Properties

Label 1008.2.ca.e.257.10
Level $1008$
Weight $2$
Character 1008.257
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.10
Character \(\chi\) \(=\) 1008.257
Dual form 1008.2.ca.e.353.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.690387 - 1.58851i) q^{3} +(1.10442 + 1.91291i) q^{5} +(-0.234181 - 2.63537i) q^{7} +(-2.04673 + 2.19337i) q^{9} +(-0.157541 - 0.0909565i) q^{11} +(-2.50424 - 1.44582i) q^{13} +(2.27620 - 3.07503i) q^{15} +(-1.98511 - 3.43832i) q^{17} +(-0.867067 - 0.500601i) q^{19} +(-4.02463 + 2.19142i) q^{21} +(-4.86112 + 2.80657i) q^{23} +(0.0605124 - 0.104811i) q^{25} +(4.89724 + 1.73697i) q^{27} +(0.703311 - 0.406057i) q^{29} -7.96637i q^{31} +(-0.0357208 + 0.313051i) q^{33} +(4.78259 - 3.35852i) q^{35} +(1.25614 - 2.17569i) q^{37} +(-0.567810 + 4.97619i) q^{39} +(0.612906 - 1.06158i) q^{41} +(-5.47716 - 9.48671i) q^{43} +(-6.45618 - 1.49281i) q^{45} -7.15102 q^{47} +(-6.89032 + 1.23430i) q^{49} +(-4.09131 + 5.52715i) q^{51} +(1.75586 - 1.01374i) q^{53} -0.401817i q^{55} +(-0.196598 + 1.72295i) q^{57} +6.55821 q^{59} +8.05143i q^{61} +(6.25965 + 4.88024i) q^{63} -6.38719i q^{65} -6.89011 q^{67} +(7.81431 + 5.78431i) q^{69} +11.4168i q^{71} +(-10.1861 + 5.88094i) q^{73} +(-0.208270 - 0.0237647i) q^{75} +(-0.202811 + 0.436479i) q^{77} -12.7100 q^{79} +(-0.621788 - 8.97850i) q^{81} +(-7.19085 - 12.4549i) q^{83} +(4.38480 - 7.59470i) q^{85} +(-1.13058 - 0.836880i) q^{87} +(7.11375 - 12.3214i) q^{89} +(-3.22383 + 6.93818i) q^{91} +(-12.6547 + 5.49988i) q^{93} -2.21150i q^{95} +(3.01040 - 1.73805i) q^{97} +(0.521946 - 0.159384i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.690387 1.58851i −0.398595 0.917127i
\(4\) 0 0
\(5\) 1.10442 + 1.91291i 0.493912 + 0.855480i 0.999975 0.00701597i \(-0.00223327\pi\)
−0.506064 + 0.862496i \(0.668900\pi\)
\(6\) 0 0
\(7\) −0.234181 2.63537i −0.0885120 0.996075i
\(8\) 0 0
\(9\) −2.04673 + 2.19337i −0.682244 + 0.731125i
\(10\) 0 0
\(11\) −0.157541 0.0909565i −0.0475005 0.0274244i 0.476062 0.879412i \(-0.342064\pi\)
−0.523562 + 0.851987i \(0.675397\pi\)
\(12\) 0 0
\(13\) −2.50424 1.44582i −0.694551 0.400999i 0.110763 0.993847i \(-0.464670\pi\)
−0.805315 + 0.592847i \(0.798004\pi\)
\(14\) 0 0
\(15\) 2.27620 3.07503i 0.587713 0.793970i
\(16\) 0 0
\(17\) −1.98511 3.43832i −0.481461 0.833915i 0.518313 0.855191i \(-0.326560\pi\)
−0.999774 + 0.0212765i \(0.993227\pi\)
\(18\) 0 0
\(19\) −0.867067 0.500601i −0.198919 0.114846i 0.397232 0.917718i \(-0.369971\pi\)
−0.596151 + 0.802872i \(0.703304\pi\)
\(20\) 0 0
\(21\) −4.02463 + 2.19142i −0.878247 + 0.478208i
\(22\) 0 0
\(23\) −4.86112 + 2.80657i −1.01361 + 0.585210i −0.912247 0.409640i \(-0.865654\pi\)
−0.101365 + 0.994849i \(0.532321\pi\)
\(24\) 0 0
\(25\) 0.0605124 0.104811i 0.0121025 0.0209621i
\(26\) 0 0
\(27\) 4.89724 + 1.73697i 0.942473 + 0.334281i
\(28\) 0 0
\(29\) 0.703311 0.406057i 0.130602 0.0754028i −0.433276 0.901261i \(-0.642642\pi\)
0.563877 + 0.825859i \(0.309309\pi\)
\(30\) 0 0
\(31\) 7.96637i 1.43080i −0.698714 0.715401i \(-0.746244\pi\)
0.698714 0.715401i \(-0.253756\pi\)
\(32\) 0 0
\(33\) −0.0357208 + 0.313051i −0.00621820 + 0.0544952i
\(34\) 0 0
\(35\) 4.78259 3.35852i 0.808405 0.567693i
\(36\) 0 0
\(37\) 1.25614 2.17569i 0.206507 0.357681i −0.744105 0.668063i \(-0.767124\pi\)
0.950612 + 0.310382i \(0.100457\pi\)
\(38\) 0 0
\(39\) −0.567810 + 4.97619i −0.0909224 + 0.796828i
\(40\) 0 0
\(41\) 0.612906 1.06158i 0.0957198 0.165792i −0.814189 0.580600i \(-0.802818\pi\)
0.909909 + 0.414808i \(0.136151\pi\)
\(42\) 0 0
\(43\) −5.47716 9.48671i −0.835259 1.44671i −0.893820 0.448426i \(-0.851985\pi\)
0.0585613 0.998284i \(-0.481349\pi\)
\(44\) 0 0
\(45\) −6.45618 1.49281i −0.962431 0.222535i
\(46\) 0 0
\(47\) −7.15102 −1.04308 −0.521542 0.853226i \(-0.674643\pi\)
−0.521542 + 0.853226i \(0.674643\pi\)
\(48\) 0 0
\(49\) −6.89032 + 1.23430i −0.984331 + 0.176329i
\(50\) 0 0
\(51\) −4.09131 + 5.52715i −0.572898 + 0.773955i
\(52\) 0 0
\(53\) 1.75586 1.01374i 0.241186 0.139249i −0.374536 0.927212i \(-0.622198\pi\)
0.615722 + 0.787964i \(0.288865\pi\)
\(54\) 0 0
\(55\) 0.401817i 0.0541810i
\(56\) 0 0
\(57\) −0.196598 + 1.72295i −0.0260401 + 0.228211i
\(58\) 0 0
\(59\) 6.55821 0.853806 0.426903 0.904297i \(-0.359604\pi\)
0.426903 + 0.904297i \(0.359604\pi\)
\(60\) 0 0
