Properties

Label 1008.2.df.e.689.17
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.17
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.e.929.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.03050 - 1.39215i) q^{3} +2.20884 q^{5} +(-2.16520 - 1.52049i) q^{7} +(-0.876153 - 2.86921i) q^{9} +0.181913i q^{11} +(2.50424 + 1.44582i) q^{13} +(2.27620 - 3.07503i) q^{15} +(1.98511 - 3.43832i) q^{17} +(-0.867067 + 0.500601i) q^{19} +(-4.34798 + 1.44743i) q^{21} -5.61313i q^{23} -0.121025 q^{25} +(-4.89724 - 1.73697i) q^{27} +(0.703311 - 0.406057i) q^{29} +(6.89908 - 3.98319i) q^{31} +(0.253250 + 0.187461i) q^{33} +(-4.78259 - 3.35852i) q^{35} +(1.25614 + 2.17569i) q^{37} +(4.59341 - 1.99636i) q^{39} +(-0.612906 + 1.06158i) q^{41} +(-5.47716 - 9.48671i) q^{43} +(-1.93528 - 6.33762i) q^{45} +(-3.57551 + 6.19296i) q^{47} +(2.37622 + 6.58434i) q^{49} +(-2.74100 - 6.30675i) q^{51} +(-1.75586 - 1.01374i) q^{53} +0.401817i q^{55} +(-0.196598 + 1.72295i) q^{57} +(3.27911 + 5.67958i) q^{59} +(6.97275 + 4.02572i) q^{61} +(-2.46555 + 7.54460i) q^{63} +(5.53147 + 3.19359i) q^{65} +(3.44505 + 5.96701i) q^{67} +(-7.81431 - 5.78431i) q^{69} +11.4168i q^{71} +(-10.1861 - 5.88094i) q^{73} +(-0.124716 + 0.168485i) q^{75} +(0.276597 - 0.393879i) q^{77} +(6.35501 - 11.0072i) q^{79} +(-7.46471 + 5.02773i) q^{81} +(7.19085 + 12.4549i) q^{83} +(4.38480 - 7.59470i) q^{85} +(0.159468 - 1.39755i) q^{87} +(-7.11375 - 12.3214i) q^{89} +(-3.22383 - 6.93818i) q^{91} +(1.56429 - 13.7092i) q^{93} +(-1.91521 + 1.10575i) q^{95} +(-3.01040 + 1.73805i) q^{97} +(0.521946 - 0.159384i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{9} - 8 q^{15} - 10 q^{21} + 48 q^{25} - 18 q^{27} + 18 q^{29} - 18 q^{31} + 12 q^{33} + 4 q^{39} - 6 q^{41} + 6 q^{43} - 18 q^{45} - 18 q^{47} - 12 q^{49} - 6 q^{51} - 12 q^{53} + 4 q^{57} + 18 q^{61}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.03050 1.39215i 0.594958 0.803757i
\(4\) 0 0
\(5\) 2.20884 0.987823 0.493912 0.869512i \(-0.335567\pi\)
0.493912 + 0.869512i \(0.335567\pi\)
\(6\) 0 0
\(7\) −2.16520 1.52049i −0.818370 0.574691i
\(8\) 0 0
\(9\) −0.876153 2.86921i −0.292051 0.956403i
\(10\) 0 0
\(11\) 0.181913i 0.0548488i 0.999624 + 0.0274244i \(0.00873056\pi\)
−0.999624 + 0.0274244i \(0.991269\pi\)
\(12\) 0 0
\(13\) 2.50424 + 1.44582i 0.694551 + 0.400999i 0.805315 0.592847i \(-0.201996\pi\)
−0.110763 + 0.993847i \(0.535330\pi\)
\(14\) 0 0
\(15\) 2.27620 3.07503i 0.587713 0.793970i
\(16\) 0 0
\(17\) 1.98511 3.43832i 0.481461 0.833915i −0.518313 0.855191i \(-0.673440\pi\)
0.999774 + 0.0212765i \(0.00677302\pi\)
\(18\) 0 0
\(19\) −0.867067 + 0.500601i −0.198919 + 0.114846i −0.596151 0.802872i \(-0.703304\pi\)
0.397232 + 0.917718i \(0.369971\pi\)
\(20\) 0 0
\(21\) −4.34798 + 1.44743i −0.948808 + 0.315854i
\(22\) 0 0
\(23\) 5.61313i 1.17042i −0.810882 0.585210i \(-0.801012\pi\)
0.810882 0.585210i \(-0.198988\pi\)
\(24\) 0 0
\(25\) −0.121025 −0.0242050
\(26\) 0 0
\(27\) −4.89724 1.73697i −0.942473 0.334281i
\(28\) 0 0
\(29\) 0.703311 0.406057i 0.130602 0.0754028i −0.433276 0.901261i \(-0.642642\pi\)
0.563877 + 0.825859i \(0.309309\pi\)
\(30\) 0 0
\(31\) 6.89908 3.98319i 1.23911 0.715401i 0.270199 0.962805i \(-0.412911\pi\)
0.968913 + 0.247403i \(0.0795772\pi\)
\(32\) 0 0
\(33\) 0.253250 + 0.187461i 0.0440851 + 0.0326327i
\(34\) 0 0
\(35\) −4.78259 3.35852i −0.808405 0.567693i
\(36\) 0 0
\(37\) 1.25614 + 2.17569i 0.206507 + 0.357681i 0.950612 0.310382i \(-0.100457\pi\)
−0.744105 + 0.668063i \(0.767124\pi\)
\(38\) 0 0
\(39\) 4.59341 1.99636i 0.735535 0.319673i
\(40\) 0 0
\(41\) −0.612906 + 1.06158i −0.0957198 + 0.165792i −0.909909 0.414808i \(-0.863849\pi\)
0.814189 + 0.580600i \(0.197182\pi\)
\(42\) 0 0
\(43\) −5.47716 9.48671i −0.835259 1.44671i −0.893820 0.448426i \(-0.851985\pi\)
0.0585613 0.998284i \(-0.481349\pi\)
\(44\) 0 0
\(45\) −1.93528 6.33762i −0.288495 0.944757i
\(46\) 0 0
\(47\) −3.57551 + 6.19296i −0.521542 + 0.903336i 0.478145 + 0.878281i \(0.341309\pi\)
−0.999686 + 0.0250552i \(0.992024\pi\)
\(48\) 0 0
\(49\) 2.37622 + 6.58434i 0.339460 + 0.940620i
\(50\) 0 0
\(51\) −2.74100 6.30675i −0.383816 0.883121i
\(52\) 0 0
\(53\) −1.75586 1.01374i −0.241186 0.139249i 0.374536 0.927212i \(-0.377802\pi\)
−0.615722 + 0.787964i \(0.711135\pi\)
\(54\) 0 0
\(55\) 0.401817i 0.0541810i
\(56\) 0 0
\(57\) −0.196598 + 1.72295i −0.0260401 + 0.228211i
\(58\) 0 0
\(59\) 3.27911 + 5.67958i 0.426903 + 0.739418i 0.996596 0.0824396i \(-0.0262712\pi\)
−0.569693 + 0.821858i \(0.692938\pi\)
\(60\) 0 0
\(61\) 6.97275 + 4.02572i 0.892769 + 0.515440i 0.874847 0.484399i \(-0.160962\pi\)
0.0179215 + 0.999839i \(0.494295\pi\)
\(62\) 0 0
\(63\) −2.46555 + 7.54460i −0.310630 + 0.950531i
\(64\) 0 0
\(65\) 5.53147 + 3.19359i 0.686094 + 0.396117i
\(66\) 0 0
\(67\) 3.44505 + 5.96701i 0.420880 + 0.728986i 0.996026 0.0890650i \(-0.0283879\pi\)
−0.575145 + 0.818051i \(0.695055\pi\)
\(68\) 0 0
\(69\) −7.81431 5.78431i −0.940733 0.696350i
\(70\) 0 0
\(71\) 11.4168i 1.35492i 0.735560 + 0.677460i \(0.236919\pi\)
−0.735560 + 0.677460i \(0.763081\pi\)
\(72\) 0 0
\(73\) −10.1861 5.88094i −1.19219 0.688312i −0.233388 0.972384i \(-0.574981\pi\)
−0.958803 + 0.284072i \(0.908315\pi\)
\(74\) 0 0
\(75\) −0.124716 + 0.168485i −0.0144009 + 0.0194549i
\(76\) 0 0
\(77\) 0.276597 0.393879i 0.0315211 0.0448867i
\(78\) 0 0
\(79\) 6.35501 11.0072i 0.714994 1.23841i −0.247968 0.968768i \(-0.579763\pi\)
