Properties

Label 1008.2.ca.e.353.15
Level $1008$
Weight $2$
Character 1008.353
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 353.15
Character \(\chi\) \(=\) 1008.353
Dual form 1008.2.ca.e.257.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.445548 + 1.67376i) q^{3} +(-0.101589 + 0.175958i) q^{5} +(1.37377 - 2.26114i) q^{7} +(-2.60297 + 1.49148i) q^{9} +(3.86995 - 2.23432i) q^{11} +(-1.25586 + 0.725070i) q^{13} +(-0.339774 - 0.0916388i) q^{15} +(1.60586 - 2.78143i) q^{17} +(6.20156 - 3.58047i) q^{19} +(4.39670 + 1.29192i) q^{21} +(1.09687 + 0.633276i) q^{23} +(2.47936 + 4.29438i) q^{25} +(-3.65614 - 3.69224i) q^{27} +(-0.944433 - 0.545269i) q^{29} +6.46657i q^{31} +(5.46397 + 5.48189i) q^{33} +(0.258305 + 0.471432i) q^{35} +(3.02855 + 5.24561i) q^{37} +(-1.77314 - 1.77896i) q^{39} +(0.370687 + 0.642048i) q^{41} +(4.69802 - 8.13721i) q^{43} +(0.00199601 - 0.609532i) q^{45} +0.0931689 q^{47} +(-3.22553 - 6.21257i) q^{49} +(5.37095 + 1.44857i) q^{51} +(-9.35260 - 5.39973i) q^{53} +0.907929i q^{55} +(8.75596 + 8.78468i) q^{57} -10.3289 q^{59} +8.48390i q^{61} +(-0.203422 + 7.93465i) q^{63} -0.294637i q^{65} +8.05326 q^{67} +(-0.571249 + 2.11805i) q^{69} +15.6777i q^{71} +(0.984428 + 0.568360i) q^{73} +(-6.08310 + 6.06321i) q^{75} +(0.264302 - 11.8199i) q^{77} +11.7379 q^{79} +(4.55095 - 7.76459i) q^{81} +(-2.29931 + 3.98252i) q^{83} +(0.326276 + 0.565127i) q^{85} +(0.491861 - 1.82370i) q^{87} +(3.52692 + 6.10881i) q^{89} +(-0.0857700 + 3.83575i) q^{91} +(-10.8235 + 2.88117i) q^{93} +1.45495i q^{95} +(3.17914 + 1.83548i) q^{97} +(-6.74093 + 11.5878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.445548 + 1.67376i 0.257237 + 0.966348i
\(4\) 0 0
\(5\) −0.101589 + 0.175958i −0.0454320 + 0.0786906i −0.887847 0.460138i \(-0.847800\pi\)
0.842415 + 0.538829i \(0.181133\pi\)
\(6\) 0 0
\(7\) 1.37377 2.26114i 0.519235 0.854631i
\(8\) 0 0
\(9\) −2.60297 + 1.49148i −0.867658 + 0.497161i
\(10\) 0 0
\(11\) 3.86995 2.23432i 1.16683 0.673672i 0.213902 0.976855i \(-0.431383\pi\)
0.952932 + 0.303183i \(0.0980495\pi\)
\(12\) 0 0
\(13\) −1.25586 + 0.725070i −0.348312 + 0.201098i −0.663942 0.747784i \(-0.731118\pi\)
0.315629 + 0.948883i \(0.397784\pi\)
\(14\) 0 0
\(15\) −0.339774 0.0916388i −0.0877293 0.0236610i
\(16\) 0 0
\(17\) 1.60586 2.78143i 0.389478 0.674596i −0.602901 0.797816i \(-0.705989\pi\)
0.992379 + 0.123220i \(0.0393220\pi\)
\(18\) 0 0
\(19\) 6.20156 3.58047i 1.42274 0.821417i 0.426203 0.904627i \(-0.359851\pi\)
0.996532 + 0.0832106i \(0.0265174\pi\)
\(20\) 0 0
\(21\) 4.39670 + 1.29192i 0.959438 + 0.281919i
\(22\) 0 0
\(23\) 1.09687 + 0.633276i 0.228713 + 0.132047i 0.609978 0.792418i \(-0.291178\pi\)
−0.381265 + 0.924466i \(0.624512\pi\)
\(24\) 0 0
\(25\) 2.47936 + 4.29438i 0.495872 + 0.858875i
\(26\) 0 0
\(27\) −3.65614 3.69224i −0.703625 0.710572i
\(28\) 0 0
\(29\) −0.944433 0.545269i −0.175377 0.101254i 0.409742 0.912202i \(-0.365619\pi\)
−0.585119 + 0.810948i \(0.698952\pi\)
\(30\) 0 0
\(31\) 6.46657i 1.16143i 0.814107 + 0.580715i \(0.197227\pi\)
−0.814107 + 0.580715i \(0.802773\pi\)
\(32\) 0 0
\(33\) 5.46397 + 5.48189i 0.951155 + 0.954274i
\(34\) 0 0
\(35\) 0.258305 + 0.471432i 0.0436616 + 0.0796866i
\(36\) 0 0
\(37\) 3.02855 + 5.24561i 0.497891 + 0.862373i 0.999997 0.00243316i \(-0.000774500\pi\)
−0.502106 + 0.864806i \(0.667441\pi\)
\(38\) 0 0
\(39\) −1.77314 1.77896i −0.283930 0.284861i
\(40\) 0 0
\(41\) 0.370687 + 0.642048i 0.0578915 + 0.100271i 0.893519 0.449026i \(-0.148229\pi\)
−0.835627 + 0.549297i \(0.814896\pi\)
\(42\) 0 0
\(43\) 4.69802 8.13721i 0.716442 1.24091i −0.245959 0.969280i \(-0.579103\pi\)
0.962401 0.271633i \(-0.0875638\pi\)
\(44\) 0 0
\(45\) 0.00199601 0.609532i 0.000297547 0.0908636i
\(46\) 0 0
\(47\) 0.0931689 0.0135901 0.00679504 0.999977i \(-0.497837\pi\)
0.00679504 + 0.999977i \(0.497837\pi\)
\(48\) 0 0
\(49\) −3.22553 6.21257i −0.460790 0.887509i
\(50\) 0 0
\(51\) 5.37095 + 1.44857i 0.752083 + 0.202841i
\(52\) 0 0
\(53\) −9.35260 5.39973i −1.28468 0.741710i −0.306979 0.951716i \(-0.599318\pi\)
−0.977700 + 0.210007i \(0.932651\pi\)
\(54\) 0 0
\(55\) 0.907929i 0.122425i
\(56\) 0 0
\(57\) 8.75596 + 8.78468i 1.15976 + 1.16356i
\(58\) 0 0
\(59\) −10.3289 −1.34471 −0.672356 0.740228i \(-0.734718\pi\)
−0.672356 + 0.740228i \(0.734718\pi\)
\(60\) 0 0
\(61\) 8.48390i 1.08625i 0.839651 + 0.543126i \(0.182759\pi\)
−0.839651 + 0.543126i \(0.817241\pi\)
\(62\) 0 0
\(63\) −0.203422 + 7.93465i −0.0256288 + 0.999672i
\(64\) 0 0
\(65\) 0.294637i 0.0365452i
\(66\) 0 0
\(67\) 8.05326 0.983862 0.491931 0.870634i \(-0.336291\pi\)
0.491931 + 0.870634i \(0.336291\pi\)
\(68\) 0 0
\(69\) −0.571249 + 2.11805i −0.0687703 + 0.254983i
\(70\) 0 0
\(71\) 15.6777i 1.86060i 0.366802 + 0.930299i \(0.380453\pi\)
−0.366802 + 0.930299i \(0.619547\pi\)
\(72\) 0 0
\(73\) 0.984428 + 0.568360i 0.115219 + 0.0665215i 0.556502 0.830846i \(-0.312143\pi\)
−0.441283 + 0.897368i \(0.645477\pi\)
\(74\) 0 0
\(75\) −6.08310 + 6.06321i −0.702416 + 0.700120i
\(76\) 0 0
\(77\) 0.264302 11.8199i 0.0301200 1.34701i
\(78\) 0 0
\(79\) 11.7379 1.32061 0.660306 0.750996i \(-0.270427\pi\)
0.660306 + 0.750996i \(0.270427\pi\)
\(80\) 0 0
\(81\) 4.55095 7.76459i 0.505661 0.862732i
\(82\) 0 0
\(83\) −2.29931 + 3.98252i −0.252382 + 0.437139i −0.964181 0.265245i \(-0.914547\pi\)
0.711799 + 0.702383i \(0.247881\pi\)
\(84\) 0 0
\(85\) 0.326276 + 0.565127i 0.0353896 + 0.0612966i
\(86\) 0 0