\(61\) 8.05143i 1.03088i 0.856926 + 0.515440i \(0.172372\pi\)
−0.856926 + 0.515440i \(0.827628\pi\)
\(62\) 0 0
\(63\) 6.25965 + 4.88024i 0.788642 + 0.614852i
\(64\) 0 0
\(65\) 6.38719i 0.792233i
\(66\) 0 0
\(67\) −6.89011 −0.841761 −0.420880 0.907116i \(-0.638279\pi\)
−0.420880 + 0.907116i \(0.638279\pi\)
\(68\) 0 0
\(69\) 7.81431 + 5.78431i 0.940733 + 0.696350i
\(70\) 0 0
\(71\) 11.4168i 1.35492i 0.735560 + 0.677460i \(0.236919\pi\)
−0.735560 + 0.677460i \(0.763081\pi\)
\(72\) 0 0
\(73\) −10.1861 + 5.88094i −1.19219 + 0.688312i −0.958803 0.284072i \(-0.908315\pi\)
−0.233388 + 0.972384i \(0.574981\pi\)
\(74\) 0 0
\(75\) −0.208270 0.0237647i −0.0240489 0.00274411i
\(76\) 0 0
\(77\) −0.202811 + 0.436479i −0.0231124 + 0.0497414i
\(78\) 0 0
\(79\) −12.7100 −1.42999 −0.714994 0.699130i \(-0.753571\pi\)
−0.714994 + 0.699130i \(0.753571\pi\)
\(80\) 0 0
\(81\) −0.621788 8.97850i −0.0690875 0.997611i
\(82\) 0 0
\(83\) −7.19085 12.4549i −0.789298 1.36710i −0.926397 0.376547i \(-0.877111\pi\)
0.137099 0.990557i \(-0.456222\pi\)
\(84\) 0 0
\(85\) 4.38480 7.59470i 0.475598 0.823760i
\(86\) 0 0
\(87\) −1.13058 0.836880i −0.121211 0.0897230i
\(88\) 0 0
\(89\) 7.11375 12.3214i 0.754055 1.30606i −0.191787 0.981437i \(-0.561428\pi\)
0.945843 0.324626i \(-0.105238\pi\)
\(90\) 0 0
\(91\) −3.22383 + 6.93818i −0.337949 + 0.727319i
\(92\) 0 0
\(93\) −12.6547 + 5.49988i −1.31223 + 0.570311i
\(94\) 0 0
\(95\) 2.21150i 0.226895i
\(96\) 0 0
\(97\) 3.01040 1.73805i 0.305659 0.176473i −0.339323 0.940670i \(-0.610198\pi\)
0.644982 + 0.764197i \(0.276865\pi\)
\(98\) 0 0
\(99\) 0.521946 0.159384i 0.0524576 0.0160187i
\(100\) 0 0
\(101\) 4.75282 8.23212i 0.472923 0.819126i −0.526597 0.850115i \(-0.676532\pi\)
0.999520 + 0.0309887i \(0.00986560\pi\)
\(102\) 0 0
\(103\) −7.26167 + 4.19253i −0.715514 + 0.413102i −0.813099 0.582125i \(-0.802221\pi\)
0.0975856 + 0.995227i \(0.468888\pi\)
\(104\) 0 0
\(105\) −8.63688 5.27852i −0.842873 0.515130i
\(106\) 0 0
\(107\) 12.7310 + 7.35026i 1.23075 + 0.710576i 0.967187 0.254065i \(-0.0817677\pi\)
0.263567 + 0.964641i \(0.415101\pi\)
\(108\) 0 0
\(109\) 8.35648 + 14.4738i 0.800405 + 1.38634i 0.919350 + 0.393442i \(0.128716\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(110\) 0 0
\(111\) −4.32333 0.493315i −0.410352 0.0468234i
\(112\) 0 0
\(113\) −1.19493 0.689894i −0.112410 0.0648998i 0.442741 0.896650i \(-0.354006\pi\)
−0.555151 + 0.831750i \(0.687339\pi\)
\(114\) 0 0
\(115\) −10.7374 6.19926i −1.00127 0.578084i
\(116\) 0 0
\(117\) 8.29674 2.53353i 0.767034 0.234225i
\(118\) 0 0
\(119\) −8.59636 + 6.03669i −0.788027 + 0.553383i
\(120\) 0 0
\(121\) −5.48345 9.49762i −0.498496 0.863420i
\(122\) 0 0
\(123\) −2.10948 0.240703i −0.190205 0.0217035i
\(124\) 0 0
\(125\) 11.3115 1.01173
\(126\) 0 0
\(127\) 11.9684 1.06202 0.531012 0.847364i \(-0.321812\pi\)
0.531012 + 0.847364i \(0.321812\pi\)
\(128\) 0 0
\(129\) −11.2884 + 15.2500i −0.993887 + 1.34269i
\(130\) 0 0
\(131\) 3.67698 + 6.36872i 0.321259 + 0.556438i 0.980748 0.195277i \(-0.0625605\pi\)
−0.659489 + 0.751714i \(0.729227\pi\)
\(132\) 0 0
\(133\) −1.11622 + 2.40227i −0.0967884 + 0.208303i
\(134\) 0 0
\(135\) 2.08593 + 11.2863i 0.179528 + 0.971373i
\(136\) 0 0
\(137\) −14.2302 8.21582i −1.21577 0.701925i −0.251760 0.967790i \(-0.581009\pi\)
−0.964010 + 0.265865i \(0.914343\pi\)
\(138\) 0 0
\(139\) 11.2110 + 6.47266i 0.950903 + 0.549004i 0.893361 0.449339i \(-0.148340\pi\)
0.0575417 + 0.998343i \(0.481674\pi\)
\(140\) 0 0
\(141\) 4.93697 + 11.3595i 0.415768 + 0.956639i
\(142\) 0 0
\(143\) 0.263014 + 0.455554i 0.0219944 + 0.0380953i
\(144\) 0 0
\(145\) 1.55350 + 0.896914i 0.129011 + 0.0744847i
\(146\) 0 0
\(147\) 6.71769 + 10.0932i 0.554066 + 0.832473i
\(148\) 0 0
\(149\) 13.1947 7.61797i 1.08095 0.624088i 0.149799 0.988716i \(-0.452137\pi\)
0.931153 + 0.364628i \(0.118804\pi\)
\(150\) 0 0
\(151\) −6.83125 + 11.8321i −0.555919 + 0.962880i 0.441912 + 0.897058i \(0.354300\pi\)
−0.997831 + 0.0658217i \(0.979033\pi\)
\(152\) 0 0
\(153\) 11.6045 + 2.68321i 0.938169 + 0.216925i
\(154\) 0 0
\(155\) 15.2390 8.79822i 1.22402 0.706690i
\(156\) 0 0
\(157\) 11.8151i 0.942951i −0.881879 0.471475i \(-0.843722\pi\)
0.881879 0.471475i \(-0.156278\pi\)
\(158\) 0 0
\(159\) −2.82257 2.08932i −0.223844 0.165694i
\(160\) 0 0