0.962962 0.269638i \(-0.0869040\pi\)
\(80\) 0 0
\(81\) −7.46471 + 5.02773i −0.829412 + 0.558637i
\(82\) 0 0
\(83\) 7.19085 + 12.4549i 0.789298 + 1.36710i 0.926397 + 0.376547i \(0.122889\pi\)
−0.137099 + 0.990557i \(0.543778\pi\)
\(84\) 0 0
\(85\) 4.38480 7.59470i 0.475598 0.823760i
\(86\) 0 0
\(87\) 0.159468 1.39755i 0.0170968 0.149833i
\(88\) 0 0
\(89\) −7.11375 12.3214i −0.754055 1.30606i −0.945843 0.324626i \(-0.894762\pi\)
0.191787 0.981437i \(-0.438572\pi\)
\(90\) 0 0
\(91\) −3.22383 6.93818i −0.337949 0.727319i
\(92\) 0 0
\(93\) 1.56429 13.7092i 0.162210 1.42158i
\(94\) 0 0
\(95\) −1.91521 + 1.10575i −0.196497 + 0.113447i
\(96\) 0 0
\(97\) −3.01040 + 1.73805i −0.305659 + 0.176473i −0.644982 0.764197i \(-0.723135\pi\)
0.339323 + 0.940670i \(0.389802\pi\)
\(98\) 0 0
\(99\) 0.521946 0.159384i 0.0524576 0.0160187i
\(100\) 0 0
\(101\) 9.50563 0.945846 0.472923 0.881104i \(-0.343199\pi\)
0.472923 + 0.881104i \(0.343199\pi\)
\(102\) 0 0
\(103\) 8.38505i 0.826204i 0.910685 + 0.413102i \(0.135555\pi\)
−0.910685 + 0.413102i \(0.864445\pi\)
\(104\) 0 0
\(105\) −9.60400 + 3.19713i −0.937254 + 0.312008i
\(106\) 0 0
\(107\) −12.7310 + 7.35026i −1.23075 + 0.710576i −0.967187 0.254065i \(-0.918232\pi\)
−0.263567 + 0.964641i \(0.584899\pi\)
\(108\) 0 0
\(109\) 8.35648 14.4738i 0.800405 1.38634i −0.118944 0.992901i \(-0.537951\pi\)
0.919350 0.393442i \(-0.128716\pi\)
\(110\) 0 0
\(111\) 4.32333 + 0.493315i 0.410352 + 0.0468234i
\(112\) 0 0
\(113\) −1.19493 0.689894i −0.112410 0.0648998i 0.442741 0.896650i \(-0.354006\pi\)
−0.555151 + 0.831750i \(0.687339\pi\)
\(114\) 0 0
\(115\) 12.3985i 1.15617i
\(116\) 0 0
\(117\) 1.95427 8.45195i 0.180673 0.781383i
\(118\) 0 0
\(119\) −9.52611 + 4.42632i −0.873257 + 0.405760i
\(120\) 0 0
\(121\) 10.9669 0.996992
\(122\) 0 0
\(123\) 0.846285 + 1.94721i 0.0763069 + 0.175574i
\(124\) 0 0
\(125\) −11.3115 −1.01173
\(126\) 0 0
\(127\) 11.9684 1.06202 0.531012 0.847364i \(-0.321812\pi\)
0.531012 + 0.847364i \(0.321812\pi\)
\(128\) 0 0
\(129\) −18.8511 2.15101i −1.65975 0.189386i
\(130\) 0 0
\(131\) 7.35396 0.642519 0.321259 0.946991i \(-0.395894\pi\)
0.321259 + 0.946991i \(0.395894\pi\)
\(132\) 0 0
\(133\) 2.63854 + 0.234462i 0.228790 + 0.0203305i
\(134\) 0 0
\(135\) −10.8172 3.83670i −0.930997 0.330210i
\(136\) 0 0
\(137\) 16.4316i 1.40385i 0.712251 + 0.701925i \(0.247676\pi\)
−0.712251 + 0.701925i \(0.752324\pi\)
\(138\) 0 0
\(139\) −11.2110 6.47266i −0.950903 0.549004i −0.0575417 0.998343i \(-0.518326\pi\)
−0.893361 + 0.449339i \(0.851660\pi\)
\(140\) 0 0
\(141\) 4.93697 + 11.3595i 0.415768 + 0.956639i
\(142\) 0 0
\(143\) −0.263014 + 0.455554i −0.0219944 + 0.0380953i
\(144\) 0 0
\(145\) 1.55350 0.896914i 0.129011 0.0744847i
\(146\) 0 0
\(147\) 11.6151 + 3.47709i 0.957995 + 0.286786i
\(148\) 0 0
\(149\) 15.2359i 1.24818i 0.781354 + 0.624088i \(0.214529\pi\)
−0.781354 + 0.624088i \(0.785471\pi\)
\(150\) 0 0
\(151\) 13.6625 1.11184 0.555919 0.831236i \(-0.312366\pi\)
0.555919 + 0.831236i \(0.312366\pi\)
\(152\) 0 0
\(153\) −11.6045 2.68321i −0.938169 0.216925i
\(154\) 0 0
\(155\) 15.2390 8.79822i 1.22402 0.706690i
\(156\) 0 0
\(157\) 10.2322 5.90757i 0.816619 0.471475i −0.0326299 0.999468i \(-0.510388\pi\)
0.849249 + 0.527992i \(0.177055\pi\)
\(158\) 0 0
\(159\) −3.22069 + 1.39975i −0.255417 + 0.111008i
\(160\) 0 0
\(161\) −8.53471 + 12.1536i −0.672630 + 0.957836i
\(162\) 0 0
\(163\) 4.35998 + 7.55170i 0.341500 + 0.591495i 0.984711 0.174194i \(-0.0557319\pi\)
−0.643212 + 0.765688i \(0.722399\pi\)
\(164\) 0 0
\(165\) 0.559389 + 0.414071i 0.0435483 + 0.0322354i
\(166\) 0 0
\(167\) −8.89862 + 15.4129i −0.688596 + 1.19268i 0.283696 + 0.958914i \(0.408439\pi\)
−0.972292 + 0.233769i \(0.924894\pi\)
\(168\) 0 0
\(169\) −2.31918 4.01695i −0.178399 0.308996i
\(170\) 0 0
\(171\) 2.19601 + 2.04919i 0.167933 + 0.156706i
\(172\) 0 0
\(173\) 9.56015 16.5587i 0.726845 1.25893i −0.231366 0.972867i \(-0.574319\pi\)
0.958210 0.286065i \(-0.0923473\pi\)
\(174\) 0 0
\(175\) 0.262044 + 0.184017i 0.0198086 + 0.0139104i
\(176\) 0 0
\(177\) 11.2859 + 1.28779i 0.848302 + 0.0967959i
\(178\) 0 0
\(179\) 5.31891 + 3.07088i 0.397554 + 0.229528i 0.685428 0.728140i \(-0.259615\pi\)
−0.287874 + 0.957668i \(0.592948\pi\)
\(180\) 0 0
\(181\) 11.1208i 0.826604i 0.910594 + 0.413302i \(0.135625\pi\)
−0.910594 + 0.413302i \(0.864375\pi\)
\(182\) 0 0
\(183\) 12.7898 5.55861i 0.945448 0.410904i
\(184\) 0 0
\(185\) 2.77460 + 4.80575i 0.203993 + 0.353326i
\(186\) 0 0
\(187\) 0.625475 + 0.361118i 0.0457393 + 0.0264076i
\(188\) 0 0
\(189\) 7.96246 + 11.2071i 0.579184 + 0.815197i
\(190\) 0 0
\(191\) −12.9342 7.46759i −0.935889 0.540336i −0.0472195 0.998885i \(-0.515036\pi\)
−0.888669 + 0.458549i \(0.848369\pi\)
\(192\) 0 0
\(193\) 6.21387 + 10.7627i 0.447284 + 0.774719i 0.998208 0.0598363i \(-0.0190579\pi\)
−0.550924 + 0.834556i \(0.685725\pi\)
\(194\) 0 0
\(195\) 10.1461 4.40963i 0.726578 0.315780i
\(196\) 0 0
\(197\) 16.1512i 1.15073i 0.817897 + 0.575364i \(0.195140\pi\)
−0.817897 + 0.575364i \(0.804860\pi\)
\(198\) 0 0
\(199\) 21.5762 + 12.4571i 1.52950 + 0.883057i 0.999383 + 0.0351325i \(0.0111853\pi\)
0.530117 + 0.847925i \(0.322148\pi\)
\(200\) 0 0
\(201\) 11.8571 + 1.35296i 0.836334 + 0.0954302i
\(202\) 0 0
\(203\) −2.14022 0.190181i −0.150214 0.0133481i
\(204\) 0 0
\(205\) −1.35381 + 2.34487i −0.0945542 + 0.163773i
\(206\) 0 0
\(207\) −16.1052 + 4.91796i −1.11939 + 0.341822i
\(208\) 0 0