\(87\) 0.491861 1.82370i 0.0527331 0.195521i
\(88\) 0 0
\(89\) 3.52692 + 6.10881i 0.373853 + 0.647532i 0.990155 0.139978i \(-0.0447032\pi\)
−0.616302 + 0.787510i \(0.711370\pi\)
\(90\) 0 0
\(91\) −0.0857700 + 3.83575i −0.00899114 + 0.402096i
\(92\) 0 0
\(93\) −10.8235 + 2.88117i −1.12235 + 0.298763i
\(94\) 0 0
\(95\) 1.45495i 0.149275i
\(96\) 0 0
\(97\) 3.17914 + 1.83548i 0.322793 + 0.186365i 0.652637 0.757671i \(-0.273663\pi\)
−0.329844 + 0.944036i \(0.606996\pi\)
\(98\) 0 0
\(99\) −6.74093 + 11.5878i −0.677489 + 1.16462i
\(100\) 0 0
\(101\) −6.58410 11.4040i −0.655143 1.13474i −0.981858 0.189618i \(-0.939275\pi\)
0.326715 0.945123i \(-0.394058\pi\)
\(102\) 0 0
\(103\) −11.7217 6.76754i −1.15498 0.666826i −0.204881 0.978787i \(-0.565681\pi\)
−0.950095 + 0.311961i \(0.899014\pi\)
\(104\) 0 0
\(105\) −0.673979 + 0.642388i −0.0657736 + 0.0626906i
\(106\) 0 0
\(107\) 13.0095 7.51105i 1.25768 0.726121i 0.285056 0.958511i \(-0.407988\pi\)
0.972623 + 0.232390i \(0.0746545\pi\)
\(108\) 0 0
\(109\) 2.72560 4.72088i 0.261065 0.452178i −0.705460 0.708750i \(-0.749260\pi\)
0.966525 + 0.256571i \(0.0825928\pi\)
\(110\) 0 0
\(111\) −7.43055 + 7.40626i −0.705277 + 0.702971i
\(112\) 0 0
\(113\) −6.03027 + 3.48158i −0.567280 + 0.327519i −0.756062 0.654500i \(-0.772879\pi\)
0.188782 + 0.982019i \(0.439546\pi\)
\(114\) 0 0
\(115\) −0.222860 + 0.128668i −0.0207818 + 0.0119984i
\(116\) 0 0
\(117\) 2.18753 3.76043i 0.202238 0.347652i
\(118\) 0 0
\(119\) −4.08313 7.45212i −0.374300 0.683135i
\(120\) 0 0
\(121\) 4.48434 7.76711i 0.407667 0.706101i
\(122\) 0 0
\(123\) −0.909478 + 0.906505i −0.0820049 + 0.0817368i
\(124\) 0 0
\(125\) −2.02340 −0.180978
\(126\) 0 0
\(127\) −2.68718 −0.238448 −0.119224 0.992867i \(-0.538041\pi\)
−0.119224 + 0.992867i \(0.538041\pi\)
\(128\) 0 0
\(129\) 15.7130 + 4.23787i 1.38345 + 0.373123i
\(130\) 0 0
\(131\) −3.06994 + 5.31729i −0.268222 + 0.464573i −0.968403 0.249392i \(-0.919769\pi\)
0.700181 + 0.713965i \(0.253103\pi\)
\(132\) 0 0
\(133\) 0.423541 18.9413i 0.0367257 1.64242i
\(134\) 0 0
\(135\) 1.02110 0.268235i 0.0878824 0.0230860i
\(136\) 0 0
\(137\) 3.70850 2.14110i 0.316839 0.182927i −0.333144 0.942876i \(-0.608110\pi\)
0.649983 + 0.759949i \(0.274776\pi\)
\(138\) 0 0
\(139\) 3.43981 1.98597i 0.291761 0.168448i −0.346975 0.937874i \(-0.612791\pi\)
0.638736 + 0.769426i \(0.279458\pi\)
\(140\) 0 0
\(141\) 0.0415112 + 0.155943i 0.00349587 + 0.0131328i
\(142\) 0 0
\(143\) −3.24007 + 5.61197i −0.270948 + 0.469296i
\(144\) 0 0
\(145\) 0.191888 0.110787i 0.0159355 0.00920034i
\(146\) 0 0
\(147\) 8.96124 8.16677i 0.739111 0.673584i
\(148\) 0 0
\(149\) 4.01230 + 2.31650i 0.328700 + 0.189775i 0.655264 0.755400i \(-0.272557\pi\)
−0.326564 + 0.945175i \(0.605891\pi\)
\(150\) 0 0
\(151\) −7.84739 13.5921i −0.638612 1.10611i −0.985738 0.168290i \(-0.946176\pi\)
0.347126 0.937819i \(-0.387158\pi\)
\(152\) 0 0
\(153\) −0.0315517 + 9.63511i −0.00255081 + 0.778953i
\(154\) 0 0
\(155\) −1.13784 0.656933i −0.0913936 0.0527661i
\(156\) 0 0
\(157\) 7.57020i 0.604167i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976822\pi\)
\(158\) 0 0
\(159\) 4.87084 18.0599i 0.386283 1.43224i
\(160\) 0 0
\(161\) 2.93877 1.61020i 0.231607 0.126901i
\(162\) 0 0
\(163\) 3.97454 + 6.88410i 0.311310 + 0.539204i 0.978646 0.205552i \(-0.0658990\pi\)
−0.667337 + 0.744756i \(0.732566\pi\)
\(164\) 0 0
\(165\) −1.51966 + 0.404526i −0.118305 + 0.0314923i
\(166\) 0 0
\(167\) 1.72342 + 2.98506i 0.133363 + 0.230991i 0.924971 0.380038i \(-0.124089\pi\)
−0.791608 + 0.611029i \(0.790756\pi\)
\(168\) 0 0
\(169\) −5.44855 + 9.43716i −0.419119 + 0.725936i
\(170\) 0 0
\(171\) −10.8023 + 18.5694i −0.826071 + 1.42004i
\(172\) 0 0
\(173\) −14.4360 −1.09755 −0.548775 0.835970i \(-0.684905\pi\)
−0.548775 + 0.835970i \(0.684905\pi\)
\(174\) 0 0
\(175\) 13.1163 + 0.293289i 0.991496 + 0.0221705i
\(176\) 0 0
\(177\) −4.60204 17.2882i −0.345910 1.29946i
\(178\) 0 0
\(179\) −19.7102 11.3797i −1.47321 0.850558i −0.473665 0.880705i \(-0.657069\pi\)
−0.999545 + 0.0301471i \(0.990402\pi\)
\(180\) 0 0
\(181\) 8.95105i 0.665326i 0.943046 + 0.332663i \(0.107947\pi\)
−0.943046 + 0.332663i \(0.892053\pi\)
\(182\) 0 0
\(183\) −14.2000 + 3.77998i −1.04970 + 0.279424i
\(184\) 0 0
\(185\) −1.23067 −0.0904809
\(186\) 0 0
\(187\) 14.3520i 1.04952i
\(188\) 0 0
\(189\) −13.3714 + 3.19478i −0.972624 + 0.232386i
\(190\) 0 0
\(191\) 24.5457i 1.77607i −0.459779 0.888033i \(-0.652072\pi\)
0.459779 0.888033i \(-0.347928\pi\)
\(192\) 0 0
\(193\) 4.56518 0.328609 0.164305 0.986410i \(-0.447462\pi\)
0.164305 + 0.986410i \(0.447462\pi\)
\(194\) 0 0
\(195\) 0.493153 0.131275i 0.0353154 0.00940078i
\(196\) 0 0
\(197\) 12.1315i 0.864333i −0.901794 0.432166i \(-0.857749\pi\)
0.901794 0.432166i \(-0.142251\pi\)
\(198\) 0 0
\(199\) −12.8273 7.40587i −0.909306 0.524988i −0.0290981 0.999577i \(-0.509264\pi\)
−0.880208 + 0.474589i \(0.842597\pi\)
\(200\) 0 0
\(201\) 3.58811 + 13.4793i 0.253086 + 0.950753i
\(202\) 0 0
\(203\) −2.53036 + 1.38643i −0.177597 + 0.0973080i
\(204\) 0 0
\(205\) −0.150631 −0.0105205
\(206\) 0 0
\(207\) −3.79964 0.0124425i −0.264093 0.000864815i
\(208\) 0 0
\(209\) 15.9998 27.7125i 1.10673 1.91691i
\(210\) 0 0
\(211\) 3.77116 + 6.53184i 0.259617 + 0.449670i 0.966139 0.258021i \(-0.0830703\pi\)
−0.706522 + 0.707691i \(0.749737\pi\)
\(212\) 0 0
\(213\) −26.2407 + 6.98515i −1.79799 + 0.478615i
\(214\) 0 0