\(161\) 8.53471 + 12.1536i 0.672630 + 0.957836i
\(162\) 0 0
\(163\) 4.35998 7.55170i 0.341500 0.591495i −0.643212 0.765688i \(-0.722399\pi\)
0.984711 + 0.174194i \(0.0557319\pi\)
\(164\) 0 0
\(165\) −0.638290 + 0.277409i −0.0496908 + 0.0215963i
\(166\) 0 0
\(167\) 8.89862 15.4129i 0.688596 1.19268i −0.283696 0.958914i \(-0.591561\pi\)
0.972292 0.233769i \(-0.0751059\pi\)
\(168\) 0 0
\(169\) −2.31918 4.01695i −0.178399 0.308996i
\(170\) 0 0
\(171\) 2.87266 0.877207i 0.219678 0.0670817i
\(172\) 0 0
\(173\) 19.1203 1.45369 0.726845 0.686802i \(-0.240986\pi\)
0.726845 + 0.686802i \(0.240986\pi\)
\(174\) 0 0
\(175\) −0.290385 0.134928i −0.0219511 0.0101996i
\(176\) 0 0
\(177\) −4.52771 10.4178i −0.340323 0.783049i
\(178\) 0 0
\(179\) −5.31891 + 3.07088i −0.397554 + 0.229528i −0.685428 0.728140i \(-0.740385\pi\)
0.287874 + 0.957668i \(0.407052\pi\)
\(180\) 0 0
\(181\) 11.1208i 0.826604i −0.910594 0.413302i \(-0.864375\pi\)
0.910594 0.413302i \(-0.135625\pi\)
\(182\) 0 0
\(183\) 12.7898 5.55861i 0.945448 0.410904i
\(184\) 0 0
\(185\) 5.54920 0.407986
\(186\) 0 0
\(187\) 0.722236i 0.0528151i
\(188\) 0 0
\(189\) 3.43073 13.3128i 0.249549 0.968362i
\(190\) 0 0
\(191\) 14.9352i 1.08067i 0.841450 + 0.540336i \(0.181703\pi\)
−0.841450 + 0.540336i \(0.818297\pi\)
\(192\) 0 0
\(193\) −12.4277 −0.894569 −0.447284 0.894392i \(-0.647609\pi\)
−0.447284 + 0.894392i \(0.647609\pi\)
\(194\) 0 0
\(195\) −10.1461 + 4.40963i −0.726578 + 0.315780i
\(196\) 0 0
\(197\) 16.1512i 1.15073i 0.817897 + 0.575364i \(0.195140\pi\)
−0.817897 + 0.575364i \(0.804860\pi\)
\(198\) 0 0
\(199\) 21.5762 12.4571i 1.52950 0.883057i 0.530117 0.847925i \(-0.322148\pi\)
0.999383 0.0351325i \(-0.0111853\pi\)
\(200\) 0 0
\(201\) 4.75684 + 10.9450i 0.335522 + 0.772001i
\(202\) 0 0
\(203\) −1.23481 1.75839i −0.0866667 0.123415i
\(204\) 0 0
\(205\) 2.70762 0.189108
\(206\) 0 0
\(207\) 3.79354 16.4065i 0.263669 1.14033i
\(208\) 0 0
\(209\) 0.0910659 + 0.157731i 0.00629916 + 0.0109105i
\(210\) 0 0
\(211\) −5.78631 + 10.0222i −0.398346 + 0.689955i −0.993522 0.113640i \(-0.963749\pi\)
0.595176 + 0.803595i \(0.297082\pi\)
\(212\) 0 0
\(213\) 18.1356 7.88198i 1.24263 0.540065i
\(214\) 0 0
\(215\) 12.0982 20.9546i 0.825088 1.42909i
\(216\) 0 0
\(217\) −20.9943 + 1.86557i −1.42519 + 0.126643i
\(218\) 0 0
\(219\) 16.3743 + 12.1206i 1.10647 + 0.819033i
\(220\) 0 0
\(221\) 11.4805i 0.772262i
\(222\) 0 0
\(223\) 13.9653 8.06285i 0.935183 0.539928i 0.0467358 0.998907i \(-0.485118\pi\)
0.888447 + 0.458979i \(0.151785\pi\)
\(224\) 0 0
\(225\) 0.106036 + 0.347246i 0.00706909 + 0.0231497i
\(226\) 0 0
\(227\) 9.90180 17.1504i 0.657206 1.13831i −0.324130 0.946012i \(-0.605072\pi\)
0.981336 0.192301i \(-0.0615950\pi\)
\(228\) 0 0
\(229\) 13.5101 7.80006i 0.892772 0.515442i 0.0179241 0.999839i \(-0.494294\pi\)
0.874848 + 0.484397i \(0.160961\pi\)
\(230\) 0 0
\(231\) 0.833370 + 0.0208270i 0.0548317 + 0.00137031i
\(232\) 0 0
\(233\) 10.6450 + 6.14590i 0.697378 + 0.402631i 0.806370 0.591411i \(-0.201429\pi\)
−0.108992 + 0.994043i \(0.534762\pi\)
\(234\) 0 0
\(235\) −7.89773 13.6793i −0.515191 0.892337i
\(236\) 0 0
\(237\) 8.77483 + 20.1900i 0.569987 + 1.31148i
\(238\) 0 0
\(239\) 13.8058 + 7.97079i 0.893024 + 0.515588i 0.874930 0.484249i \(-0.160907\pi\)
0.0180934 + 0.999836i \(0.494240\pi\)
\(240\) 0 0
\(241\) 17.9156 + 10.3436i 1.15405 + 0.666290i 0.949870 0.312644i \(-0.101215\pi\)
0.204178 + 0.978934i \(0.434548\pi\)
\(242\) 0 0
\(243\) −13.8332 + 7.18636i −0.887398 + 0.461005i
\(244\) 0 0
\(245\) −9.97092 11.8174i −0.637019 0.754985i
\(246\) 0 0
\(247\) 1.44756 + 2.50725i 0.0921062 + 0.159533i
\(248\) 0 0
\(249\) −14.8203 + 20.0215i −0.939198 + 1.26881i
\(250\) 0 0
\(251\) 7.66566 0.483852 0.241926 0.970295i \(-0.422221\pi\)
0.241926 + 0.970295i \(0.422221\pi\)
\(252\) 0 0
\(253\) 1.02110 0.0641961
\(254\) 0 0
\(255\) −15.0915 1.72202i −0.945064 0.107837i
\(256\) 0 0
\(257\) −5.96487 10.3315i −0.372078 0.644459i 0.617807 0.786330i \(-0.288021\pi\)
−0.989885 + 0.141871i \(0.954688\pi\)
\(258\) 0 0
\(259\) −6.02791 2.80087i −0.374556 0.174038i
\(260\) 0 0
\(261\) −0.548853 + 2.37371i −0.0339732 + 0.146929i
\(262\) 0 0
\(263\) −6.69006 3.86251i −0.412527 0.238172i 0.279348 0.960190i \(-0.409882\pi\)
−0.691875 + 0.722018i \(0.743215\pi\)
\(264\) 0 0