\(209\) −0.0910659 0.157731i −0.00629916 0.0109105i
\(210\) 0 0
\(211\) −5.78631 + 10.0222i −0.398346 + 0.689955i −0.993522 0.113640i \(-0.963749\pi\)
0.595176 + 0.803595i \(0.297082\pi\)
\(212\) 0 0
\(213\) 15.8938 + 11.7649i 1.08903 + 0.806120i
\(214\) 0 0
\(215\) −12.0982 20.9546i −0.825088 1.42909i
\(216\) 0 0
\(217\) −20.9943 1.86557i −1.42519 0.126643i
\(218\) 0 0
\(219\) −18.6839 + 8.12025i −1.26254 + 0.548716i
\(220\) 0 0
\(221\) 9.94241 5.74025i 0.668799 0.386131i
\(222\) 0 0
\(223\) −13.9653 + 8.06285i −0.935183 + 0.539928i −0.888447 0.458979i \(-0.848215\pi\)
−0.0467358 + 0.998907i \(0.514882\pi\)
\(224\) 0 0
\(225\) 0.106036 + 0.347246i 0.00706909 + 0.0231497i
\(226\) 0 0
\(227\) 19.8036 1.31441 0.657206 0.753711i \(-0.271738\pi\)
0.657206 + 0.753711i \(0.271738\pi\)
\(228\) 0 0
\(229\) 15.6001i 1.03088i −0.856924 0.515442i \(-0.827628\pi\)
0.856924 0.515442i \(-0.172372\pi\)
\(230\) 0 0
\(231\) −0.263306 0.790955i −0.0173242 0.0520410i
\(232\) 0 0
\(233\) −10.6450 + 6.14590i −0.697378 + 0.402631i −0.806370 0.591411i \(-0.798571\pi\)
0.108992 + 0.994043i \(0.465238\pi\)
\(234\) 0 0
\(235\) −7.89773 + 13.6793i −0.515191 + 0.892337i
\(236\) 0 0
\(237\) −8.77483 20.1900i −0.569987 1.31148i
\(238\) 0 0
\(239\) 13.8058 + 7.97079i 0.893024 + 0.515588i 0.874930 0.484249i \(-0.160907\pi\)
0.0180934 + 0.999836i \(0.494240\pi\)
\(240\) 0 0
\(241\) 20.6872i 1.33258i 0.745693 + 0.666290i \(0.232119\pi\)
−0.745693 + 0.666290i \(0.767881\pi\)
\(242\) 0 0
\(243\) −0.693013 + 15.5730i −0.0444568 + 0.999011i
\(244\) 0 0
\(245\) 5.24869 + 14.5438i 0.335327 + 0.929167i
\(246\) 0 0
\(247\) −2.89513 −0.184212
\(248\) 0 0
\(249\) 24.7492 + 2.82402i 1.56842 + 0.178965i
\(250\) 0 0
\(251\) −7.66566 −0.483852 −0.241926 0.970295i \(-0.577779\pi\)
−0.241926 + 0.970295i \(0.577779\pi\)
\(252\) 0 0
\(253\) 1.02110 0.0641961
\(254\) 0 0
\(255\) −6.05442 13.9306i −0.379143 0.872368i
\(256\) 0 0
\(257\) −11.9297 −0.744157 −0.372078 0.928201i \(-0.621355\pi\)
−0.372078 + 0.928201i \(0.621355\pi\)
\(258\) 0 0
\(259\) 0.588325 6.62076i 0.0365568 0.411394i
\(260\) 0 0
\(261\) −1.78127 1.66218i −0.110258 0.102886i
\(262\) 0 0
\(263\) 7.72501i 0.476345i 0.971223 + 0.238172i \(0.0765483\pi\)
−0.971223 + 0.238172i \(0.923452\pi\)
\(264\) 0 0
\(265\) −3.87841 2.23920i −0.238249 0.137553i
\(266\) 0 0
\(267\) −24.4839 2.79374i −1.49839 0.170974i
\(268\) 0 0
\(269\) −4.98739 + 8.63841i −0.304086 + 0.526693i −0.977058 0.212976i \(-0.931685\pi\)
0.672971 + 0.739669i \(0.265018\pi\)
\(270\) 0 0
\(271\) −3.61508 + 2.08717i −0.219600 + 0.126786i −0.605765 0.795643i \(-0.707133\pi\)
0.386165 + 0.922430i \(0.373800\pi\)
\(272\) 0 0
\(273\) −12.9811 2.66172i −0.785653 0.161094i
\(274\) 0 0
\(275\) 0.0220160i 0.00132761i
\(276\) 0 0
\(277\) 4.45007 0.267379 0.133689 0.991023i \(-0.457318\pi\)
0.133689 + 0.991023i \(0.457318\pi\)
\(278\) 0 0
\(279\) −17.4732 16.3050i −1.04610 0.976156i
\(280\) 0 0
\(281\) −24.5472 + 14.1723i −1.46436 + 0.845451i −0.999209 0.0397785i \(-0.987335\pi\)
−0.465155 + 0.885229i \(0.654001\pi\)
\(282\) 0 0
\(283\) 10.0427 5.79815i 0.596976 0.344664i −0.170875 0.985293i \(-0.554659\pi\)
0.767851 + 0.640628i \(0.221326\pi\)
\(284\) 0 0
\(285\) −0.434254 + 3.80573i −0.0257230 + 0.225432i
\(286\) 0 0
\(287\) 2.94119 1.36663i 0.173613 0.0806696i
\(288\) 0 0
\(289\) 0.618645 + 1.07152i 0.0363909 + 0.0630308i
\(290\) 0 0
\(291\) −0.682576 + 5.98198i −0.0400133 + 0.350670i
\(292\) 0 0
\(293\) 14.4199 24.9760i 0.842418 1.45911i −0.0454266 0.998968i \(-0.514465\pi\)
0.887845 0.460143i \(-0.152202\pi\)
\(294\) 0 0
\(295\) 7.24302 + 12.5453i 0.421705 + 0.730414i
\(296\) 0 0
\(297\) 0.315978 0.890871i 0.0183349 0.0516936i
\(298\) 0 0
\(299\) 8.11560 14.0566i 0.469337 0.812916i
\(300\) 0 0
\(301\) −2.56529 + 28.8686i −0.147861 + 1.66396i
\(302\) 0 0
\(303\) 9.79552 13.2332i 0.562738 0.760230i
\(304\) 0 0
\(305\) 15.4017 + 8.89216i 0.881898 + 0.509164i
\(306\) 0 0
\(307\) 10.8117i 0.617059i −0.951215 0.308529i \(-0.900163\pi\)
0.951215 0.308529i \(-0.0998368\pi\)
\(308\) 0 0
\(309\) 11.6732 + 8.64077i 0.664067 + 0.491556i
\(310\) 0 0
\(311\) −8.59161 14.8811i −0.487185 0.843830i 0.512706 0.858564i \(-0.328643\pi\)
−0.999891 + 0.0147345i \(0.995310\pi\)
\(312\) 0 0
\(313\) −7.91893 4.57200i −0.447604 0.258425i 0.259214 0.965820i \(-0.416537\pi\)
−0.706818 + 0.707396i \(0.749870\pi\)
\(314\) 0 0
\(315\) −5.44601 + 16.6648i −0.306848 + 0.938957i
\(316\) 0 0
\(317\) 0.984650 + 0.568488i 0.0553034 + 0.0319295i 0.527397 0.849619i \(-0.323168\pi\)
−0.472093 + 0.881549i \(0.656501\pi\)
\(318\) 0 0
\(319\) 0.0738670 + 0.127941i 0.00413576 + 0.00716334i
\(320\) 0 0
\(321\) −2.88663 + 25.2979i −0.161116 + 1.41199i
\(322\) 0 0
\(323\) 3.97500i 0.221175i
\(324\) 0 0
\(325\) −0.303075 0.174981i −0.0168116 0.00970618i
\(326\) 0 0
\(327\) −11.5384 26.5487i −0.638076 1.46815i
\(328\) 0 0
\(329\) 17.1580 7.97250i 0.945954 0.439538i
\(330\) 0 0
\(331\) −3.02394 + 5.23761i −0.166211 + 0.287885i −0.937085 0.349102i \(-0.886487\pi\)
0.770874 + 0.636988i \(0.219820\pi\)
\(332\) 0 0
\(333\) 5.14194 5.51035i 0.281777 0.301965i
\(334\) 0 0
\(335\) 7.60957 + 13.1802i 0.415755 + 0.720110i
\(336\) 0 0
\(337\) 17.6873 30.6353i 0.963490 1.66881i 0.249871 0.968279i \(-0.419612\pi\)
0.713619 0.700534i \(-0.247055\pi\)
\(338\) 0 0
\(339\) −2.19181 + 0.952588i −0.119043 + 0.0517375i
\(340\) 0 0
\(341\) 0.724593 + 1.25503i 0.0392389 + 0.0679638i