\(215\) 0.954536 + 1.65331i 0.0650988 + 0.112754i
\(216\) 0 0
\(217\) 14.6218 + 8.88356i 0.992594 + 0.603055i
\(218\) 0 0
\(219\) −0.512691 + 1.90093i −0.0346444 + 0.128453i
\(220\) 0 0
\(221\) 4.65744i 0.313293i
\(222\) 0 0
\(223\) 25.2846 + 14.5980i 1.69318 + 0.977557i 0.951924 + 0.306334i \(0.0991024\pi\)
0.741255 + 0.671224i \(0.234231\pi\)
\(224\) 0 0
\(225\) −12.8587 7.48023i −0.857247 0.498682i
\(226\) 0 0
\(227\) −14.5787 25.2511i −0.967625 1.67598i −0.702390 0.711793i \(-0.747884\pi\)
−0.265236 0.964184i \(-0.585450\pi\)
\(228\) 0 0
\(229\) −15.0793 8.70604i −0.996469 0.575312i −0.0892672 0.996008i \(-0.528453\pi\)
−0.907202 + 0.420696i \(0.861786\pi\)
\(230\) 0 0
\(231\) 19.9016 4.82397i 1.30943 0.317394i
\(232\) 0 0
\(233\) −14.3517 + 8.28596i −0.940212 + 0.542831i −0.890027 0.455908i \(-0.849314\pi\)
−0.0501850 + 0.998740i \(0.515981\pi\)
\(234\) 0 0
\(235\) −0.00946495 + 0.0163938i −0.000617425 + 0.00106941i
\(236\) 0 0
\(237\) 5.22978 + 19.6464i 0.339711 + 1.27617i
\(238\) 0 0
\(239\) 8.45527 4.88165i 0.546926 0.315768i −0.200955 0.979600i \(-0.564405\pi\)
0.747881 + 0.663833i \(0.231071\pi\)
\(240\) 0 0
\(241\) 9.40347 5.42909i 0.605731 0.349719i −0.165562 0.986199i \(-0.552944\pi\)
0.771293 + 0.636481i \(0.219610\pi\)
\(242\) 0 0
\(243\) 15.0238 + 4.15772i 0.963775 + 0.266718i
\(244\) 0 0
\(245\) 1.42083 + 0.0635731i 0.0907733 + 0.00406154i
\(246\) 0 0
\(247\) −5.19218 + 8.99313i −0.330371 + 0.572219i
\(248\) 0 0
\(249\) −7.69026 2.07410i −0.487350 0.131441i
\(250\) 0 0
\(251\) −27.4155 −1.73045 −0.865224 0.501385i \(-0.832824\pi\)
−0.865224 + 0.501385i \(0.832824\pi\)
\(252\) 0 0
\(253\) 5.65976 0.355826
\(254\) 0 0
\(255\) −0.800517 + 0.797900i −0.0501303 + 0.0499664i
\(256\) 0 0
\(257\) −13.6584 + 23.6571i −0.851989 + 1.47569i 0.0274208 + 0.999624i \(0.491271\pi\)
−0.879410 + 0.476065i \(0.842063\pi\)
\(258\) 0 0
\(259\) 16.0216 + 0.358254i 0.995534 + 0.0222608i
\(260\) 0 0
\(261\) 3.27160 + 0.0107134i 0.202507 + 0.000663141i
\(262\) 0 0
\(263\) 11.9650 6.90798i 0.737792 0.425964i −0.0834742 0.996510i \(-0.526602\pi\)
0.821266 + 0.570546i \(0.193268\pi\)
\(264\) 0 0
\(265\) 1.90025 1.09711i 0.116731 0.0673948i
\(266\) 0 0
\(267\) −8.65329 + 8.62500i −0.529573 + 0.527841i
\(268\) 0 0
\(269\) −10.7471 + 18.6145i −0.655260 + 1.13494i 0.326568 + 0.945174i \(0.394108\pi\)
−0.981828 + 0.189770i \(0.939226\pi\)
\(270\) 0 0
\(271\) −27.2614 + 15.7394i −1.65601 + 0.956101i −0.681488 + 0.731829i \(0.738667\pi\)
−0.974527 + 0.224271i \(0.928000\pi\)
\(272\) 0 0
\(273\) −6.45835 + 1.56545i −0.390877 + 0.0947454i
\(274\) 0 0
\(275\) 19.1900 + 11.0793i 1.15720 + 0.668110i
\(276\) 0 0
\(277\) 5.92040 + 10.2544i 0.355722 + 0.616129i 0.987241 0.159231i \(-0.0509015\pi\)
−0.631519 + 0.775361i \(0.717568\pi\)
\(278\) 0 0
\(279\) −9.64478 16.8323i −0.577418 1.00772i
\(280\) 0 0
\(281\) −19.4588 11.2346i −1.16082 0.670198i −0.209317 0.977848i \(-0.567124\pi\)
−0.951500 + 0.307650i \(0.900457\pi\)
\(282\) 0 0
\(283\) 1.35876i 0.0807697i 0.999184 + 0.0403848i \(0.0128584\pi\)
−0.999184 + 0.0403848i \(0.987142\pi\)
\(284\) 0 0
\(285\) −2.43524 + 0.648249i −0.144251 + 0.0383990i
\(286\) 0 0
\(287\) 1.96100 + 0.0438493i 0.115754 + 0.00258834i
\(288\) 0 0
\(289\) 3.34242 + 5.78925i 0.196613 + 0.340544i
\(290\) 0 0
\(291\) −1.65570 + 6.13893i −0.0970588 + 0.359871i
\(292\) 0 0
\(293\) 8.10060 + 14.0307i 0.473242 + 0.819680i 0.999531 0.0306263i \(-0.00975018\pi\)
−0.526289 + 0.850306i \(0.676417\pi\)
\(294\) 0 0
\(295\) 1.04931 1.81745i 0.0610931 0.105816i
\(296\) 0 0
\(297\) −22.3987 6.11980i −1.29971 0.355107i
\(298\) 0 0
\(299\) −1.83668 −0.106218
\(300\) 0 0
\(301\) −11.9454 21.8015i −0.688522 1.25662i
\(302\) 0 0
\(303\) 16.1541 16.1013i 0.928027 0.924993i
\(304\) 0 0
\(305\) −1.49281 0.861872i −0.0854778 0.0493506i
\(306\) 0 0
\(307\) 9.22930i 0.526744i −0.964694 0.263372i \(-0.915165\pi\)
0.964694 0.263372i \(-0.0848346\pi\)
\(308\) 0 0
\(309\) 6.10468 22.6347i 0.347283 1.28764i
\(310\) 0 0
\(311\) 0.626668 0.0355351 0.0177676 0.999842i \(-0.494344\pi\)
0.0177676 + 0.999842i \(0.494344\pi\)
\(312\) 0 0
\(313\) 5.12142i 0.289480i 0.989470 + 0.144740i \(0.0462345\pi\)
−0.989470 + 0.144740i \(0.953765\pi\)
\(314\) 0 0
\(315\) −1.37550 0.841868i −0.0775004 0.0474339i
\(316\) 0 0
\(317\) 4.18928i 0.235294i −0.993055 0.117647i \(-0.962465\pi\)
0.993055 0.117647i \(-0.0375351\pi\)
\(318\) 0 0
\(319\) −4.87321 −0.272848
\(320\) 0 0
\(321\) 18.3681 + 18.4283i 1.02521 + 1.02857i
\(322\) 0 0
\(323\) 22.9990i 1.27970i
\(324\) 0 0
\(325\) −6.22744 3.59542i −0.345436 0.199438i
\(326\) 0 0
\(327\) 9.11603 + 2.45864i 0.504118 + 0.135963i
\(328\) 0 0
\(329\) 0.127992 0.210668i 0.00705645 0.0116145i
\(330\) 0 0
\(331\) −25.9419 −1.42590 −0.712949 0.701216i \(-0.752641\pi\)
−0.712949 + 0.701216i \(0.752641\pi\)
\(332\) 0 0
\(333\) −15.7070 9.13715i −0.860738 0.500713i
\(334\) 0 0
\(335\) −0.818123 + 1.41703i −0.0446989 + 0.0774207i
\(336\) 0 0
\(337\) 8.40130 + 14.5515i 0.457648 + 0.792669i 0.998836 0.0482321i \(-0.0153587\pi\)
−0.541188 + 0.840901i \(0.682025\pi\)
\(338\) 0 0
\(339\) −8.51412 8.54204i −0.462423 0.463940i
\(340\) 0 0
\(341\) 14.4484 + 25.0253i 0.782423 + 1.35520i
\(342\) 0 0
\(343\) −18.4786 1.24124i −0.997752 0.0670206i
\(344\) 0 0
\(345\) −0.314655 0.315687i −0.0169404 0.0169960i
\(346\) 0 0
\(347\) 28.9338i 1.55325i −0.629965 0.776624i \(-0.716931\pi\)
0.629965 0.776624i \(-0.283069\pi\)