\(265\) 3.87841 + 2.23920i 0.238249 + 0.137553i
\(266\) 0 0
\(267\) −24.4839 2.79374i −1.49839 0.170974i
\(268\) 0 0
\(269\) 4.98739 + 8.63841i 0.304086 + 0.526693i 0.977058 0.212976i \(-0.0683155\pi\)
−0.672971 + 0.739669i \(0.734982\pi\)
\(270\) 0 0
\(271\) −3.61508 2.08717i −0.219600 0.126786i 0.386165 0.922430i \(-0.373800\pi\)
−0.605765 + 0.795643i \(0.707133\pi\)
\(272\) 0 0
\(273\) 13.2471 + 0.331061i 0.801749 + 0.0200367i
\(274\) 0 0
\(275\) −0.0190664 + 0.0110080i −0.00114975 + 0.000663807i
\(276\) 0 0
\(277\) −2.22504 + 3.85387i −0.133689 + 0.231557i −0.925096 0.379733i \(-0.876016\pi\)
0.791407 + 0.611290i \(0.209349\pi\)
\(278\) 0 0
\(279\) 17.4732 + 16.3050i 1.04610 + 0.976156i
\(280\) 0 0
\(281\) −24.5472 + 14.1723i −1.46436 + 0.845451i −0.999209 0.0397785i \(-0.987335\pi\)
−0.465155 + 0.885229i \(0.654001\pi\)
\(282\) 0 0
\(283\) 11.5963i 0.689329i −0.938726 0.344664i \(-0.887993\pi\)
0.938726 0.344664i \(-0.112007\pi\)
\(284\) 0 0
\(285\) −3.51299 + 1.52679i −0.208091 + 0.0904392i
\(286\) 0 0
\(287\) −2.94119 1.36663i −0.173613 0.0806696i
\(288\) 0 0
\(289\) 0.618645 1.07152i 0.0363909 0.0630308i
\(290\) 0 0
\(291\) −4.83925 3.58212i −0.283682 0.209987i
\(292\) 0 0
\(293\) −14.4199 + 24.9760i −0.842418 + 1.45911i 0.0454266 + 0.998968i \(0.485535\pi\)
−0.887845 + 0.460143i \(0.847798\pi\)
\(294\) 0 0
\(295\) 7.24302 + 12.5453i 0.421705 + 0.730414i
\(296\) 0 0
\(297\) −0.613528 0.719081i −0.0356005 0.0417253i
\(298\) 0 0
\(299\) 16.2312 0.938675
\(300\) 0 0
\(301\) −23.7183 + 16.6559i −1.36710 + 0.960031i
\(302\) 0 0
\(303\) −16.3581 1.86655i −0.939748 0.107230i
\(304\) 0 0
\(305\) −15.4017 + 8.89216i −0.881898 + 0.509164i
\(306\) 0 0
\(307\) 10.8117i 0.617059i 0.951215 + 0.308529i \(0.0998368\pi\)
−0.951215 + 0.308529i \(0.900163\pi\)
\(308\) 0 0
\(309\) 11.6732 + 8.64077i 0.664067 + 0.491556i
\(310\) 0 0
\(311\) −17.1832 −0.974370 −0.487185 0.873299i \(-0.661976\pi\)
−0.487185 + 0.873299i \(0.661976\pi\)
\(312\) 0 0
\(313\) 9.14399i 0.516849i −0.966031 0.258425i \(-0.916797\pi\)
0.966031 0.258425i \(-0.0832033\pi\)
\(314\) 0 0
\(315\) −2.42218 + 17.3640i −0.136474 + 0.978351i
\(316\) 0 0
\(317\) 1.13698i 0.0638589i −0.999490 0.0319295i \(-0.989835\pi\)
0.999490 0.0319295i \(-0.0101652\pi\)
\(318\) 0 0
\(319\) −0.147734 −0.00827152
\(320\) 0 0
\(321\) 2.88663 25.2979i 0.161116 1.41199i
\(322\) 0 0
\(323\) 3.97500i 0.221175i
\(324\) 0 0
\(325\) −0.303075 + 0.174981i −0.0168116 + 0.00970618i
\(326\) 0 0
\(327\) 17.2226 23.2669i 0.952414 1.28666i
\(328\) 0 0
\(329\) 1.67463 + 18.8456i 0.0923254 + 1.03899i
\(330\) 0 0
\(331\) 6.04788 0.332421 0.166211 0.986090i \(-0.446847\pi\)
0.166211 + 0.986090i \(0.446847\pi\)
\(332\) 0 0
\(333\) 2.20113 + 7.20823i 0.120621 + 0.395008i
\(334\) 0 0
\(335\) −7.60957 13.1802i −0.415755 0.720110i
\(336\) 0 0
\(337\) 17.6873 30.6353i 0.963490 1.66881i 0.249871 0.968279i \(-0.419612\pi\)
0.713619 0.700534i \(-0.247055\pi\)
\(338\) 0 0
\(339\) −0.270938 + 2.37446i −0.0147153 + 0.128963i
\(340\) 0 0
\(341\) −0.724593 + 1.25503i −0.0392389 + 0.0679638i
\(342\) 0 0
\(343\) 4.86643 + 17.8695i 0.262762 + 0.964861i
\(344\) 0 0
\(345\) −2.43460 + 21.3364i −0.131074 + 1.14871i
\(346\) 0 0
\(347\) 23.2102i 1.24599i 0.782225 + 0.622995i \(0.214084\pi\)
−0.782225 + 0.622995i \(0.785916\pi\)
\(348\) 0 0
\(349\) −12.7248 + 7.34667i −0.681144 + 0.393258i −0.800286 0.599619i \(-0.795319\pi\)
0.119142 + 0.992877i \(0.461986\pi\)
\(350\) 0 0
\(351\) −9.75250 11.4303i −0.520550 0.610107i
\(352\) 0 0
\(353\) −6.73122 + 11.6588i −0.358267 + 0.620536i −0.987671 0.156542i \(-0.949965\pi\)
0.629405 + 0.777078i \(0.283299\pi\)
\(354\) 0 0
\(355\) −21.8392 + 12.6089i −1.15911 + 0.669211i
\(356\) 0 0
\(357\) 15.5242 + 9.48774i 0.821626 + 0.502145i
\(358\) 0 0
\(359\) 13.5004 + 7.79444i 0.712522 + 0.411375i 0.811994 0.583666i \(-0.198382\pi\)
−0.0994721 + 0.995040i \(0.531715\pi\)
\(360\) 0 0
\(361\) −8.99880 15.5864i −0.473621 0.820335i
\(362\) 0 0
\(363\) −11.3014 + 15.2676i −0.593168 + 0.801339i
\(364\) 0 0
\(365\) −22.4994 12.9901i −1.17767 0.679930i
\(366\) 0 0
\(367\) 7.50847 + 4.33501i 0.391939 + 0.226286i 0.683000 0.730419i \(-0.260675\pi\)
−0.291061 + 0.956704i \(0.594008\pi\)
\(368\) 0 0
\(369\) 1.07400 + 3.51711i 0.0559101 + 0.183093i
\(370\) 0 0