\(342\) 0 0
\(343\) 4.86643 17.8695i 0.262762 0.964861i
\(344\) 0 0
\(345\) −17.2606 12.7766i −0.929278 0.687870i
\(346\) 0 0
\(347\) 20.1007 11.6051i 1.07906 0.622995i 0.148417 0.988925i \(-0.452582\pi\)
0.930643 + 0.365929i \(0.119249\pi\)
\(348\) 0 0
\(349\) 12.7248 7.34667i 0.681144 0.393258i −0.119142 0.992877i \(-0.538014\pi\)
0.800286 + 0.599619i \(0.204681\pi\)
\(350\) 0 0
\(351\) −9.75250 11.4303i −0.520550 0.610107i
\(352\) 0 0
\(353\) −13.4624 −0.716533 −0.358267 0.933619i \(-0.616632\pi\)
−0.358267 + 0.933619i \(0.616632\pi\)
\(354\) 0 0
\(355\) 25.2178i 1.33842i
\(356\) 0 0
\(357\) −3.65453 + 17.8231i −0.193418 + 0.943296i
\(358\) 0 0
\(359\) −13.5004 + 7.79444i −0.712522 + 0.411375i −0.811994 0.583666i \(-0.801618\pi\)
0.0994721 + 0.995040i \(0.468285\pi\)
\(360\) 0 0
\(361\) −8.99880 + 15.5864i −0.473621 + 0.820335i
\(362\) 0 0
\(363\) 11.3014 15.2676i 0.593168 0.801339i
\(364\) 0 0
\(365\) −22.4994 12.9901i −1.17767 0.679930i
\(366\) 0 0
\(367\) 8.67003i 0.452572i 0.974061 + 0.226286i \(0.0726584\pi\)
−0.974061 + 0.226286i \(0.927342\pi\)
\(368\) 0 0
\(369\) 3.58290 + 0.828444i 0.186519 + 0.0431271i
\(370\) 0 0
\(371\) 2.26040 + 4.86473i 0.117354 + 0.252564i
\(372\) 0 0
\(373\) −24.0978 −1.24774 −0.623868 0.781530i \(-0.714440\pi\)
−0.623868 + 0.781530i \(0.714440\pi\)
\(374\) 0 0
\(375\) −11.6565 + 15.7473i −0.601939 + 0.813188i
\(376\) 0 0
\(377\) 2.34835 0.120946
\(378\) 0 0
\(379\) −10.0778 −0.517662 −0.258831 0.965923i \(-0.583337\pi\)
−0.258831 + 0.965923i \(0.583337\pi\)
\(380\) 0 0
\(381\) 12.3334 16.6618i 0.631859 0.853609i
\(382\) 0 0
\(383\) −4.70476 −0.240402 −0.120201 0.992750i \(-0.538354\pi\)
−0.120201 + 0.992750i \(0.538354\pi\)
\(384\) 0 0
\(385\) 0.610958 0.870015i 0.0311373 0.0443401i
\(386\) 0 0
\(387\) −22.4205 + 24.0269i −1.13970 + 1.22136i
\(388\) 0 0
\(389\) 21.5003i 1.09011i 0.838401 + 0.545055i \(0.183491\pi\)
−0.838401 + 0.545055i \(0.816509\pi\)
\(390\) 0 0
\(391\) −19.2997 11.1427i −0.976030 0.563511i
\(392\) 0 0
\(393\) 7.57823 10.2378i 0.382271 0.516429i
\(394\) 0 0
\(395\) 14.0372 24.3131i 0.706288 1.22333i
\(396\) 0 0
\(397\) −23.7548 + 13.7148i −1.19222 + 0.688327i −0.958809 0.284052i \(-0.908321\pi\)
−0.233408 + 0.972379i \(0.574988\pi\)
\(398\) 0 0
\(399\) 3.04541 3.43162i 0.152461 0.171796i
\(400\) 0 0
\(401\) 29.2299i 1.45967i 0.683622 + 0.729836i \(0.260404\pi\)
−0.683622 + 0.729836i \(0.739596\pi\)
\(402\) 0 0
\(403\) 23.0359 1.14750
\(404\) 0 0
\(405\) −16.4884 + 11.1055i −0.819313 + 0.551835i
\(406\) 0 0
\(407\) −0.395786 + 0.228507i −0.0196184 + 0.0113267i
\(408\) 0 0
\(409\) 27.3564 15.7942i 1.35269 0.780974i 0.364061 0.931375i \(-0.381390\pi\)
0.988625 + 0.150401i \(0.0480565\pi\)
\(410\) 0 0
\(411\) 22.8753 + 16.9328i 1.12835 + 0.835231i
\(412\) 0 0
\(413\) 1.53581 17.2833i 0.0755721 0.850455i
\(414\) 0 0
\(415\) 15.8834 + 27.5109i 0.779687 + 1.35046i
\(416\) 0 0
\(417\) −20.5638 + 8.93729i −1.00701 + 0.437661i
\(418\) 0 0
\(419\) 6.80176 11.7810i 0.332288 0.575539i −0.650672 0.759359i \(-0.725513\pi\)
0.982960 + 0.183819i \(0.0588462\pi\)
\(420\) 0 0
\(421\) −14.8629 25.7432i −0.724372 1.25465i −0.959232 0.282620i \(-0.908797\pi\)
0.234860 0.972029i \(-0.424537\pi\)
\(422\) 0 0
\(423\) 20.9016 + 4.83289i 1.01627 + 0.234983i
\(424\) 0 0
\(425\) −0.240248 + 0.416122i −0.0116537 + 0.0201849i
\(426\) 0 0
\(427\) −8.97636 19.3185i −0.434396 0.934887i
\(428\) 0 0
\(429\) 0.363163 + 0.835602i 0.0175337 + 0.0403432i
\(430\) 0 0
\(431\) 21.6467 + 12.4977i 1.04268 + 0.601994i 0.920592 0.390525i \(-0.127707\pi\)
0.122091 + 0.992519i \(0.461040\pi\)
\(432\) 0 0
\(433\) 18.7778i 0.902401i −0.892423 0.451201i \(-0.850996\pi\)
0.892423 0.451201i \(-0.149004\pi\)
\(434\) 0 0
\(435\) 0.352240 3.08697i 0.0168886 0.148009i
\(436\) 0 0
\(437\) 2.80994 + 4.86696i 0.134418 + 0.232818i
\(438\) 0 0
\(439\) 1.82363 + 1.05287i 0.0870369 + 0.0502508i 0.542887 0.839806i \(-0.317331\pi\)
−0.455850 + 0.890057i \(0.650665\pi\)
\(440\) 0 0
\(441\) 16.8099 12.5868i 0.800472 0.599370i
\(442\) 0 0
\(443\) 11.6452 + 6.72337i 0.553281 + 0.319437i 0.750444 0.660934i \(-0.229840\pi\)
−0.197163 + 0.980371i \(0.563173\pi\)
\(444\) 0 0
\(445\) −15.7131 27.2159i −0.744874 1.29016i
\(446\) 0 0
\(447\) 21.2107 + 15.7006i 1.00323 + 0.742612i
\(448\) 0 0
\(449\) 7.42429i 0.350374i −0.984535 0.175187i \(-0.943947\pi\)
0.984535 0.175187i \(-0.0560530\pi\)
\(450\) 0 0
\(451\) −0.193116 0.111496i −0.00909347 0.00525012i
\(452\) 0 0
\(453\) 14.0792 19.0202i 0.661496 0.893648i
\(454\) 0 0
\(455\) −7.12093 15.3253i −0.333834 0.718462i
\(456\) 0 0
\(457\) 0.139009 0.240771i 0.00650257 0.0112628i −0.862756 0.505621i \(-0.831263\pi\)
0.869258 + 0.494358i \(0.164597\pi\)
\(458\) 0 0
\(459\) −15.6938 + 13.3902i −0.732526 + 0.624999i
\(460\) 0 0
\(461\) −3.98573 6.90348i −0.185634 0.321527i 0.758156 0.652073i \(-0.226100\pi\)
−0.943790 + 0.330546i \(0.892767\pi\)
\(462\) 0 0
\(463\) −12.4572 + 21.5765i −0.578936 + 1.00275i 0.416666 + 0.909060i \(0.363199\pi\)
−0.995602 + 0.0936870i \(0.970135\pi\)
\(464\) 0 0
\(465\) 3.45528 30.2814i 0.160235 1.40427i
\(466\) 0 0
\(467\) −18.4485 31.9538i −0.853695 1.47864i −0.877850 0.478935i \(-0.841023\pi\)
0.0241548 0.999708i \(-0.492311\pi\)
\(468\) 0 0
\(469\) 1.61353 18.1580i 0.0745059 0.838457i
\(470\) 0 0
\(471\) 2.32005 20.3325i 0.106902 0.936872i
\(472\) 0 0
\(473\) 1.72576 0.996366i 0.0793504 0.0458130i
\(474\) 0 0
