L(s) = 1 | + 0.203·5-s + (1.27 + 2.32i)7-s + 4.46i·11-s + (1.25 + 0.725i)13-s + (1.60 − 2.78i)17-s + (6.20 − 3.58i)19-s − 1.26i·23-s − 4.95·25-s + (0.944 − 0.545i)29-s + (5.60 − 3.23i)31-s + (0.258 + 0.471i)35-s + (3.02 + 5.24i)37-s + (0.370 − 0.642i)41-s + (4.69 + 8.13i)43-s + (−0.0465 + 0.0806i)47-s + ⋯ |
L(s) = 1 | + 0.0908·5-s + (0.480 + 0.876i)7-s + 1.34i·11-s + (0.348 + 0.201i)13-s + (0.389 − 0.674i)17-s + (1.42 − 0.821i)19-s − 0.264i·23-s − 0.991·25-s + (0.175 − 0.101i)29-s + (1.00 − 0.580i)31-s + (0.0436 + 0.0796i)35-s + (0.497 + 0.862i)37-s + (0.0578 − 0.100i)41-s + (0.716 + 1.24i)43-s + (−0.00679 + 0.0117i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.483 - 0.875i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.068025106\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.068025106\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.27 - 2.32i)T \) |
good | 5 | \( 1 - 0.203T + 5T^{2} \) |
| 11 | \( 1 - 4.46iT - 11T^{2} \) |
| 13 | \( 1 + (-1.25 - 0.725i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.60 + 2.78i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-6.20 + 3.58i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.26iT - 23T^{2} \) |
| 29 | \( 1 + (-0.944 + 0.545i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.60 + 3.23i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.02 - 5.24i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.370 + 0.642i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.69 - 8.13i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.0465 - 0.0806i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (9.35 + 5.39i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.16 - 8.94i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.34 + 4.24i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.02 + 6.97i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 15.6iT - 71T^{2} \) |
| 73 | \( 1 + (-0.984 - 0.568i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.86 - 10.1i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.29 + 3.98i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.52 - 6.10i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.17 - 1.83i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.940121245290112062990449401480, −7.976863912437286589781556177837, −7.49278189349375767664417885595, −6.57470486016206133487599120716, −5.76382040026805545436076527322, −4.91782951999300474313914949242, −4.39525698716144850720136772341, −3.04248922367032301174699156753, −2.30006303095905529861386923263, −1.19597832548486293511197087418,
0.75050993152363673763633286404, 1.66342899939003185132618141687, 3.19293169892384376605374674271, 3.68862157026992443247312736432, 4.68597301336130291931518369067, 5.75202026024802071038175693156, 6.06962710262778756015756067430, 7.30398810469382808870919576696, 7.84815187246474011539161656162, 8.450004777886337010374265238625