\(348\) 0 0
\(349\) −20.7481 11.9789i −1.11062 0.641217i −0.171630 0.985161i \(-0.554903\pi\)
−0.938990 + 0.343944i \(0.888237\pi\)
\(350\) 0 0
\(351\) 7.26872 + 1.98597i 0.387976 + 0.106003i
\(352\) 0 0
\(353\) 7.79472 + 13.5009i 0.414871 + 0.718578i 0.995415 0.0956510i \(-0.0304933\pi\)
−0.580544 + 0.814229i \(0.697160\pi\)
\(354\) 0 0
\(355\) −2.75861 1.59268i −0.146412 0.0845308i
\(356\) 0 0
\(357\) 10.6539 10.1545i 0.563862 0.537432i
\(358\) 0 0
\(359\) −11.7053 + 6.75809i −0.617785 + 0.356678i −0.776006 0.630726i \(-0.782757\pi\)
0.158221 + 0.987404i \(0.449424\pi\)
\(360\) 0 0
\(361\) 16.1396 27.9545i 0.849451 1.47129i
\(362\) 0 0
\(363\) 14.9983 + 4.04511i 0.787207 + 0.212313i
\(364\) 0 0
\(365\) −0.200014 + 0.115478i −0.0104692 + 0.00604442i
\(366\) 0 0
\(367\) −16.6091 + 9.58924i −0.866986 + 0.500554i −0.866345 0.499445i \(-0.833537\pi\)
−0.000640244 1.00000i \(0.500204\pi\)
\(368\) 0 0
\(369\) −1.92249 1.11836i −0.100081 0.0582195i
\(370\) 0 0
\(371\) −25.0578 + 13.7296i −1.30094 + 0.712805i
\(372\) 0 0
\(373\) −1.26770 + 2.19571i −0.0656388 + 0.113690i −0.896977 0.442077i \(-0.854242\pi\)
0.831338 + 0.555767i \(0.187575\pi\)
\(374\) 0 0
\(375\) −0.901519 3.38669i −0.0465543 0.174888i
\(376\) 0 0
\(377\) 1.58143 0.0814479
\(378\) 0 0
\(379\) −6.11511 −0.314112 −0.157056 0.987590i \(-0.550200\pi\)
−0.157056 + 0.987590i \(0.550200\pi\)
\(380\) 0 0
\(381\) −1.19727 4.49770i −0.0613378 0.230424i
\(382\) 0 0
\(383\) −2.83725 + 4.91425i −0.144976 + 0.251107i −0.929364 0.369164i \(-0.879644\pi\)
0.784388 + 0.620271i \(0.212977\pi\)
\(384\) 0 0
\(385\) 2.05296 + 1.24728i 0.104628 + 0.0635674i
\(386\) 0 0
\(387\) −0.0923061 + 28.1880i −0.00469218 + 1.43288i
\(388\) 0 0
\(389\) 6.82994 3.94327i 0.346292 0.199932i −0.316759 0.948506i \(-0.602595\pi\)
0.663051 + 0.748574i \(0.269261\pi\)
\(390\) 0 0
\(391\) 3.52283 2.03391i 0.178157 0.102859i
\(392\) 0 0
\(393\) −10.2677 2.76925i −0.517936 0.139690i
\(394\) 0 0
\(395\) −1.19244 + 2.06536i −0.0599981 + 0.103920i
\(396\) 0 0
\(397\) 10.2548 5.92061i 0.514674 0.297147i −0.220079 0.975482i \(-0.570632\pi\)
0.734753 + 0.678335i \(0.237298\pi\)
\(398\) 0 0
\(399\) 31.8921 7.73037i 1.59660 0.387002i
\(400\) 0 0
\(401\) 33.0589 + 19.0866i 1.65088 + 0.953139i 0.976709 + 0.214567i \(0.0688342\pi\)
0.674175 + 0.738571i \(0.264499\pi\)
\(402\) 0 0
\(403\) −4.68871 8.12109i −0.233561 0.404540i
\(404\) 0 0
\(405\) 0.903911 + 1.58957i 0.0449157 + 0.0789865i
\(406\) 0 0
\(407\) 23.4407 + 13.5335i 1.16191 + 0.670831i
\(408\) 0 0
\(409\) 13.0282i 0.644204i 0.946705 + 0.322102i \(0.104389\pi\)
−0.946705 + 0.322102i \(0.895611\pi\)
\(410\) 0 0
\(411\) 5.23602 + 5.25319i 0.258274 + 0.259121i
\(412\) 0 0
\(413\) −14.1896 + 23.3552i −0.698222 + 1.14923i
\(414\) 0 0
\(415\) −0.467170 0.809162i −0.0229325 0.0397202i
\(416\) 0 0
\(417\) 4.85665 + 4.87258i 0.237831 + 0.238611i
\(418\) 0 0
\(419\) 15.1454 + 26.2325i 0.739899 + 1.28154i 0.952540 + 0.304412i \(0.0984601\pi\)
−0.212641 + 0.977130i \(0.568207\pi\)
\(420\) 0 0
\(421\) −3.20295 + 5.54767i −0.156102 + 0.270377i −0.933460 0.358682i \(-0.883226\pi\)
0.777358 + 0.629059i \(0.216560\pi\)
\(422\) 0 0
\(423\) −0.242516 + 0.138960i −0.0117915 + 0.00675646i
\(424\) 0 0
\(425\) 15.9260 0.772525
\(426\) 0 0
\(427\) 19.1833 + 11.6549i 0.928345 + 0.564020i
\(428\) 0 0
\(429\) −10.8367 2.92271i −0.523202 0.141110i
\(430\) 0 0
\(431\) 10.0071 + 5.77758i 0.482023 + 0.278296i 0.721259 0.692665i \(-0.243564\pi\)
−0.239236 + 0.970961i \(0.576897\pi\)
\(432\) 0 0
\(433\) 0.696999i 0.0334956i 0.999860 + 0.0167478i \(0.00533125\pi\)
−0.999860 + 0.0167478i \(0.994669\pi\)
\(434\) 0 0
\(435\) 0.270926 + 0.271815i 0.0129899 + 0.0130325i
\(436\) 0 0
\(437\) 9.06971 0.433863
\(438\) 0 0
\(439\) 23.6449i 1.12851i 0.825601 + 0.564254i \(0.190836\pi\)
−0.825601 + 0.564254i \(0.809164\pi\)
\(440\) 0 0
\(441\) 17.6619 + 11.3603i 0.841043 + 0.540968i
\(442\) 0 0
\(443\) 13.0837i 0.621625i −0.950471 0.310812i \(-0.899399\pi\)
0.950471 0.310812i \(-0.100601\pi\)
\(444\) 0 0
\(445\) −1.43319 −0.0679396
\(446\) 0 0
\(447\) −2.08961 + 7.74775i −0.0988349 + 0.366456i
\(448\) 0 0
\(449\) 11.5463i 0.544906i −0.962169 0.272453i \(-0.912165\pi\)
0.962169 0.272453i \(-0.0878348\pi\)
\(450\) 0 0
\(451\) 2.86908 + 1.65646i 0.135100 + 0.0779998i
\(452\) 0 0
\(453\) 19.2536 19.1906i 0.904611 0.901654i
\(454\) 0 0
\(455\) −0.666216 0.404762i −0.0312327 0.0189755i
\(456\) 0 0
\(457\) −11.0367 −0.516273 −0.258137 0.966108i \(-0.583108\pi\)
−0.258137 + 0.966108i \(0.583108\pi\)
\(458\) 0 0
\(459\) −16.1410 + 4.24009i −0.753396 + 0.197911i
\(460\) 0 0
\(461\) 6.69369 11.5938i 0.311756 0.539978i −0.666986 0.745070i \(-0.732416\pi\)
0.978743 + 0.205092i \(0.0657494\pi\)
\(462\) 0 0
\(463\) −10.6622 18.4675i −0.495515 0.858258i 0.504471 0.863428i \(-0.331687\pi\)
−0.999987 + 0.00517079i \(0.998354\pi\)
\(464\) 0 0
\(465\) 0.592588 2.19717i 0.0274806 0.101891i
\(466\) 0 0
\(467\) 7.97308 + 13.8098i 0.368950 + 0.639041i 0.989402 0.145204i \(-0.0463839\pi\)
−0.620451 + 0.784245i \(0.713051\pi\)
\(468\) 0 0
\(469\) 11.0633 18.2096i 0.510856 0.840839i
\(470\) 0 0
\(471\) 12.6707 3.37288i 0.583836 0.155414i
\(472\) 0 0
\(473\) 41.9875i 1.93059i
\(474\) 0 0
\(475\) 30.7518 + 17.7546i 1.41099 + 0.814635i
\(476\) 0 0
\(477\) 32.3982 + 0.106093i 1.48341 + 0.00485767i
\(478\) 0 0
\(479\) 15.3594 + 26.6032i 0.701787 + 1.21553i 0.967839 + 0.251572i \(0.0809476\pi\)