\(475\) 0.104937 0.0605852i 0.00481483 0.00277984i
\(476\) 0 0
\(477\) −1.37024 + 5.92612i −0.0627392 + 0.271338i
\(478\) 0 0
\(479\) −3.41169 −0.155884 −0.0779420 0.996958i \(-0.524835\pi\)
−0.0779420 + 0.996958i \(0.524835\pi\)
\(480\) 0 0
\(481\) 7.26460i 0.331237i
\(482\) 0 0
\(483\) 8.12459 + 24.4058i 0.369682 + 1.11050i
\(484\) 0 0
\(485\) −6.64948 + 3.83908i −0.301938 + 0.174324i
\(486\) 0 0
\(487\) 1.17122 2.02861i 0.0530729 0.0919249i −0.838268 0.545258i \(-0.816432\pi\)
0.891341 + 0.453333i \(0.149765\pi\)
\(488\) 0 0
\(489\) 15.0060 + 1.71227i 0.678596 + 0.0774315i
\(490\) 0 0
\(491\) −4.65365 2.68678i −0.210016 0.121253i 0.391303 0.920262i \(-0.372025\pi\)
−0.601319 + 0.799009i \(0.705358\pi\)
\(492\) 0 0
\(493\) 3.22428i 0.145214i
\(494\) 0 0
\(495\) 1.15290 0.352053i 0.0518188 0.0158236i
\(496\) 0 0
\(497\) 17.3591 24.7196i 0.778660 1.10883i
\(498\) 0 0
\(499\) 33.3813 1.49435 0.747175 0.664627i \(-0.231409\pi\)
0.747175 + 0.664627i \(0.231409\pi\)
\(500\) 0 0
\(501\) 12.2870 + 28.2711i 0.548942 + 1.26306i
\(502\) 0 0
\(503\) −6.01630 −0.268254 −0.134127 0.990964i \(-0.542823\pi\)
−0.134127 + 0.990964i \(0.542823\pi\)
\(504\) 0 0
\(505\) 20.9964 0.934328
\(506\) 0 0
\(507\) −7.98210 0.910801i −0.354497 0.0404501i
\(508\) 0 0
\(509\) −10.0398 −0.445007 −0.222503 0.974932i \(-0.571423\pi\)
−0.222503 + 0.974932i \(0.571423\pi\)
\(510\) 0 0
\(511\) 13.1130 + 28.2213i 0.580087 + 1.24844i
\(512\) 0 0
\(513\) 5.11576 0.945490i 0.225867 0.0417444i
\(514\) 0 0
\(515\) 18.5212i 0.816143i
\(516\) 0 0
\(517\) −1.12658 0.650432i −0.0495470 0.0286059i
\(518\) 0 0
\(519\) −13.2004 30.3728i −0.579434 1.33322i
\(520\) 0 0
\(521\) 10.8007 18.7074i 0.473188 0.819586i −0.526341 0.850274i \(-0.676436\pi\)
0.999529 + 0.0306875i \(0.00976968\pi\)
\(522\) 0 0
\(523\) −11.6105 + 6.70332i −0.507692 + 0.293116i −0.731884 0.681429i \(-0.761359\pi\)
0.224193 + 0.974545i \(0.428026\pi\)
\(524\) 0 0
\(525\) 0.526214 0.175174i 0.0229659 0.00764524i
\(526\) 0 0
\(527\) 31.6283i 1.37775i
\(528\) 0 0
\(529\) −8.50726 −0.369881
\(530\) 0 0
\(531\) 13.4229 14.3846i 0.582504 0.624239i
\(532\) 0 0
\(533\) −3.06973 + 1.77231i −0.132965 + 0.0767672i
\(534\) 0 0
\(535\) −28.1208 + 16.2355i −1.21577 + 0.701924i
\(536\) 0 0
\(537\) 9.75624 4.24019i 0.421013 0.182978i
\(538\) 0 0
\(539\) −1.19778 + 0.432265i −0.0515919 + 0.0186190i
\(540\) 0 0
\(541\) 4.53805 + 7.86013i 0.195106 + 0.337933i 0.946935 0.321424i \(-0.104162\pi\)
−0.751829 + 0.659358i \(0.770828\pi\)
\(542\) 0 0
\(543\) 15.4818 + 11.4600i 0.664389 + 0.491794i
\(544\) 0 0
\(545\) 18.4581 31.9704i 0.790659 1.36946i
\(546\) 0 0
\(547\) −13.5359 23.4448i −0.578752 1.00243i −0.995623 0.0934620i \(-0.970207\pi\)
0.416871 0.908966i \(-0.363127\pi\)
\(548\) 0 0
\(549\) 5.44143 23.5334i 0.232234 1.00438i
\(550\) 0 0
\(551\) −0.406545 + 0.704157i −0.0173194 + 0.0299981i
\(552\) 0 0
\(553\) −30.4962 + 14.1701i −1.29683 + 0.602574i
\(554\) 0 0
\(555\) 9.54954 + 1.08965i 0.405355 + 0.0462532i
\(556\) 0 0
\(557\) −23.8690 13.7808i −1.01136 0.583911i −0.0997727 0.995010i \(-0.531812\pi\)
−0.911591 + 0.411099i \(0.865145\pi\)
\(558\) 0 0
\(559\) 31.6760i 1.33975i
\(560\) 0 0
\(561\) 1.14728 0.498623i 0.0484382 0.0210519i
\(562\) 0 0
\(563\) −6.92328 11.9915i −0.291781 0.505380i 0.682450 0.730933i \(-0.260915\pi\)
−0.974231 + 0.225552i \(0.927581\pi\)
\(564\) 0 0
\(565\) −2.63941 1.52387i −0.111041 0.0641095i
\(566\) 0 0
\(567\) 23.8072 + 0.463952i 0.999810 + 0.0194842i
\(568\) 0 0
\(569\) −10.5219 6.07485i −0.441103 0.254671i 0.262962 0.964806i \(-0.415300\pi\)
−0.704065 + 0.710135i \(0.748634\pi\)
\(570\) 0 0
\(571\) −23.1505 40.0979i −0.968819 1.67804i −0.698985 0.715136i \(-0.746365\pi\)
−0.269833 0.962907i \(-0.586969\pi\)
\(572\) 0 0
\(573\) −23.7247 + 10.3111i −0.991113 + 0.430750i
\(574\) 0 0
\(575\) 0.679329i 0.0283300i
\(576\) 0 0
\(577\) −10.6284 6.13630i −0.442465 0.255457i 0.262178 0.965020i \(-0.415559\pi\)
−0.704643 + 0.709562i \(0.748893\pi\)
\(578\) 0 0
\(579\) 21.3867 + 2.44034i 0.888801 + 0.101417i
\(580\) 0 0
\(581\) 3.36792 37.9011i 0.139725 1.57240i
\(582\) 0 0
\(583\) 0.184413 0.319413i 0.00763762 0.0132287i
\(584\) 0 0
\(585\) 4.31667 18.6690i 0.178473 0.771869i
\(586\) 0 0
\(587\) −11.9875 20.7630i −0.494778 0.856980i 0.505204 0.863000i \(-0.331417\pi\)
−0.999982 + 0.00601986i \(0.998084\pi\)
\(588\) 0 0
\(589\) −3.98798 + 6.90738i −0.164322 + 0.284614i
\(590\) 0 0
\(591\) 22.4849 + 16.6438i 0.924906 + 0.684635i
\(592\) 0 0
\(593\) −15.4912 26.8315i −0.636146 1.10184i −0.986271 0.165134i \(-0.947194\pi\)
0.350125 0.936703i \(-0.386139\pi\)
\(594\) 0 0
\(595\) −21.0416 + 9.77702i −0.862623 + 0.400819i
\(596\) 0 0
\(597\) 39.5763 17.2004i 1.61975 0.703965i
\(598\) 0 0
\(599\) 21.4392 12.3779i 0.875981 0.505748i 0.00665010 0.999978i \(-0.497883\pi\)
0.869331 + 0.494230i \(0.164550\pi\)
\(600\) 0 0
\(601\) 7.67329 4.43017i 0.313000 0.180711i −0.335268 0.942123i \(-0.608827\pi\)
0.648268 + 0.761412i \(0.275494\pi\)
\(602\) 0 0
\(603\) 14.1022 15.1126i 0.574286 0.615432i
\(604\) 0 0
\(605\) 24.2241 0.984852
\(606\) 0 0
\(607\) 13.0415i 0.529339i −0.964339 0.264670i \(-0.914737\pi\)
0.964339 0.264670i \(-0.0852629\pi\)
\(608\) 0 0
\(609\) −2.47025 + 2.78352i −0.100099 + 0.112794i
\(610\) 0 0
\(611\) −17.9079 + 10.3391i −0.724475 + 0.418276i
\(612\) 0 0
\(613\) 5.90775 10.2325i 0.238612 0.413288i −0.721704 0.692201i \(-0.756641\pi\)
