008.2.df.e.689.22 48
4.3 odd 2 1512.2.cx.a.17.11 48
7.5 odd 6 3024.2.ca.e.2609.11 48
9.2 odd 6 3024.2.ca.e.2033.11 48
9.7 even 3 1008.2.ca.e.353.15 48
12.11 even 2 504.2.cx.a.185.3 yes 48
21.5 even 6 1008.2.ca.e.257.15 48
28.19 even 6 1512.2.bs.a.1097.11 48
36.7 odd 6 504.2.bs.a.353.10 yes 48
36.11 even 6 1512.2.bs.a.521.11 48
63.47 even 6 inner 3024.2.df.e.1601.11 48
63.61 odd 6 1008.2.df.e.929.22 48
84.47 odd 6 504.2.bs.a.257.10 48
252.47 odd 6 1512.2.cx.a.89.11 48
252.187 even 6 504.2.cx.a.425.3 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.10 48 84.47 odd 6
504.2.bs.a.353.10 yes 48 36.7 odd 6
504.2.cx.a.185.3 yes 48 12.11 even 2
504.2.cx.a.425.3 yes 48 252.187 even 6
1008.2.ca.e.257.15 48 21.5 even 6
1008.2.ca.e.353.15 48 9.7 even 3
1008.2.df.e.689.22 48 3.2 odd 2
1008.2.df.e.929.22 48 63.61 odd 6
1512.2.bs.a.521.11 48 36.11 even 6
1512.2.bs.a.1097.11 48 28.19 even 6
1512.2.cx.a.17.11 48 4.3 odd 2
1512.2.cx.a.89.11 48 252.47 odd 6
3024.2.ca.e.2033.11 48 9.2 odd 6
3024.2.ca.e.2609.11 48 7.5 odd 6
3024.2.df.e.17.11 48 1.1 even 1 trivial
3024.2.df.e.1601.11 48 63.47 even 6 inner