\(371\) −3.08278 4.38993i −0.160050 0.227914i
\(372\) 0 0
\(373\) 12.0489 + 20.8693i 0.623868 + 1.08057i 0.988759 + 0.149521i \(0.0477730\pi\)
−0.364891 + 0.931050i \(0.618894\pi\)
\(374\) 0 0
\(375\) −7.80933 17.9685i −0.403272 0.927888i
\(376\) 0 0
\(377\) −2.34835 −0.120946
\(378\) 0 0
\(379\) −10.0778 −0.517662 −0.258831 0.965923i \(-0.583337\pi\)
−0.258831 + 0.965923i \(0.583337\pi\)
\(380\) 0 0
\(381\) −8.26283 19.0119i −0.423318 0.974011i
\(382\) 0 0
\(383\) −2.35238 4.07444i −0.120201 0.208194i 0.799646 0.600472i \(-0.205021\pi\)
−0.919847 + 0.392278i \(0.871687\pi\)
\(384\) 0 0
\(385\) −1.05893 + 0.0940978i −0.0539683 + 0.00479567i
\(386\) 0 0
\(387\) 32.0182 + 7.40329i 1.62758 + 0.376330i
\(388\) 0 0
\(389\) −18.6198 10.7502i −0.944062 0.545055i −0.0528309 0.998603i \(-0.516824\pi\)
−0.891231 + 0.453549i \(0.850158\pi\)
\(390\) 0 0
\(391\) 19.2997 + 11.1427i 0.976030 + 0.563511i
\(392\) 0 0
\(393\) 7.57823 10.2378i 0.382271 0.516429i
\(394\) 0 0
\(395\) −14.0372 24.3131i −0.706288 1.22333i
\(396\) 0 0
\(397\) −23.7548 13.7148i −1.19222 0.688327i −0.233408 0.972379i \(-0.574988\pi\)
−0.958809 + 0.284052i \(0.908321\pi\)
\(398\) 0 0
\(399\) 4.58666 + 0.114626i 0.229620 + 0.00573849i
\(400\) 0 0
\(401\) 25.3138 14.6150i 1.26411 0.729836i 0.290245 0.956952i \(-0.406263\pi\)
0.973868 + 0.227116i \(0.0729298\pi\)
\(402\) 0 0
\(403\) −11.5180 + 19.9497i −0.573751 + 0.993766i
\(404\) 0 0
\(405\) 16.4884 11.1055i 0.819313 0.551835i
\(406\) 0 0
\(407\) −0.395786 + 0.228507i −0.0196184 + 0.0113267i
\(408\) 0 0
\(409\) 31.5884i 1.56195i −0.624564 0.780974i \(-0.714723\pi\)
0.624564 0.780974i \(-0.285277\pi\)
\(410\) 0 0
\(411\) −3.22655 + 28.2770i −0.159154 + 1.39480i
\(412\) 0 0
\(413\) −1.53581 17.2833i −0.0755721 0.850455i
\(414\) 0 0
\(415\) 15.8834 27.5109i 0.779687 1.35046i
\(416\) 0 0
\(417\) 2.54197 22.2774i 0.124481 1.09093i
\(418\) 0 0
\(419\) −6.80176 + 11.7810i −0.332288 + 0.575539i −0.982960 0.183819i \(-0.941154\pi\)
0.650672 + 0.759359i \(0.274487\pi\)
\(420\) 0 0
\(421\) −14.8629 25.7432i −0.724372 1.25465i −0.959232 0.282620i \(-0.908797\pi\)
0.234860 0.972029i \(-0.424537\pi\)
\(422\) 0 0
\(423\) 14.6362 15.6849i 0.711637 0.762624i
\(424\) 0 0
\(425\) −0.480496 −0.0233075
\(426\) 0 0
\(427\) 21.2185 1.88549i 1.02683 0.0912453i
\(428\) 0 0
\(429\) 0.542071 0.732310i 0.0261714 0.0353562i
\(430\) 0 0
\(431\) −21.6467 + 12.4977i −1.04268 + 0.601994i −0.920592 0.390525i \(-0.872293\pi\)
−0.122091 + 0.992519i \(0.538960\pi\)
\(432\) 0 0
\(433\) 18.7778i 0.902401i 0.892423 + 0.451201i \(0.149004\pi\)
−0.892423 + 0.451201i \(0.850996\pi\)
\(434\) 0 0
\(435\) 0.352240 3.08697i 0.0168886 0.148009i
\(436\) 0 0
\(437\) 5.61988 0.268836
\(438\) 0 0
\(439\) 2.10574i 0.100502i 0.998737 + 0.0502508i \(0.0160021\pi\)
−0.998737 + 0.0502508i \(0.983998\pi\)
\(440\) 0 0
\(441\) 11.3953 17.6393i 0.542635 0.839969i
\(442\) 0 0
\(443\) 13.4467i 0.638874i −0.947608 0.319437i \(-0.896506\pi\)
0.947608 0.319437i \(-0.103494\pi\)
\(444\) 0 0
\(445\) 31.4263 1.48975
\(446\) 0 0
\(447\) −21.2107 15.7006i −1.00323 0.742612i
\(448\) 0 0
\(449\) 7.42429i 0.350374i −0.984535 0.175187i \(-0.943947\pi\)
0.984535 0.175187i \(-0.0560530\pi\)
\(450\) 0 0
\(451\) −0.193116 + 0.111496i −0.00909347 + 0.00525012i
\(452\) 0 0
\(453\) 23.5116 + 2.68280i 1.10467 + 0.126049i
\(454\) 0 0
\(455\) −16.8326 + 1.49576i −0.789124 + 0.0701222i
\(456\) 0 0
\(457\) −0.278018 −0.0130051 −0.00650257 0.999979i \(-0.502070\pi\)
−0.00650257 + 0.999979i \(0.502070\pi\)
\(458\) 0 0
\(459\) −3.74930 20.2863i −0.175002 0.946886i
\(460\) 0 0
\(461\) 3.98573 + 6.90348i 0.185634 + 0.321527i 0.943790 0.330546i \(-0.107233\pi\)
−0.758156 + 0.652073i \(0.773900\pi\)
\(462\) 0 0
\(463\) −12.4572 + 21.5765i −0.578936 + 1.00275i 0.416666 + 0.909060i \(0.363199\pi\)
−0.995602 + 0.0936870i \(0.970135\pi\)
\(464\) 0 0
\(465\) −24.4969 18.1331i −1.13601 0.840901i
\(466\) 0 0
\(467\) 18.4485 31.9538i 0.853695 1.47864i −0.0241548 0.999708i \(-0.507689\pi\)
0.877850 0.478935i \(-0.158977\pi\)
\(468\) 0 0
\(469\) 1.61353 + 18.1580i 0.0745059 + 0.838457i
\(470\) 0 0
\(471\) −18.7685 + 8.15702i −0.864806 + 0.375856i
\(472\) 0 0
\(473\) 1.99273i 0.0916259i
\(474\) 0 0
\(475\) −0.104937 + 0.0605852i −0.00481483 + 0.00277984i
\(476\) 0 0
\(477\) −1.37024 + 5.92612i −0.0627392 + 0.271338i