0.960316 + 0.278914i \(0.0899743\pi\)
\(614\) 0 0
\(615\) 1.86931 + 4.30108i 0.0753778 + 0.173436i
\(616\) 0 0
\(617\) −13.7906 7.96200i −0.555188 0.320538i 0.196024 0.980599i \(-0.437197\pi\)
−0.751212 + 0.660061i \(0.770530\pi\)
\(618\) 0 0
\(619\) 30.9231i 1.24291i −0.783452 0.621453i \(-0.786543\pi\)
0.783452 0.621453i \(-0.213457\pi\)
\(620\) 0 0
\(621\) −9.74987 + 27.4888i −0.391249 + 1.10309i
\(622\) 0 0
\(623\) −3.33180 + 37.4947i −0.133486 + 1.50219i
\(624\) 0 0
\(625\) −24.3802 −0.975209
\(626\) 0 0
\(627\) −0.313428 0.0357638i −0.0125171 0.00142827i
\(628\) 0 0
\(629\) 9.97429 0.397701
\(630\) 0 0
\(631\) −0.925450 −0.0368416 −0.0184208 0.999830i \(-0.505864\pi\)
−0.0184208 + 0.999830i \(0.505864\pi\)
\(632\) 0 0
\(633\) 7.98959 + 18.3832i 0.317558 + 0.730668i
\(634\) 0 0
\(635\) 26.4363 1.04909
\(636\) 0 0
\(637\) −3.56917 + 19.9244i −0.141416 + 0.789433i
\(638\) 0 0
\(639\) 32.7571 10.0028i 1.29585 0.395706i
\(640\) 0 0
\(641\) 34.3482i 1.35667i 0.734752 + 0.678336i \(0.237298\pi\)
−0.734752 + 0.678336i \(0.762702\pi\)
\(642\) 0 0
\(643\) −11.8373 6.83426i −0.466817 0.269517i 0.248089 0.968737i \(-0.420197\pi\)
−0.714906 + 0.699220i \(0.753531\pi\)
\(644\) 0 0
\(645\) −41.6391 4.75124i −1.63954 0.187080i
\(646\) 0 0
\(647\) −18.1075 + 31.3630i −0.711877 + 1.23301i 0.252274 + 0.967656i \(0.418822\pi\)
−0.964152 + 0.265352i \(0.914512\pi\)
\(648\) 0 0
\(649\) −1.03319 + 0.596512i −0.0405562 + 0.0234151i
\(650\) 0 0
\(651\) −24.2317 + 27.3047i −0.949716 + 1.07016i
\(652\) 0 0
\(653\) 36.5270i 1.42941i −0.699426 0.714705i \(-0.746561\pi\)
0.699426 0.714705i \(-0.253439\pi\)
\(654\) 0 0
\(655\) 16.2437 0.634695
\(656\) 0 0
\(657\) −7.94907 + 34.3786i −0.310123 + 1.34124i
\(658\) 0 0
\(659\) 19.5178 11.2686i 0.760305 0.438962i −0.0691004 0.997610i \(-0.522013\pi\)
0.829405 + 0.558648i \(0.188680\pi\)
\(660\) 0 0
\(661\) 1.29595 0.748216i 0.0504065 0.0291022i −0.474585 0.880210i \(-0.657402\pi\)
0.524991 + 0.851107i \(0.324068\pi\)
\(662\) 0 0
\(663\) 2.25434 19.7566i 0.0875512 0.767283i
\(664\) 0 0
\(665\) 5.82811 + 0.517890i 0.226004 + 0.0200829i
\(666\) 0 0
\(667\) −2.27925 3.94778i −0.0882529 0.152859i
\(668\) 0 0
\(669\) −3.16648 + 27.7504i −0.122423 + 1.07289i
\(670\) 0 0
\(671\) −0.732330 + 1.26843i −0.0282713 + 0.0489673i
\(672\) 0 0
\(673\) 13.9366 + 24.1389i 0.537215 + 0.930484i 0.999053 + 0.0435197i \(0.0138571\pi\)
−0.461837 + 0.886965i \(0.652810\pi\)
\(674\) 0 0
\(675\) 0.592687 + 0.210217i 0.0228125 + 0.00809126i
\(676\) 0 0
\(677\) −15.6344 + 27.0796i −0.600880 + 1.04075i 0.391809 + 0.920047i \(0.371850\pi\)
−0.992688 + 0.120707i \(0.961484\pi\)
\(678\) 0 0
\(679\) 9.16081 + 0.814037i 0.351560 + 0.0312399i
\(680\) 0 0
\(681\) 20.4075 27.5696i 0.782019 1.05647i
\(682\) 0 0
\(683\) −8.06769 4.65788i −0.308701 0.178229i 0.337644 0.941274i \(-0.390370\pi\)
−0.646345 + 0.763045i \(0.723703\pi\)
\(684\) 0 0
\(685\) 36.2949i 1.38676i
\(686\) 0 0
\(687\) −21.7177 16.0759i −0.828581 0.613333i
\(688\) 0 0
\(689\) −2.93139 5.07732i −0.111677 0.193431i
\(690\) 0 0
\(691\) −42.0468 24.2757i −1.59954 0.923493i −0.991576 0.129526i \(-0.958654\pi\)
−0.607961 0.793967i \(-0.708012\pi\)
\(692\) 0 0
\(693\) −1.37246 0.448516i −0.0521355 0.0170377i
\(694\) 0 0
\(695\) −24.7633 14.2971i −0.939324 0.542319i
\(696\) 0 0
\(697\) 2.43338 + 4.21473i 0.0921707 + 0.159644i
\(698\) 0 0
\(699\) −2.41365 + 21.1528i −0.0912925 + 0.800071i
\(700\) 0 0
\(701\) 22.9812i 0.867987i 0.900916 + 0.433994i \(0.142896\pi\)
−0.900916 + 0.433994i \(0.857104\pi\)
\(702\) 0 0
\(703\) −2.17831 1.25765i −0.0821564 0.0474330i
\(704\) 0 0
\(705\) 10.9050 + 25.0912i 0.410705 + 0.944991i
\(706\) 0 0
\(707\) −20.5816 14.4532i −0.774052 0.543569i
\(708\) 0 0
\(709\) −15.3433 + 26.5753i −0.576228 + 0.998057i 0.419679 + 0.907673i \(0.362143\pi\)
−0.995907 + 0.0903840i \(0.971191\pi\)
\(710\) 0 0
\(711\) −37.1499 8.58985i −1.39323 0.322145i
\(712\) 0 0
\(713\) −22.3582 38.7255i −0.837319 1.45028i
\(714\) 0 0
\(715\) −0.580956 + 1.00625i −0.0217265 + 0.0376315i
\(716\) 0 0
\(717\) 25.3234 11.0059i 0.945718 0.411022i
\(718\) 0 0
\(719\) −2.44166 4.22907i −0.0910584 0.157718i 0.816898 0.576782i \(-0.195692\pi\)
−0.907957 + 0.419064i \(0.862358\pi\)
\(720\) 0 0
\(721\) 12.7494 18.1554i 0.474812 0.676141i
\(722\) 0 0
\(723\) 28.7997 + 21.3181i 1.07107 + 0.792828i
\(724\) 0 0
\(725\) −0.0851181 + 0.0491430i −0.00316121 + 0.00182512i
\(726\) 0 0
\(727\) −32.7779 + 18.9243i −1.21567 + 0.701865i −0.963988 0.265946i \(-0.914316\pi\)
−0.251678 + 0.967811i \(0.580982\pi\)
\(728\) 0 0
\(729\) 20.9658 + 17.0127i 0.776513 + 0.630102i
\(730\) 0 0
\(731\) −43.4911 −1.60858
\(732\) 0 0
\(733\) 46.3166i 1.71074i 0.518017 + 0.855370i \(0.326670\pi\)
−0.518017 + 0.855370i \(0.673330\pi\)
\(734\) 0 0
\(735\) 25.6558 + 7.68034i 0.946330 + 0.283294i
\(736\) 0 0
\(737\) −1.08548 + 0.626700i −0.0399840 + 0.0230848i
\(738\) 0 0
\(739\) −5.15606 + 8.93056i −0.189669 + 0.328516i −0.945140 0.326666i \(-0.894075\pi\)
0.755471 + 0.655182i \(0.227408\pi\)
\(740\) 0 0
\(741\) −2.98342 + 4.03045i −0.109599 + 0.148062i
\(742\) 0 0
\(743\) −21.9984 12.7008i −0.807042 0.465946i 0.0388856 0.999244i \(-0.487619\pi\)
−0.845928 + 0.533298i \(0.820953\pi\)
\(744\) 0 0
\(745\) 33.6537i 1.23298i
\(746\) 0 0
\(747\) 29.4355 31.5445i 1.07699 1.15415i
\(748\) 0 0
\(749\) 38.7413 + 3.44258i 1.41557 + 0.125789i
\(750\) 0 0
\(751\) 53.7306 1.96066 0.980329 0.197369i \(-0.0632397\pi\)