−0.266051 + 0.963959i \(0.585719\pi\)
\(480\) 0 0
\(481\) −7.60687 4.39183i −0.346843 0.200250i
\(482\) 0 0
\(483\) 4.00445 + 4.20138i 0.182209 + 0.191170i
\(484\) 0 0
\(485\) −0.645933 + 0.372930i −0.0293303 + 0.0169339i
\(486\) 0 0
\(487\) −0.423250 + 0.733091i −0.0191793 + 0.0332195i −0.875456 0.483298i \(-0.839439\pi\)
0.856276 + 0.516518i \(0.172772\pi\)
\(488\) 0 0
\(489\) −9.75151 + 9.71963i −0.440979 + 0.439537i
\(490\) 0 0
\(491\) −1.78204 + 1.02886i −0.0804225 + 0.0464319i −0.539672 0.841875i \(-0.681452\pi\)
0.459249 + 0.888307i \(0.348118\pi\)
\(492\) 0 0
\(493\) −3.03326 + 1.75125i −0.136611 + 0.0788724i
\(494\) 0 0
\(495\) −1.35416 2.36332i −0.0608651 0.106223i
\(496\) 0 0
\(497\) 35.4495 + 21.5375i 1.59013 + 0.966088i
\(498\) 0 0
\(499\) −20.5932 + 35.6684i −0.921877 + 1.59674i −0.125368 + 0.992110i \(0.540011\pi\)
−0.796509 + 0.604627i \(0.793322\pi\)
\(500\) 0 0
\(501\) −4.22842 + 4.21459i −0.188912 + 0.188294i
\(502\) 0 0
\(503\) 1.48781 0.0663383 0.0331692 0.999450i \(-0.489440\pi\)
0.0331692 + 0.999450i \(0.489440\pi\)
\(504\) 0 0
\(505\) 2.67549 0.119058
\(506\) 0 0
\(507\) −18.2232 4.91488i −0.809320 0.218277i
\(508\) 0 0
\(509\) 8.39409 14.5390i 0.372062 0.644430i −0.617821 0.786319i \(-0.711984\pi\)
0.989883 + 0.141889i \(0.0453176\pi\)
\(510\) 0 0
\(511\) 2.63752 1.44514i 0.116677 0.0639292i
\(512\) 0 0
\(513\) −35.8937 9.80692i −1.58475 0.432986i
\(514\) 0 0
\(515\) 2.38160 1.37502i 0.104946 0.0605905i
\(516\) 0 0
\(517\) 0.360559 0.208169i 0.0158574 0.00915526i
\(518\) 0 0
\(519\) −6.43193 24.1625i −0.282330 1.06061i
\(520\) 0 0
\(521\) −1.00777 + 1.74551i −0.0441512 + 0.0764722i −0.887257 0.461276i \(-0.847392\pi\)
0.843105 + 0.537749i \(0.180725\pi\)
\(522\) 0 0
\(523\) 37.4865 21.6429i 1.63917 0.946376i 0.658052 0.752973i \(-0.271381\pi\)
0.981119 0.193403i \(-0.0619526\pi\)
\(524\) 0 0
\(525\) 5.35302 + 22.0842i 0.233625 + 0.963833i
\(526\) 0 0
\(527\) 17.9863 + 10.3844i 0.783496 + 0.452352i
\(528\) 0 0
\(529\) −10.6979 18.5293i −0.465127 0.805624i
\(530\) 0 0
\(531\) 26.8860 15.4054i 1.16675 0.668539i
\(532\) 0 0
\(533\) −0.931059 0.537547i −0.0403286 0.0232837i
\(534\) 0 0
\(535\) 3.05217i 0.131957i
\(536\) 0 0
\(537\) 10.2651 38.0604i 0.442971 1.64243i
\(538\) 0 0
\(539\) −26.3635 16.8355i −1.13556 0.725155i
\(540\) 0 0
\(541\) 12.3502 + 21.3912i 0.530977 + 0.919679i 0.999347 + 0.0361463i \(0.0115082\pi\)
−0.468370 + 0.883533i \(0.655158\pi\)
\(542\) 0 0
\(543\) −14.9819 + 3.98812i −0.642937 + 0.171147i
\(544\) 0 0
\(545\) 0.553783 + 0.959181i 0.0237215 + 0.0410868i
\(546\) 0 0
\(547\) 5.52320 9.56646i 0.236155 0.409032i −0.723453 0.690374i \(-0.757446\pi\)
0.959608 + 0.281342i \(0.0907794\pi\)
\(548\) 0 0
\(549\) −12.6536 22.0834i −0.540042 0.942495i
\(550\) 0 0
\(551\) −7.80928 −0.332687
\(552\) 0 0
\(553\) 16.1251 26.5410i 0.685708 1.12864i
\(554\) 0 0
\(555\) −0.548324 2.05986i −0.0232750 0.0874360i
\(556\) 0 0
\(557\) −22.3351 12.8952i −0.946369 0.546386i −0.0544176 0.998518i \(-0.517330\pi\)
−0.891951 + 0.452132i \(0.850664\pi\)
\(558\) 0 0
\(559\) 13.6256i 0.576300i
\(560\) 0 0
\(561\) 24.0219 6.39450i 1.01420 0.269976i
\(562\) 0 0
\(563\) 37.9718 1.60032 0.800161 0.599786i \(-0.204747\pi\)
0.800161 + 0.599786i \(0.204747\pi\)
\(564\) 0 0
\(565\) 1.41476i 0.0595195i
\(566\) 0 0
\(567\) −11.3049 20.9571i −0.474761 0.880115i
\(568\) 0 0
\(569\) 22.9594i 0.962507i 0.876582 + 0.481253i \(0.159818\pi\)
−0.876582 + 0.481253i \(0.840182\pi\)
\(570\) 0 0
\(571\) 11.8246 0.494842 0.247421 0.968908i \(-0.420417\pi\)
0.247421 + 0.968908i \(0.420417\pi\)
\(572\) 0 0
\(573\) 41.0838 10.9363i 1.71630 0.456870i
\(574\) 0 0
\(575\) 6.28048i 0.261914i
\(576\) 0 0
\(577\) −22.4185 12.9433i −0.933293 0.538837i −0.0454415 0.998967i \(-0.514469\pi\)
−0.887852 + 0.460130i \(0.847803\pi\)
\(578\) 0 0
\(579\) 2.03401 + 7.64104i 0.0845305 + 0.317551i
\(580\) 0 0
\(581\) 5.84633 + 10.6701i 0.242547 + 0.442671i
\(582\) 0 0
\(583\) −48.2588 −1.99868
\(584\) 0 0
\(585\) 0.439446 + 0.766932i 0.0181689 + 0.0317087i
\(586\) 0 0
\(587\) −1.28769 + 2.23034i −0.0531487 + 0.0920562i −0.891376 0.453265i \(-0.850259\pi\)
0.838227 + 0.545321i \(0.183592\pi\)
\(588\) 0 0
\(589\) 23.1534 + 40.1028i 0.954018 + 1.65241i
\(590\) 0 0
\(591\) 20.3053 5.40516i 0.835247 0.222339i
\(592\) 0 0
\(593\) −11.0904 19.2092i −0.455430 0.788828i 0.543283 0.839550i \(-0.317181\pi\)
−0.998713 + 0.0507220i \(0.983848\pi\)
\(594\) 0 0
\(595\) 1.72606 + 0.0385959i 0.0707615 + 0.00158228i
\(596\) 0 0
\(597\) 6.68048 24.7696i 0.273414 1.01375i
\(598\) 0 0
\(599\) 25.4145i 1.03841i −0.854650 0.519204i \(-0.826229\pi\)
0.854650 0.519204i \(-0.173771\pi\)
\(600\) 0 0
\(601\) 3.04486 + 1.75795i 0.124203 + 0.0717084i 0.560814 0.827942i \(-0.310488\pi\)
−0.436612 + 0.899650i \(0.643822\pi\)
\(602\) 0 0
\(603\) −20.9624 + 12.0113i −0.853656 + 0.489138i
\(604\) 0 0
\(605\) 0.911121 + 1.57811i 0.0370423 + 0.0641592i
\(606\) 0 0
\(607\) −28.3732 16.3813i −1.15163 0.664896i −0.202349 0.979314i \(-0.564857\pi\)
−0.949285 + 0.314418i \(0.898191\pi\)
\(608\) 0 0
\(609\) −3.44795 3.61751i −0.139718 0.146589i
\(610\) 0 0
\(611\) −0.117007 + 0.0675539i −0.00473359 + 0.00273294i
\(612\) 0 0
\(613\) −0.757167 + 1.31145i −0.0305817 + 0.0529691i −0.880911 0.473282i \(-0.843069\pi\)
0.850329 + 0.526251i \(0.176403\pi\)
\(614\) 0 0
\(615\) −0.0671133 0.252121i −0.00270627 0.0101665i