\(478\) 0 0
\(479\) −1.70584 + 2.95461i −0.0779420 + 0.135000i −0.902362 0.430979i \(-0.858168\pi\)
0.824420 + 0.565979i \(0.191502\pi\)
\(480\) 0 0
\(481\) −6.29133 + 3.63230i −0.286860 + 0.165619i
\(482\) 0 0
\(483\) 13.4138 21.9482i 0.610350 0.998676i
\(484\) 0 0
\(485\) 6.64948 + 3.83908i 0.301938 + 0.174324i
\(486\) 0 0
\(487\) 1.17122 + 2.02861i 0.0530729 + 0.0919249i 0.891341 0.453333i \(-0.149765\pi\)
−0.838268 + 0.545258i \(0.816432\pi\)
\(488\) 0 0
\(489\) −15.0060 1.71227i −0.678596 0.0774315i
\(490\) 0 0
\(491\) −4.65365 2.68678i −0.210016 0.121253i 0.391303 0.920262i \(-0.372025\pi\)
−0.601319 + 0.799009i \(0.705358\pi\)
\(492\) 0 0
\(493\) −2.79230 1.61214i −0.125759 0.0726070i
\(494\) 0 0
\(495\) 0.881335 + 0.822411i 0.0396131 + 0.0369646i
\(496\) 0 0
\(497\) 30.0873 2.67358i 1.34960 0.119927i
\(498\) 0 0
\(499\) −16.6906 28.9090i −0.747175 1.29415i −0.949171 0.314759i \(-0.898076\pi\)
0.201996 0.979386i \(-0.435257\pi\)
\(500\) 0 0
\(501\) −30.6270 3.49471i −1.36831 0.156132i
\(502\) 0 0
\(503\) 6.01630 0.268254 0.134127 0.990964i \(-0.457177\pi\)
0.134127 + 0.990964i \(0.457177\pi\)
\(504\) 0 0
\(505\) 20.9964 0.934328
\(506\) 0 0
\(507\) −4.77982 + 6.45730i −0.212279 + 0.286779i
\(508\) 0 0
\(509\) −5.01991 8.69473i −0.222503 0.385387i 0.733064 0.680160i \(-0.238090\pi\)
−0.955568 + 0.294772i \(0.904756\pi\)
\(510\) 0 0
\(511\) 17.8838 + 25.4669i 0.791133 + 1.12659i
\(512\) 0 0
\(513\) −3.37670 3.95764i −0.149085 0.174734i
\(514\) 0 0
\(515\) −16.0399 9.26062i −0.706801 0.408072i
\(516\) 0 0
\(517\) 1.12658 + 0.650432i 0.0495470 + 0.0286059i
\(518\) 0 0
\(519\) −13.2004 30.3728i −0.579434 1.33322i
\(520\) 0 0
\(521\) −10.8007 18.7074i −0.473188 0.819586i 0.526341 0.850274i \(-0.323564\pi\)
−0.999529 + 0.0306875i \(0.990230\pi\)
\(522\) 0 0
\(523\) −11.6105 6.70332i −0.507692 0.293116i 0.224193 0.974545i \(-0.428026\pi\)
−0.731884 + 0.681429i \(0.761359\pi\)
\(524\) 0 0
\(525\) −0.0138560 + 0.554433i −0.000604724 + 0.0241974i
\(526\) 0 0
\(527\) −27.3909 + 15.8142i −1.19317 + 0.688875i
\(528\) 0 0
\(529\) 4.25363 7.36750i 0.184940 0.320326i
\(530\) 0 0
\(531\) −13.4229 + 14.3846i −0.582504 + 0.624239i
\(532\) 0 0
\(533\) −3.06973 + 1.77231i −0.132965 + 0.0767672i
\(534\) 0 0
\(535\) 32.4711i 1.40385i
\(536\) 0 0
\(537\) 8.55023 + 6.32905i 0.368970 + 0.273119i
\(538\) 0 0
\(539\) 1.19778 + 0.432265i 0.0515919 + 0.0186190i
\(540\) 0 0
\(541\) 4.53805 7.86013i 0.195106 0.337933i −0.751829 0.659358i \(-0.770828\pi\)
0.946935 + 0.321424i \(0.104162\pi\)
\(542\) 0 0
\(543\) −17.6655 + 7.67767i −0.758101 + 0.329480i
\(544\) 0 0
\(545\) −18.4581 + 31.9704i −0.790659 + 1.36946i
\(546\) 0 0
\(547\) −13.5359 23.4448i −0.578752 1.00243i −0.995623 0.0934620i \(-0.970207\pi\)
0.416871 0.908966i \(-0.363127\pi\)
\(548\) 0 0
\(549\) −17.6598 16.4791i −0.753702 0.703311i
\(550\) 0 0
\(551\) −0.813090 −0.0346388
\(552\) 0 0
\(553\) 2.97644 + 33.4956i 0.126571 + 1.42438i
\(554\) 0 0
\(555\) −3.83110 8.81497i −0.162621 0.374175i
\(556\) 0 0
\(557\) 23.8690 13.7808i 1.01136 0.583911i 0.0997727 0.995010i \(-0.468188\pi\)
0.911591 + 0.411099i \(0.134855\pi\)
\(558\) 0 0
\(559\) 31.6760i 1.33975i
\(560\) 0 0
\(561\) 1.14728 0.498623i 0.0484382 0.0210519i
\(562\) 0 0
\(563\) −13.8466 −0.583563 −0.291781 0.956485i \(-0.594248\pi\)
−0.291781 + 0.956485i \(0.594248\pi\)
\(564\) 0 0
\(565\) 3.04773i 0.128219i
\(566\) 0 0
\(567\) −23.5160 + 3.74123i −0.987580 + 0.157117i
\(568\) 0 0
\(569\) 12.1497i 0.509342i 0.967028 + 0.254671i \(0.0819672\pi\)
−0.967028 + 0.254671i \(0.918033\pi\)
\(570\) 0 0
\(571\) 46.3010 1.93764 0.968819 0.247771i \(-0.0796981\pi\)
0.968819 + 0.247771i \(0.0796981\pi\)
\(572\) 0 0
\(573\) 23.7247 10.3111i 0.991113 0.430750i
\(574\) 0 0
\(575\) 0.679329i 0.0283300i
\(576\) 0 0
\(577\) −10.6284 + 6.13630i −0.442465 + 0.255457i −0.704643 0.709562i \(-0.748893\pi\)
0.262178 + 0.965020i \(0.415559\pi\)
\(578\) 0 0
\(579\) 8.57996 + 19.7416i 0.356571 + 0.820433i
\(580\) 0 0
\(581\) −31.1393 + 21.8672i −1.29188 + 0.907206i
\(582\) 0 0
\(583\) −0.368827 −0.0152752
\(584\) 0 0
\(585\) 14.0095 + 13.0729i 0.579222 + 0.540496i
\(586\) 0 0
\(587\) 11.9875 + 20.7630i 0.494778 + 0.856980i 0.999982 0.00601986i \(-0.00191619\pi\)
−0.505204 + 0.863000i \(0.668583\pi\)