0.980329 + 0.197369i \(0.0632397\pi\)
\(752\) 0 0
\(753\) −7.89944 + 10.6717i −0.287872 + 0.388900i
\(754\) 0 0
\(755\) 30.1783 1.09830
\(756\) 0 0
\(757\) 28.3821 1.03157 0.515783 0.856719i \(-0.327501\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(758\) 0 0
\(759\) 1.05224 1.42153i 0.0381940 0.0515981i
\(760\) 0 0
\(761\) 23.1184 0.838041 0.419021 0.907977i \(-0.362374\pi\)
0.419021 + 0.907977i \(0.362374\pi\)
\(762\) 0 0
\(763\) −40.1008 + 18.6329i −1.45175 + 0.674556i
\(764\) 0 0
\(765\) −25.6325 5.92679i −0.926746 0.214283i
\(766\) 0 0
\(767\) 18.9640i 0.684752i
\(768\) 0 0
\(769\) −23.1698 13.3771i −0.835524 0.482390i 0.0202163 0.999796i \(-0.493565\pi\)
−0.855740 + 0.517406i \(0.826898\pi\)
\(770\) 0 0
\(771\) −12.2936 + 16.6080i −0.442742 + 0.598121i
\(772\) 0 0
\(773\) −3.97203 + 6.87976i −0.142864 + 0.247448i −0.928574 0.371147i \(-0.878965\pi\)
0.785710 + 0.618595i \(0.212298\pi\)
\(774\) 0 0
\(775\) −0.834960 + 0.482065i −0.0299927 + 0.0173163i
\(776\) 0 0
\(777\) −8.61081 7.64170i −0.308911 0.274145i
\(778\) 0 0
\(779\) 1.22729i 0.0439721i
\(780\) 0 0
\(781\) −2.07686 −0.0743158
\(782\) 0 0
\(783\) −4.14959 + 0.766922i −0.148294 + 0.0274076i
\(784\) 0 0
\(785\) 22.6013 13.0489i 0.806676 0.465734i
\(786\) 0 0
\(787\) 10.5602 6.09696i 0.376432 0.217333i −0.299833 0.953992i \(-0.596931\pi\)
0.676265 + 0.736659i \(0.263598\pi\)
\(788\) 0 0
\(789\) 10.7544 + 7.96060i 0.382866 + 0.283405i
\(790\) 0 0
\(791\) 1.53829 + 3.31064i 0.0546954 + 0.117713i
\(792\) 0 0
\(793\) 11.6410 + 20.1627i 0.413382 + 0.715999i
\(794\) 0 0
\(795\) −7.11399 + 3.09183i −0.252307 + 0.109656i
\(796\) 0 0
\(797\) −3.30173 + 5.71876i −0.116953 + 0.202569i −0.918559 0.395284i \(-0.870646\pi\)
0.801606 + 0.597853i \(0.203979\pi\)
\(798\) 0 0
\(799\) 14.1956 + 24.5875i 0.502204 + 0.869842i
\(800\) 0 0
\(801\) −29.1198 + 31.2062i −1.02890 + 1.10262i
\(802\) 0 0
\(803\) 1.06982 1.85298i 0.0377531 0.0653903i
\(804\) 0 0
\(805\) −18.8518 + 26.8453i −0.664439 + 0.946173i
\(806\) 0 0
\(807\) 6.88646 + 15.8450i 0.242415 + 0.557772i
\(808\) 0 0
\(809\) 8.57462 + 4.95056i 0.301468 + 0.174052i 0.643102 0.765780i \(-0.277647\pi\)
−0.341634 + 0.939833i \(0.610980\pi\)
\(810\) 0 0
\(811\) 33.1027i 1.16239i −0.813763 0.581197i \(-0.802584\pi\)
0.813763 0.581197i \(-0.197416\pi\)
\(812\) 0 0
\(813\) −0.819682 + 7.18355i −0.0287475 + 0.251938i
\(814\) 0 0
\(815\) 9.63049 + 16.6805i 0.337341 + 0.584292i
\(816\) 0 0
\(817\) 9.49812 + 5.48374i 0.332297 + 0.191852i
\(818\) 0 0
\(819\) −17.0825 + 15.3288i −0.596911 + 0.535630i
\(820\) 0 0
\(821\) −9.90100 5.71634i −0.345547 0.199502i 0.317175 0.948367i \(-0.397266\pi\)
−0.662722 + 0.748865i \(0.730599\pi\)
\(822\) 0 0
\(823\) −19.4509 33.6900i −0.678017 1.17436i −0.975577 0.219656i \(-0.929506\pi\)
0.297561 0.954703i \(-0.403827\pi\)
\(824\) 0 0
\(825\) −0.0306495 0.0226874i −0.00106708 0.000789874i
\(826\) 0 0
\(827\) 8.05228i 0.280005i 0.990151 + 0.140003i \(0.0447111\pi\)
−0.990151 + 0.140003i \(0.955289\pi\)
\(828\) 0 0
\(829\) −11.3389 6.54652i −0.393816 0.227370i 0.289996 0.957028i \(-0.406346\pi\)
−0.683812 + 0.729658i \(0.739679\pi\)
\(830\) 0 0
\(831\) 4.58578 6.19516i 0.159079 0.214908i
\(832\) 0 0
\(833\) 27.3561 + 4.90047i 0.947834 + 0.169791i
\(834\) 0 0
\(835\) −19.6556 + 34.0445i −0.680211 + 1.17816i
\(836\) 0 0
\(837\) −40.7051 + 7.52307i −1.40697 + 0.260035i
\(838\) 0 0
\(839\) −5.51797 9.55740i −0.190501 0.329958i 0.754915 0.655822i \(-0.227678\pi\)
−0.945416 + 0.325864i \(0.894345\pi\)
\(840\) 0 0
\(841\) −14.1702 + 24.5436i −0.488629 + 0.846330i
\(842\) 0 0
\(843\) −5.56582 + 48.7779i −0.191697 + 1.68000i
\(844\) 0 0
\(845\) −5.12271 8.87279i −0.176227 0.305233i
\(846\) 0 0
\(847\) −23.7456 16.6751i −0.815908 0.572962i
\(848\) 0 0
\(849\) 2.27708 19.9559i 0.0781491 0.684885i
\(850\) 0 0
\(851\) 12.2124 7.05085i 0.418637 0.241700i
\(852\) 0 0
\(853\) 20.2134 11.6702i 0.692092 0.399580i −0.112303 0.993674i \(-0.535823\pi\)
0.804395 + 0.594094i \(0.202489\pi\)
\(854\) 0 0
\(855\) 4.85064 + 4.52634i 0.165888 + 0.154798i
\(856\) 0 0
\(857\) 18.2121 0.622115 0.311057 0.950391i \(-0.399317\pi\)
0.311057 + 0.950391i \(0.399317\pi\)
\(858\) 0 0
\(859\) 39.1597i 1.33611i 0.744111 + 0.668057i \(0.232874\pi\)
−0.744111 + 0.668057i \(0.767126\pi\)
\(860\) 0 0
\(861\) 1.12834 5.50288i 0.0384537 0.187538i
\(862\) 0 0
\(863\) 22.7847 13.1548i 0.775601 0.447793i −0.0592683 0.998242i \(-0.518877\pi\)
0.834869 + 0.550449i \(0.185543\pi\)
\(864\) 0 0
\(865\) 21.1168 36.5754i 0.717994 1.24360i
\(866\) 0 0
\(867\) 2.12923 + 0.242957i 0.0723125 + 0.00825125i
\(868\) 0 0
\(869\) 2.00235 + 1.15606i 0.0679252 + 0.0392166i
\(870\) 0 0
\(871\) 19.9238i 0.675091i
\(872\) 0 0
\(873\) 7.62440 + 7.11465i 0.258047 + 0.240795i
\(874\) 0 0
\(875\) 24.4918 + 17.1991i 0.827973 + 0.581434i
\(876\) 0 0
\(877\) 7.19666 0.243014 0.121507 0.992591i \(-0.461227\pi\)
0.121507 + 0.992591i \(0.461227\pi\)
\(878\) 0 0
\(879\) −19.9106 45.8122i −0.671568 1.54521i
\(880\) 0 0
\(881\) 37.2133 1.25375 0.626874 0.779121i \(-0.284334\pi\)
0.626874 + 0.779121i \(0.284334\pi\)
\(882\) 0 0
\(883\) −9.72629 −0.327316 −0.163658 0.986517i \(-0.552329\pi\)
−0.163658 + 0.986517i \(0.552329\pi\)
\(884\) 0 0
\(885\) 24.9288 + 2.84451i 0.837972 + 0.0956172i
\(886\) 0 0
\(887\) −20.6986 −0.694992 −0.347496 0.937681i \(-0.612968\pi\)
−0.347496 + 0.937681i \(0.612968\pi\)
\(888\) 0 0