\(616\) 0 0
\(617\) −6.52621 + 3.76791i −0.262735 + 0.151690i −0.625582 0.780159i \(-0.715138\pi\)
0.362846 + 0.931849i \(0.381805\pi\)
\(618\) 0 0
\(619\) −28.2719 + 16.3228i −1.13634 + 0.656068i −0.945522 0.325557i \(-0.894448\pi\)
−0.190821 + 0.981625i \(0.561115\pi\)
\(620\) 0 0
\(621\) −1.67209 6.36524i −0.0670988 0.255428i
\(622\) 0 0
\(623\) 18.6580 + 0.417207i 0.747519 + 0.0167150i
\(624\) 0 0
\(625\) −12.1912 + 21.1158i −0.487650 + 0.844634i
\(626\) 0 0
\(627\) 53.5129 + 14.4327i 2.13710 + 0.576386i
\(628\) 0 0
\(629\) 19.4537 0.775672
\(630\) 0 0
\(631\) 6.79887 0.270659 0.135329 0.990801i \(-0.456791\pi\)
0.135329 + 0.990801i \(0.456791\pi\)
\(632\) 0 0
\(633\) −9.25252 + 9.22228i −0.367755 + 0.366553i
\(634\) 0 0
\(635\) 0.272988 0.472829i 0.0108332 0.0187636i
\(636\) 0 0
\(637\) 8.55535 + 5.46336i 0.338975 + 0.216466i
\(638\) 0 0
\(639\) −23.3830 40.8086i −0.925017 1.61436i
\(640\) 0 0
\(641\) −28.1395 + 16.2464i −1.11144 + 0.641692i −0.939203 0.343362i \(-0.888434\pi\)
−0.172241 + 0.985055i \(0.555101\pi\)
\(642\) 0 0
\(643\) 20.5970 11.8917i 0.812267 0.468963i −0.0354756 0.999371i \(-0.511295\pi\)
0.847742 + 0.530408i \(0.177961\pi\)
\(644\) 0 0
\(645\) −2.34195 + 2.33430i −0.0922143 + 0.0919128i
\(646\) 0 0
\(647\) −11.1964 + 19.3928i −0.440177 + 0.762410i −0.997702 0.0677505i \(-0.978418\pi\)
0.557525 + 0.830160i \(0.311751\pi\)
\(648\) 0 0
\(649\) −39.9725 + 23.0781i −1.56906 + 0.905895i
\(650\) 0 0
\(651\) −8.35426 + 28.4315i −0.327429 + 1.11432i
\(652\) 0 0
\(653\) 35.2684 + 20.3622i 1.38016 + 0.796836i 0.992178 0.124831i \(-0.0398390\pi\)
0.387982 + 0.921667i \(0.373172\pi\)
\(654\) 0 0
\(655\) −0.623744 1.08036i −0.0243717 0.0422130i
\(656\) 0 0
\(657\) −3.41014 0.0111671i −0.133042 0.000435668i
\(658\) 0 0
\(659\) 24.8786 + 14.3637i 0.969134 + 0.559530i 0.898972 0.438006i \(-0.144315\pi\)
0.0701619 + 0.997536i \(0.477648\pi\)
\(660\) 0 0
\(661\) 37.3428i 1.45247i 0.687448 + 0.726234i \(0.258731\pi\)
−0.687448 + 0.726234i \(0.741269\pi\)
\(662\) 0 0
\(663\) −7.79546 + 2.07511i −0.302751 + 0.0805907i
\(664\) 0 0
\(665\) 3.28985 + 1.99876i 0.127575 + 0.0775086i
\(666\) 0 0
\(667\) −0.690612 1.19617i −0.0267406 0.0463161i
\(668\) 0 0
\(669\) −13.1682 + 48.8245i −0.509112 + 1.88766i
\(670\) 0 0
\(671\) 18.9557 + 32.8323i 0.731777 + 1.26748i
\(672\) 0 0
\(673\) −16.5131 + 28.6015i −0.636532 + 1.10251i 0.349656 + 0.936878i \(0.386298\pi\)
−0.986188 + 0.165628i \(0.947035\pi\)
\(674\) 0 0
\(675\) 6.79097 24.8552i 0.261384 0.956679i
\(676\) 0 0
\(677\) −20.8762 −0.802338 −0.401169 0.916004i \(-0.631396\pi\)
−0.401169 + 0.916004i \(0.631396\pi\)
\(678\) 0 0
\(679\) 8.51768 4.66698i 0.326879 0.179102i
\(680\) 0 0
\(681\) 35.7689 35.6520i 1.37067 1.36619i
\(682\) 0 0
\(683\) −1.17377 0.677674i −0.0449129 0.0259305i 0.477375 0.878699i \(-0.341588\pi\)
−0.522288 + 0.852769i \(0.674922\pi\)
\(684\) 0 0
\(685\) 0.870051i 0.0332430i
\(686\) 0 0
\(687\) 7.85331 29.1182i 0.299623 1.11093i
\(688\) 0 0
\(689\) 15.6607 0.596626
\(690\) 0 0
\(691\) 11.1087i 0.422595i −0.977422 0.211297i \(-0.932231\pi\)
0.977422 0.211297i \(-0.0677688\pi\)
\(692\) 0 0
\(693\) 16.9413 + 31.1612i 0.643546 + 1.18372i
\(694\) 0 0
\(695\) 0.807014i 0.0306118i
\(696\) 0 0
\(697\) 2.38108 0.0901900
\(698\) 0 0
\(699\) −20.2631 20.3296i −0.766422 0.768936i
\(700\) 0 0
\(701\) 0.375966i 0.0142000i −0.999975 0.00710002i \(-0.997740\pi\)
0.999975 0.00710002i \(-0.00226003\pi\)
\(702\) 0 0
\(703\) 37.5635 + 21.6873i 1.41674 + 0.817953i
\(704\) 0 0
\(705\) −0.0316564 0.00853788i −0.00119225 0.000321555i
\(706\) 0 0
\(707\) −34.8311 0.778847i −1.30996 0.0292916i
\(708\) 0 0
\(709\) 3.89872 0.146420 0.0732098 0.997317i \(-0.476676\pi\)
0.0732098 + 0.997317i \(0.476676\pi\)
\(710\) 0 0
\(711\) −30.5533 + 17.5068i −1.14584 + 0.656557i
\(712\) 0 0
\(713\) −4.09512 + 7.09296i −0.153364 + 0.265634i
\(714\) 0 0
\(715\) −0.658312 1.14023i −0.0246195 0.0426422i
\(716\) 0 0
\(717\) 11.9380 + 11.9771i 0.445831 + 0.447294i
\(718\) 0 0
\(719\) 24.4338 + 42.3205i 0.911225 + 1.57829i 0.812336 + 0.583190i \(0.198196\pi\)
0.0988894 + 0.995098i \(0.468471\pi\)
\(720\) 0 0
\(721\) −31.4053 + 17.2075i −1.16959 + 0.640840i
\(722\) 0 0
\(723\) 13.2767 + 13.3203i 0.493767 + 0.495386i
\(724\) 0 0
\(725\) 5.40767i 0.200836i
\(726\) 0 0
\(727\) −11.8420 6.83700i −0.439196 0.253570i 0.264060 0.964506i \(-0.414938\pi\)
−0.703257 + 0.710936i \(0.748272\pi\)
\(728\) 0 0
\(729\) −0.265242 + 26.9987i −0.00982379 + 0.999952i
\(730\) 0 0
\(731\) −15.0887 26.1345i −0.558077 0.966618i
\(732\) 0 0
\(733\) 13.9956 + 8.08036i 0.516939 + 0.298455i 0.735681 0.677328i \(-0.236862\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(734\) 0 0
\(735\) 0.526640 + 2.40645i 0.0194254 + 0.0887634i
\(736\) 0 0
\(737\) 31.1657 17.9935i 1.14800 0.662800i
\(738\) 0 0
\(739\) 15.7914 27.3515i 0.580895 1.00614i −0.414478 0.910059i \(-0.636036\pi\)
0.995374 0.0960807i \(-0.0306307\pi\)
\(740\) 0 0
\(741\) −17.3657 4.68362i −0.637946 0.172057i
\(742\) 0 0
\(743\) 8.63924 4.98787i 0.316943 0.182987i −0.333086 0.942896i \(-0.608090\pi\)
0.650029 + 0.759909i \(0.274757\pi\)
\(744\) 0 0
\(745\) −0.815211 + 0.470662i −0.0298670 + 0.0172437i
\(746\) 0 0
\(747\) 0.0451765 13.7958i 0.00165292 0.504761i
\(748\) 0 0
\(749\) 0.888498 39.7348i 0.0324650 1.45188i
\(750\) 0 0
\(751\) −10.4533 + 18.1056i −0.381446 + 0.660684i −0.991269 0.131854i \(-0.957907\pi\)