\(588\) 0 0
\(589\) −3.98798 + 6.90738i −0.164322 + 0.284614i
\(590\) 0 0
\(591\) 25.6564 11.1506i 1.05536 0.458675i
\(592\) 0 0
\(593\) 15.4912 26.8315i 0.636146 1.10184i −0.350125 0.936703i \(-0.613861\pi\)
0.986271 0.165134i \(-0.0528056\pi\)
\(594\) 0 0
\(595\) −21.0416 9.77702i −0.862623 0.400819i
\(596\) 0 0
\(597\) −34.6841 25.6739i −1.41953 1.05076i
\(598\) 0 0
\(599\) 24.7558i 1.01150i 0.862681 + 0.505748i \(0.168783\pi\)
−0.862681 + 0.505748i \(0.831217\pi\)
\(600\) 0 0
\(601\) −7.67329 + 4.43017i −0.313000 + 0.180711i −0.648268 0.761412i \(-0.724506\pi\)
0.335268 + 0.942123i \(0.391173\pi\)
\(602\) 0 0
\(603\) 14.1022 15.1126i 0.574286 0.615432i
\(604\) 0 0
\(605\) 12.1121 20.9787i 0.492426 0.852907i
\(606\) 0 0
\(607\) 11.2943 6.52076i 0.458421 0.264670i −0.252959 0.967477i \(-0.581404\pi\)
0.711380 + 0.702807i \(0.248070\pi\)
\(608\) 0 0
\(609\) −1.94073 + 3.17548i −0.0786422 + 0.128677i
\(610\) 0 0
\(611\) 17.9079 + 10.3391i 0.724475 + 0.418276i
\(612\) 0 0
\(613\) 5.90775 + 10.2325i 0.238612 + 0.413288i 0.960316 0.278914i \(-0.0899743\pi\)
−0.721704 + 0.692201i \(0.756641\pi\)
\(614\) 0 0
\(615\) −1.86931 4.30108i −0.0753778 0.173436i
\(616\) 0 0
\(617\) −13.7906 7.96200i −0.555188 0.320538i 0.196024 0.980599i \(-0.437197\pi\)
−0.751212 + 0.660061i \(0.770530\pi\)
\(618\) 0 0
\(619\) −26.7802 15.4616i −1.07639 0.621453i −0.146468 0.989215i \(-0.546791\pi\)
−0.929920 + 0.367762i \(0.880124\pi\)
\(620\) 0 0
\(621\) −28.6810 + 5.30078i −1.15093 + 0.212713i
\(622\) 0 0
\(623\) −34.1372 15.8619i −1.36768 0.635494i
\(624\) 0 0
\(625\) 12.1901 + 21.1139i 0.487605 + 0.844556i
\(626\) 0 0
\(627\) 0.187686 0.253555i 0.00749547 0.0101260i
\(628\) 0 0
\(629\) −9.97429 −0.397701
\(630\) 0 0
\(631\) −0.925450 −0.0368416 −0.0184208 0.999830i \(-0.505864\pi\)
−0.0184208 + 0.999830i \(0.505864\pi\)
\(632\) 0 0
\(633\) 19.9151 + 2.27243i 0.791556 + 0.0903208i
\(634\) 0 0
\(635\) 13.2181 + 22.8945i 0.524546 + 0.908540i
\(636\) 0 0
\(637\) 19.0396 + 6.87119i 0.754377 + 0.272247i
\(638\) 0 0
\(639\) −25.0412 23.3670i −0.990616 0.924385i
\(640\) 0 0
\(641\) −29.7464 17.1741i −1.17491 0.678336i −0.220080 0.975482i \(-0.570632\pi\)
−0.954832 + 0.297146i \(0.903965\pi\)
\(642\) 0 0
\(643\) 11.8373 + 6.83426i 0.466817 + 0.269517i 0.714906 0.699220i \(-0.246469\pi\)
−0.248089 + 0.968737i \(0.579803\pi\)
\(644\) 0 0
\(645\) −41.6391 4.75124i −1.63954 0.187080i
\(646\) 0 0
\(647\) 18.1075 + 31.3630i 0.711877 + 1.23301i 0.964152 + 0.265352i \(0.0854882\pi\)
−0.252274 + 0.967656i \(0.581178\pi\)
\(648\) 0 0
\(649\) −1.03319 0.596512i −0.0405562 0.0234151i
\(650\) 0 0
\(651\) 17.4577 + 32.0617i 0.684221 + 1.25660i
\(652\) 0 0
\(653\) −31.6333 + 18.2635i −1.23791 + 0.714705i −0.968666 0.248368i \(-0.920106\pi\)
−0.269240 + 0.963073i \(0.586773\pi\)
\(654\) 0 0
\(655\) −8.12186 + 14.0675i −0.317347 + 0.549662i
\(656\) 0 0
\(657\) 7.94907 34.3786i 0.310123 1.34124i
\(658\) 0 0
\(659\) 19.5178 11.2686i 0.760305 0.438962i −0.0691004 0.997610i \(-0.522013\pi\)
0.829405 + 0.558648i \(0.188680\pi\)
\(660\) 0 0
\(661\) 1.49643i 0.0582045i −0.999576 0.0291022i \(-0.990735\pi\)
0.999576 0.0291022i \(-0.00926484\pi\)
\(662\) 0 0
\(663\) 18.2369 7.92599i 0.708262 0.307820i
\(664\) 0 0
\(665\) −5.82811 + 0.517890i −0.226004 + 0.0200829i
\(666\) 0 0
\(667\) −2.27925 + 3.94778i −0.0882529 + 0.152859i
\(668\) 0 0
\(669\) −22.4494 16.6175i −0.867942 0.642469i
\(670\) 0 0
\(671\) 0.732330 1.26843i 0.0282713 0.0489673i
\(672\) 0 0
\(673\) 13.9366 + 24.1389i 0.537215 + 0.930484i 0.999053 + 0.0435197i \(0.0138571\pi\)
−0.461837 + 0.886965i \(0.652810\pi\)
\(674\) 0 0
\(675\) 0.478397 0.408174i 0.0184135 0.0157106i
\(676\) 0 0
\(677\) −31.2688 −1.20176 −0.600880 0.799340i \(-0.705183\pi\)
−0.600880 + 0.799340i \(0.705183\pi\)
\(678\) 0 0
\(679\) −5.28538 7.52648i −0.202834 0.288840i
\(680\) 0 0
\(681\) −34.0797 3.88868i −1.30594 0.149015i
\(682\) 0 0
\(683\) 8.06769 4.65788i 0.308701 0.178229i −0.337644 0.941274i \(-0.609630\pi\)
0.646345 + 0.763045i \(0.276297\pi\)
\(684\) 0 0
\(685\) 36.2949i 1.38676i
\(686\) 0 0
\(687\) −21.7177 16.0759i −0.828581 0.613333i
\(688\) 0 0
\(689\) −5.86279 −0.223354
\(690\) 0 0
\(691\) 48.5515i 1.84699i −0.383615 0.923493i \(-0.625321\pi\)
0.383615 0.923493i \(-0.374679\pi\)