\(889\) −25.9140 18.1978i −0.869129 0.610336i
\(890\) 0 0
\(891\) −0.914610 1.35793i −0.0306406 0.0454923i
\(892\) 0 0
\(893\) 7.15962i 0.239587i
\(894\) 0 0
\(895\) 11.7486 + 6.78307i 0.392713 + 0.226733i
\(896\) 0 0
\(897\) −11.2058 25.7834i −0.374151 0.860884i
\(898\) 0 0
\(899\) 3.23480 5.60284i 0.107887 0.186865i
\(900\) 0 0
\(901\) −6.97115 + 4.02480i −0.232243 + 0.134085i
\(902\) 0 0
\(903\) 37.5459 + 33.3203i 1.24945 + 1.10883i
\(904\) 0 0
\(905\) 24.5641i 0.816539i
\(906\) 0 0
\(907\) −0.990928 −0.0329032 −0.0164516 0.999865i \(-0.505237\pi\)
−0.0164516 + 0.999865i \(0.505237\pi\)
\(908\) 0 0
\(909\) −8.32839 27.2736i −0.276235 0.904609i
\(910\) 0 0
\(911\) −15.2170 + 8.78552i −0.504161 + 0.291077i −0.730430 0.682987i \(-0.760680\pi\)
0.226269 + 0.974065i \(0.427347\pi\)
\(912\) 0 0
\(913\) −2.26571 + 1.30811i −0.0749841 + 0.0432921i
\(914\) 0 0
\(915\) 28.2506 12.2781i 0.933936 0.405901i
\(916\) 0 0
\(917\) −15.9228 11.1816i −0.525818 0.369250i
\(918\) 0 0
\(919\) 9.22417 + 15.9767i 0.304277 + 0.527024i 0.977100 0.212780i \(-0.0682517\pi\)
−0.672823 + 0.739804i \(0.734918\pi\)
\(920\) 0 0
\(921\) −15.0515 11.1415i −0.495965 0.367124i
\(922\) 0 0
\(923\) −16.5066 + 28.5903i −0.543322 + 0.941061i
\(924\) 0 0
\(925\) −0.152024 0.263313i −0.00499851 0.00865767i
\(926\) 0 0
\(927\) 24.0585 7.34659i 0.790184 0.241294i
\(928\) 0 0
\(929\) −10.4712 + 18.1367i −0.343550 + 0.595046i −0.985089 0.172044i \(-0.944963\pi\)
0.641539 + 0.767090i \(0.278296\pi\)
\(930\) 0 0
\(931\) −5.35647 4.51953i −0.175551 0.148122i
\(932\) 0 0
\(933\) −29.5703 3.37413i −0.968089 0.110464i
\(934\) 0 0
\(935\) 1.38157 + 0.797652i 0.0451823 + 0.0260860i
\(936\) 0 0
\(937\) 27.1677i 0.887529i 0.896143 + 0.443764i \(0.146357\pi\)
−0.896143 + 0.443764i \(0.853643\pi\)
\(938\) 0 0
\(939\) −14.5253 + 6.31290i −0.474016 + 0.206014i
\(940\) 0 0
\(941\) −1.42576 2.46949i −0.0464785 0.0805031i 0.841850 0.539711i \(-0.181467\pi\)
−0.888329 + 0.459208i \(0.848133\pi\)
\(942\) 0 0
\(943\) 5.95881 + 3.44032i 0.194046 + 0.112032i
\(944\) 0 0
\(945\) 17.5878 + 24.7547i 0.572132 + 0.805270i
\(946\) 0 0
\(947\) −15.2662 8.81395i −0.496085 0.286415i 0.231010 0.972951i \(-0.425797\pi\)
−0.727095 + 0.686536i \(0.759130\pi\)
\(948\) 0 0
\(949\) −17.0056 29.4546i −0.552025 0.956136i
\(950\) 0 0
\(951\) 1.80610 0.784953i 0.0585667 0.0254539i
\(952\) 0 0
\(953\) 47.1766i 1.52820i −0.645097 0.764101i \(-0.723183\pi\)
0.645097 0.764101i \(-0.276817\pi\)
\(954\) 0 0
\(955\) −28.5697 16.4947i −0.924493 0.533756i
\(956\) 0 0
\(957\) 0.254233 + 0.0290094i 0.00821819 + 0.000937740i
\(958\) 0 0
\(959\) 24.9842 35.5779i 0.806780 1.14887i
\(960\) 0 0
\(961\) 16.2315 28.1139i 0.523598 0.906899i
\(962\) 0 0
\(963\) 32.2437 + 30.0880i 1.03904 + 0.969572i
\(964\) 0 0
\(965\) 13.7255 + 23.7732i 0.441838 + 0.765286i
\(966\) 0 0
\(967\) 3.62809 6.28404i 0.116672 0.202081i −0.801775 0.597626i \(-0.796111\pi\)
0.918447 + 0.395545i \(0.129444\pi\)
\(968\) 0 0
\(969\) 5.53379 + 4.09623i 0.177771 + 0.131590i
\(970\) 0 0
\(971\) 10.2653 + 17.7800i 0.329429 + 0.570588i 0.982399 0.186796i \(-0.0598104\pi\)
−0.652970 + 0.757384i \(0.726477\pi\)
\(972\) 0 0
\(973\) 14.4324 + 31.0608i 0.462683 + 0.995764i
\(974\) 0 0
\(975\) −0.555917 + 0.241609i −0.0178036 + 0.00773768i
\(976\) 0 0
\(977\) 38.7545 22.3749i 1.23987 0.715838i 0.270800 0.962636i \(-0.412712\pi\)
0.969067 + 0.246798i \(0.0793784\pi\)
\(978\) 0 0
\(979\) 2.24142 1.29408i 0.0716360 0.0413591i
\(980\) 0 0
\(981\) −48.8500 11.2952i −1.55966 0.360627i
\(982\) 0 0
\(983\) −26.9099 −0.858293 −0.429146 0.903235i \(-0.641186\pi\)
−0.429146 + 0.903235i \(0.641186\pi\)
\(984\) 0 0
\(985\) 35.6755i 1.13672i
\(986\) 0 0
\(987\) 6.58240 32.1022i 0.209520 1.02182i
\(988\) 0 0
\(989\) −53.2502 + 30.7440i −1.69326 + 0.977602i
\(990\) 0 0
\(991\) −13.8668 + 24.0181i −0.440494 + 0.762959i −0.997726 0.0673982i \(-0.978530\pi\)
0.557232 + 0.830357i \(0.311864\pi\)
\(992\) 0 0
\(993\) 4.17538 + 9.60711i 0.132502 + 0.304873i
\(994\) 0 0
\(995\) 47.6585 + 27.5156i 1.51088 + 0.872304i
\(996\) 0 0
\(997\) 22.4382i 0.710624i 0.934748 + 0.355312i \(0.115625\pi\)
−0.934748 + 0.355312i \(0.884375\pi\)
\(998\) 0 0
\(999\) −2.37247 12.8367i −0.0750617 0.406137i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.e.689.17 48
3.2 odd 2 3024.2.df.e.17.7 48
4.3 odd 2 504.2.cx.a.185.8 yes 48
7.5 odd 6 1008.2.ca.e.257.10 48
9.2 odd 6 1008.2.ca.e.353.10 48
9.7 even 3 3024.2.ca.e.2033.7 48
12.11 even 2 1512.2.cx.a.17.7 48
21.5 even 6 3024.2.ca.e.2609.7 48
28.19 even 6 504.2.bs.a.257.15 48
36.7 odd 6 1512.2.bs.a.521.7 48
36.11 even 6 504.2.bs.a.353.15 yes 48
63.47 even 6 inner 1008.2.df.e.929.17 48
63.61 odd 6 3024.2.df.e.1601.7 48
84.47 odd 6 1512.2.bs.a.1097.7 48
252.47 odd 6 504.2.cx.a.425.8 yes 48
252.187 even 6 1512.2.cx.a.89.7 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.15 48 28.19 even 6
504.2.bs.a.353.15 yes 48 36.11 even 6
504.2.cx.a.185.8 yes 48 4.3 odd 2
504.2.cx.a.425.8 yes 48 252.47 odd 6
1008.2.ca.e.257.10 48 7.5 odd 6
1008.2.ca.e.353.10 48 9.2 odd 6
1008.2.df.e.689.17 48 1.1 even 1 trivial
1008.2.df.e.929.17 48 63.47 even 6 inner
1512.2.bs.a.521.7 48 36.7 odd 6
1512.2.bs.a.1097.7 48 84.47 odd 6
1512.2.cx.a.17.7 48 12.11 even 2
1512.2.cx.a.89.7 48 252.187 even 6
3024.2.ca.e.2033.7 48 9.7 even 3
3024.2.ca.e.2609.7 48 21.5 even 6
3024.2.df.e.17.7 48 3.2 odd 2
3024.2.df.e.1601.7 48 63.61 odd 6