0.609823 + 0.792537i \(0.291240\pi\)
\(752\) 0 0
\(753\) −12.2149 45.8870i −0.445136 1.67222i
\(754\) 0 0
\(755\) 3.18884 0.116054
\(756\) 0 0
\(757\) −50.5460 −1.83713 −0.918563 0.395274i \(-0.870650\pi\)
−0.918563 + 0.395274i \(0.870650\pi\)
\(758\) 0 0
\(759\) 2.52169 + 9.47310i 0.0915317 + 0.343852i
\(760\) 0 0
\(761\) −10.4212 + 18.0500i −0.377768 + 0.654313i −0.990737 0.135794i \(-0.956642\pi\)
0.612969 + 0.790107i \(0.289975\pi\)
\(762\) 0 0
\(763\) −6.93024 12.6484i −0.250892 0.457902i
\(764\) 0 0
\(765\) −1.69217 0.984374i −0.0611804 0.0355901i
\(766\) 0 0
\(767\) 12.9717 7.48920i 0.468380 0.270419i
\(768\) 0 0
\(769\) −25.3167 + 14.6166i −0.912944 + 0.527088i −0.881377 0.472413i \(-0.843383\pi\)
−0.0315668 + 0.999502i \(0.510050\pi\)
\(770\) 0 0
\(771\) −45.6819 12.3206i −1.64519 0.443716i
\(772\) 0 0
\(773\) −10.9472 + 18.9612i −0.393745 + 0.681986i −0.992940 0.118617i \(-0.962154\pi\)
0.599195 + 0.800603i \(0.295487\pi\)
\(774\) 0 0
\(775\) −27.7699 + 16.0329i −0.997523 + 0.575920i
\(776\) 0 0
\(777\) 6.53876 + 26.9760i 0.234577 + 0.967759i
\(778\) 0 0
\(779\) 4.59767 + 2.65447i 0.164729 + 0.0951061i
\(780\) 0 0
\(781\) 35.0289 + 60.6718i 1.25343 + 2.17101i
\(782\) 0 0
\(783\) 1.43972 + 5.48065i 0.0514514 + 0.195863i
\(784\) 0 0
\(785\) 1.33203 + 0.769050i 0.0475423 + 0.0274486i
\(786\) 0 0
\(787\) 8.17907i 0.291552i −0.989318 0.145776i \(-0.953432\pi\)
0.989318 0.145776i \(-0.0465679\pi\)
\(788\) 0 0
\(789\) 16.8933 + 16.9487i 0.601417 + 0.603390i
\(790\) 0 0
\(791\) −0.411843 + 18.4182i −0.0146435 + 0.654875i
\(792\) 0 0
\(793\) −6.15142 10.6546i −0.218443 0.378355i
\(794\) 0 0
\(795\) 2.68295 + 2.69175i 0.0951544 + 0.0954665i
\(796\) 0 0
\(797\) −4.86546 8.42722i −0.172343 0.298508i 0.766895 0.641772i \(-0.221801\pi\)
−0.939239 + 0.343265i \(0.888467\pi\)
\(798\) 0 0
\(799\) 0.149616 0.259143i 0.00529304 0.00916782i
\(800\) 0 0
\(801\) −18.2917 10.6407i −0.646304 0.375971i
\(802\) 0 0
\(803\) 5.07959 0.179255
\(804\) 0 0
\(805\) −0.0152204 + 0.680677i −0.000536449 + 0.0239907i
\(806\) 0 0
\(807\) −35.9446 9.69442i −1.26531 0.341260i
\(808\) 0 0
\(809\) −36.2263 20.9153i −1.27365 0.735341i −0.297976 0.954574i \(-0.596311\pi\)
−0.975673 + 0.219232i \(0.929645\pi\)
\(810\) 0 0
\(811\) 40.7323i 1.43031i −0.698968 0.715153i \(-0.746357\pi\)
0.698968 0.715153i \(-0.253643\pi\)
\(812\) 0 0
\(813\) −38.4903 38.6166i −1.34991 1.35434i
\(814\) 0 0
\(815\) −1.61508 −0.0565737
\(816\) 0 0
\(817\) 67.2846i 2.35399i
\(818\) 0 0
\(819\) −5.49770 10.1123i −0.192105 0.353352i
\(820\) 0 0
\(821\) 22.3345i 0.779479i 0.920925 + 0.389740i \(0.127435\pi\)
−0.920925 + 0.389740i \(0.872565\pi\)
\(822\) 0 0
\(823\) 27.0616 0.943308 0.471654 0.881784i \(-0.343657\pi\)
0.471654 + 0.881784i \(0.343657\pi\)
\(824\) 0 0
\(825\) −9.99416 + 37.0559i −0.347952 + 1.29012i
\(826\) 0 0
\(827\) 22.1709i 0.770957i −0.922717 0.385479i \(-0.874036\pi\)
0.922717 0.385479i \(-0.125964\pi\)
\(828\) 0 0
\(829\) −32.2166 18.6003i −1.11893 0.646013i −0.177801 0.984066i \(-0.556898\pi\)
−0.941127 + 0.338053i \(0.890232\pi\)
\(830\) 0 0
\(831\) −14.5257 + 14.4782i −0.503891 + 0.502243i
\(832\) 0 0
\(833\) −22.4596 1.00493i −0.778178 0.0348186i
\(834\) 0 0
\(835\) −0.700325 −0.0242357
\(836\) 0 0
\(837\) 23.8761 23.6427i 0.825279 0.817211i
\(838\) 0 0
\(839\) −7.96294 + 13.7922i −0.274911 + 0.476160i −0.970113 0.242655i \(-0.921982\pi\)
0.695202 + 0.718815i \(0.255315\pi\)
\(840\) 0 0
\(841\) −13.9054 24.0848i −0.479495 0.830510i
\(842\) 0 0
\(843\) 10.1342 37.5750i 0.349039 1.29415i
\(844\) 0 0
\(845\) −1.10703 1.91743i −0.0380829 0.0659615i
\(846\) 0 0
\(847\) −11.4021 20.8099i −0.391781 0.715038i
\(848\) 0 0
\(849\) −2.27424 + 0.605391i −0.0780516 + 0.0207770i
\(850\) 0 0
\(851\) 7.67165i 0.262981i
\(852\) 0 0
\(853\) −40.4364 23.3459i −1.38451 0.799350i −0.391824 0.920040i \(-0.628156\pi\)
−0.992690 + 0.120690i \(0.961489\pi\)
\(854\) 0 0
\(855\) −2.17003 3.78719i −0.0742135 0.129519i
\(856\) 0 0
\(857\) −2.66924 4.62326i −0.0911795 0.157928i 0.816828 0.576881i \(-0.195730\pi\)
−0.908008 + 0.418953i \(0.862397\pi\)
\(858\) 0 0
\(859\) 8.70865 + 5.02794i 0.297135 + 0.171551i 0.641155 0.767411i \(-0.278455\pi\)
−0.344020 + 0.938962i \(0.611789\pi\)
\(860\) 0 0
\(861\) 0.800325 + 3.30179i 0.0272750 + 0.112525i
\(862\) 0 0
\(863\) 32.7144 18.8877i 1.11361 0.642943i 0.173849 0.984772i \(-0.444380\pi\)
0.939762 + 0.341829i \(0.111046\pi\)
\(864\) 0 0
\(865\) 1.46654 2.54012i 0.0498639 0.0863668i
\(866\) 0 0
\(867\) −8.20063 + 8.17382i −0.278508 + 0.277597i
\(868\) 0 0
\(869\) 45.4249 26.2261i 1.54094 0.889659i
\(870\) 0 0
\(871\) −10.1137 + 5.83917i −0.342691 + 0.197853i
\(872\) 0 0
\(873\) −11.0128 0.0360633i −0.372727 0.00122056i
\(874\) 0 0
\(875\) −2.77967 + 4.57518i −0.0939701 + 0.154669i
\(876\) 0 0
\(877\) 23.2632 40.2931i 0.785543 1.36060i −0.143131 0.989704i \(-0.545717\pi\)
0.928674 0.370897i \(-0.120950\pi\)
\(878\) 0 0
\(879\) −19.8748 + 19.8098i −0.670361 + 0.668169i
\(880\) 0 0
\(881\) −31.9474 −1.07633 −0.538167 0.842838i \(-0.680883\pi\)
−0.538167 + 0.842838i \(0.680883\pi\)
\(882\) 0 0
\(883\) 38.2919 1.28862 0.644312 0.764763i \(-0.277144\pi\)
0.644312 + 0.764763i \(0.277144\pi\)
\(884\) 0 0
\(885\) 3.50951 + 0.946531i 0.117971 + 0.0318173i
\(886\) 0 0
\(887\) −20.3084 + 35.1752i −0.681889 + 1.18107i 0.292514 + 0.956261i \(0.405508\pi\)
−0.974404 + 0.224806i \(0.927825\pi\)
\(888\) 0 0
\(889\) −3.69155 + 6.07609i −0.123811 + 0.203785i
\(890\) 0 0
\(891\) 0.263396 40.2168i 0.00882409 1.34731i
\(892\) 0 0
\(893\) 0.577793 0.333589i 0.0193351 0.0111631i
\(894\) 0 0
\(895\) 4.00469 2.31211i 0.133862 0.0772852i
\(896\) 0 0
\(897\) −0.818328 3.07417i −0.0273232 0.102643i
\(898\) 0 0
\(899\) 3.52602 6.10724i 0.117599 0.203688i
\(900\) 0 0
\(901\) −30.0379 + 17.3424i −1.00071 + 0.577760i
\(902\) 0 0
\(903\) 31.1684 29.7074i 1.03722 0.988601i
\(904\) 0 0
\(905\) −1.57500 0.909330i −0.0523549 0.0302271i
\(906\) 0 0
\(907\) −14.9984 25.9781i −0.498015 0.862588i 0.501982 0.864878i \(-0.332604\pi\)
−0.999997 + 0.00229028i \(0.999271\pi\)
\(908\) 0 0
\(909\) 34.1471 + 19.8642i 1.13259 + 0.658855i
\(910\) 0 0
\(911\) 34.2362 + 19.7663i 1.13430 + 0.654886i 0.945012 0.327036i \(-0.106050\pi\)
0.189284 + 0.981922i \(0.439383\pi\)
\(912\) 0 0
\(913\) 20.5495i 0.680091i
\(914\) 0 0
\(915\) 0.777454 2.88261i 0.0257018 0.0952962i
\(916\) 0 0
\(917\) 7.80576 + 14.2463i 0.257769 + 0.470453i
\(918\) 0 0
\(919\) −9.74272 16.8749i −0.321383 0.556651i 0.659391 0.751800i \(-0.270814\pi\)
−0.980774 + 0.195149i \(0.937481\pi\)
\(920\) 0 0
\(921\) 15.4477 4.11209i 0.509018 0.135498i
\(922\) 0 0
\(923\) −11.3674 19.6889i −0.374163 0.648069i
\(924\) 0 0
\(925\) −15.0178 + 26.0115i −0.493781 + 0.855253i
\(926\) 0 0
\(927\) 40.6050 + 0.132968i 1.33364 + 0.00436723i
\(928\) 0 0
\(929\) −13.8612 −0.454771 −0.227386 0.973805i \(-0.573018\pi\)
−0.227386 + 0.973805i \(0.573018\pi\)
\(930\) 0 0
\(931\) −42.2472 26.9787i −1.38460 0.884191i
\(932\) 0 0
\(933\) 0.279211 + 1.04890i 0.00914095 + 0.0343393i
\(934\) 0 0
\(935\) 2.52534 + 1.45801i 0.0825876 + 0.0476819i
\(936\) 0 0
\(937\) 5.38328i 0.175864i 0.996126 + 0.0879320i \(0.0280258\pi\)
−0.996126 + 0.0879320i \(0.971974\pi\)
\(938\) 0 0
\(939\) −8.57204 + 2.28184i −0.279738 + 0.0744649i
\(940\) 0 0
\(941\) 6.57238 0.214253 0.107127 0.994245i \(-0.465835\pi\)
0.107127 + 0.994245i \(0.465835\pi\)
\(942\) 0 0
\(943\) 0.938988i 0.0305777i
\(944\) 0 0
\(945\) 0.796239 2.67735i 0.0259017 0.0870941i
\(946\) 0 0
\(947\) 31.9945i 1.03968i 0.854263 + 0.519841i \(0.174009\pi\)
−0.854263 + 0.519841i \(0.825991\pi\)
\(948\) 0 0
\(949\) −1.64840 −0.0535094
\(950\) 0 0
\(951\) 7.01187 1.86653i 0.227376 0.0605263i
\(952\) 0 0
\(953\) 51.5312i 1.66926i −0.550812 0.834629i \(-0.685682\pi\)
0.550812 0.834629i \(-0.314318\pi\)
\(954\) 0 0
\(955\) 4.31901 + 2.49358i 0.139760 + 0.0806903i
\(956\) 0 0
\(957\) −2.17125 8.15661i −0.0701865 0.263666i
\(958\) 0 0
\(959\) 0.253276 11.3268i 0.00817869 0.365762i
\(960\) 0 0
\(961\) −10.8165 −0.348919
\(962\) 0 0
\(963\) −22.6608 + 38.9546i −0.730236 + 1.25529i
\(964\) 0 0
\(965\) −0.463773 + 0.803278i −0.0149294 + 0.0258584i
\(966\) 0 0
\(967\) −6.01867 10.4246i −0.193547 0.335234i 0.752876 0.658162i \(-0.228666\pi\)
−0.946423 + 0.322929i \(0.895333\pi\)
\(968\) 0 0
\(969\) 38.4948 10.2471i 1.23663 0.329185i
\(970\) 0 0
\(971\) 23.4783 + 40.6656i 0.753454 + 1.30502i 0.946139 + 0.323761i \(0.104947\pi\)
−0.192685 + 0.981261i \(0.561719\pi\)
\(972\) 0 0
\(973\) 0.234925 10.5062i 0.00753135 0.336812i
\(974\) 0 0
\(975\) 3.24326 12.0252i 0.103867 0.385115i
\(976\) 0 0
\(977\) 32.8031i 1.04946i 0.851267 + 0.524732i \(0.175834\pi\)
−0.851267 + 0.524732i \(0.824166\pi\)
\(978\) 0 0
\(979\) 27.2980 + 15.7605i 0.872448 + 0.503708i
\(980\) 0 0
\(981\) −0.0535523 + 16.3535i −0.00170979 + 0.522128i
\(982\) 0 0
\(983\) −15.0073 25.9933i −0.478657 0.829059i 0.521043 0.853530i \(-0.325543\pi\)
−0.999701 + 0.0244717i \(0.992210\pi\)
\(984\) 0 0
\(985\) 2.13463 + 1.23243i 0.0680149 + 0.0392684i
\(986\) 0 0
\(987\) 0.409636 + 0.120366i 0.0130388 + 0.00383130i
\(988\) 0 0
\(989\) 10.3062 5.95029i 0.327718 0.189208i
\(990\) 0 0
\(991\) −24.9364 + 43.1911i −0.792131 + 1.37201i 0.132514 + 0.991181i \(0.457695\pi\)
−0.924645 + 0.380831i \(0.875638\pi\)
\(992\) 0 0
\(993\) −11.5584 43.4207i −0.366794 1.37791i
\(994\) 0 0
\(995\) 2.60624 1.50471i 0.0826232 0.0477026i
\(996\) 0 0
\(997\) 1.28622 0.742601i 0.0407351 0.0235184i −0.479494 0.877545i \(-0.659180\pi\)
0.520229 + 0.854027i \(0.325847\pi\)
\(998\) 0 0
\(999\) 8.29521 30.3608i 0.262449 0.960575i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.353.15 48
3.2 odd 2 3024.2.ca.e.2033.11 48
4.3 odd 2 504.2.bs.a.353.10 yes 48
7.5 odd 6 1008.2.df.e.929.22 48
9.4 even 3 3024.2.df.e.17.11 48
9.5 odd 6 1008.2.df.e.689.22 48
12.11 even 2 1512.2.bs.a.521.11 48
21.5 even 6 3024.2.df.e.1601.11 48
28.19 even 6 504.2.cx.a.425.3 yes 48
36.23 even 6 504.2.cx.a.185.3 yes 48
36.31 odd 6 1512.2.cx.a.17.11 48
63.5 even 6 inner 1008.2.ca.e.257.15 48
63.40 odd 6 3024.2.ca.e.2609.11 48
84.47 odd 6 1512.2.cx.a.89.11 48
252.103 even 6 1512.2.bs.a.1097.11 48
252.131 odd 6 504.2.bs.a.257.10 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.10 48 252.131 odd 6
504.2.bs.a.353.10 yes 48 4.3 odd 2
504.2.cx.a.185.3 yes 48 36.23 even 6
504.2.cx.a.425.3 yes 48 28.19 even 6
1008.2.ca.e.257.15 48 63.5 even 6 inner
1008.2.ca.e.353.15 48 1.1 even 1 trivial
1008.2.df.e.689.22 48 9.5 odd 6
1008.2.df.e.929.22 48 7.5 odd 6
1512.2.bs.a.521.11 48 12.11 even 2
1512.2.bs.a.1097.11 48 252.103 even 6
1512.2.cx.a.17.11 48 36.31 odd 6
1512.2.cx.a.89.11 48 84.47 odd 6
3024.2.ca.e.2033.11 48 3.2 odd 2
3024.2.ca.e.2609.11 48 63.40 odd 6
3024.2.df.e.17.11 48 9.4 even 3
3024.2.df.e.1601.11 48 21.5 even 6