\(692\) 0 0
\(693\) −0.542264 1.33820i −0.0205989 0.0508338i
\(694\) 0 0
\(695\) 28.5942i 1.08464i
\(696\) 0 0
\(697\) −4.86675 −0.184341
\(698\) 0 0
\(699\) 2.41365 21.1528i 0.0912925 0.800071i
\(700\) 0 0
\(701\) 22.9812i 0.867987i 0.900916 + 0.433994i \(0.142896\pi\)
−0.900916 + 0.433994i \(0.857104\pi\)
\(702\) 0 0
\(703\) −2.17831 + 1.25765i −0.0821564 + 0.0474330i
\(704\) 0 0
\(705\) −16.2772 + 21.9896i −0.613033 + 0.828177i
\(706\) 0 0
\(707\) −22.8077 10.5976i −0.857771 0.398564i
\(708\) 0 0
\(709\) 30.6865 1.15246 0.576228 0.817289i \(-0.304524\pi\)
0.576228 + 0.817289i \(0.304524\pi\)
\(710\) 0 0
\(711\) 26.0140 27.8778i 0.975600 1.04550i
\(712\) 0 0
\(713\) 22.3582 + 38.7255i 0.837319 + 1.45028i
\(714\) 0 0
\(715\) −0.580956 + 1.00625i −0.0217265 + 0.0376315i
\(716\) 0 0
\(717\) 3.13032 27.4336i 0.116904 1.02453i
\(718\) 0 0
\(719\) 2.44166 4.22907i 0.0910584 0.157718i −0.816898 0.576782i \(-0.804308\pi\)
0.907957 + 0.419064i \(0.137642\pi\)
\(720\) 0 0
\(721\) 12.7494 + 18.1554i 0.474812 + 0.676141i
\(722\) 0 0
\(723\) 4.06218 35.6003i 0.151074 1.32399i
\(724\) 0 0
\(725\) 0.0982859i 0.00365025i
\(726\) 0 0
\(727\) 32.7779 18.9243i 1.21567 0.701865i 0.251678 0.967811i \(-0.419018\pi\)
0.963988 + 0.265946i \(0.0856844\pi\)
\(728\) 0 0
\(729\) 20.9658 + 17.0127i 0.776513 + 0.630102i
\(730\) 0 0
\(731\) −21.7456 + 37.6644i −0.804289 + 1.39307i
\(732\) 0 0
\(733\) −40.1113 + 23.1583i −1.48155 + 0.855370i −0.999781 0.0209305i \(-0.993337\pi\)
−0.481764 + 0.876301i \(0.660004\pi\)
\(734\) 0 0
\(735\) −11.8882 + 23.9975i −0.438504 + 0.885161i
\(736\) 0 0
\(737\) 1.08548 + 0.626700i 0.0399840 + 0.0230848i
\(738\) 0 0
\(739\) −5.15606 8.93056i −0.189669 0.328516i 0.755471 0.655182i \(-0.227408\pi\)
−0.945140 + 0.326666i \(0.894075\pi\)
\(740\) 0 0
\(741\) 2.98342 4.03045i 0.109599 0.148062i
\(742\) 0 0
\(743\) −21.9984 12.7008i −0.807042 0.465946i 0.0388856 0.999244i \(-0.487619\pi\)
−0.845928 + 0.533298i \(0.820953\pi\)
\(744\) 0 0
\(745\) 29.1450 + 16.8269i 1.06779 + 0.616489i
\(746\) 0 0
\(747\) 42.0360 + 9.71963i 1.53802 + 0.355623i
\(748\) 0 0
\(749\) 16.3893 35.2722i 0.598851 1.28882i
\(750\) 0 0
\(751\) −26.8653 46.5321i −0.980329 1.69798i −0.661091 0.750306i \(-0.729906\pi\)
−0.319238 0.947675i \(-0.603427\pi\)
\(752\) 0 0
\(753\) −5.29228 12.1770i −0.192861 0.443754i
\(754\) 0 0
\(755\) −30.1783 −1.09830
\(756\) 0 0
\(757\) 28.3821 1.03157 0.515783 0.856719i \(-0.327501\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(758\) 0 0
\(759\) −0.704956 1.62203i −0.0255883 0.0588760i
\(760\) 0 0
\(761\) 11.5592 + 20.0211i 0.419021 + 0.725765i 0.995841 0.0911059i \(-0.0290402\pi\)
−0.576821 + 0.816871i \(0.695707\pi\)
\(762\) 0 0
\(763\) 36.1870 25.4119i 1.31006 0.919972i
\(764\) 0 0
\(765\) 7.68351 + 25.1618i 0.277798 + 0.909727i
\(766\) 0 0
\(767\) −16.4233 9.48202i −0.593013 0.342376i
\(768\) 0 0
\(769\) 23.1698 + 13.3771i 0.835524 + 0.482390i 0.855740 0.517406i \(-0.173102\pi\)
−0.0202163 + 0.999796i \(0.506435\pi\)
\(770\) 0 0
\(771\) −12.2936 + 16.6080i −0.442742 + 0.598121i
\(772\) 0 0
\(773\) 3.97203 + 6.87976i 0.142864 + 0.247448i 0.928574 0.371147i \(-0.121035\pi\)
−0.785710 + 0.618595i \(0.787702\pi\)
\(774\) 0 0
\(775\) −0.834960 0.482065i −0.0299927 0.0173163i
\(776\) 0 0
\(777\) −0.287626 + 11.5091i −0.0103185 + 0.412886i
\(778\) 0 0
\(779\) −1.06286 + 0.613643i −0.0380809 + 0.0219860i
\(780\) 0 0
\(781\) 1.03843 1.79861i 0.0371579 0.0643593i
\(782\) 0 0
\(783\) 4.14959 0.766922i 0.148294 0.0274076i
\(784\) 0 0
\(785\) 22.6013 13.0489i 0.806676 0.465734i
\(786\) 0 0
\(787\) 12.1939i 0.434666i −0.976097 0.217333i \(-0.930264\pi\)
0.976097 0.217333i \(-0.0697358\pi\)
\(788\) 0 0
\(789\) −1.51690 + 13.2939i −0.0540031 + 0.473274i
\(790\) 0 0
\(791\) −1.53829 + 3.31064i −0.0546954 + 0.117713i
\(792\) 0 0
\(793\) 11.6410 20.1627i 0.413382 0.715999i
\(794\) 0 0
\(795\) 0.879389 7.70681i 0.0311887 0.273332i
\(796\) 0 0
\(797\) 3.30173 5.71876i 0.116953 0.202569i −0.801606 0.597853i \(-0.796021\pi\)
0.918559 + 0.395284i \(0.129354\pi\)
\(798\) 0 0
\(799\) 14.1956 + 24.5875i 0.502204 + 0.869842i
\(800\) 0 0
\(801\) 12.4655 + 40.8216i 0.440445 + 1.44236i
\(802\) 0 0
\(803\) 2.13964 0.0755062
\(804\) 0 0
\(805\) −13.8228 + 29.7488i −0.487190 + 1.04851i
\(806\) 0 0
\(807\) 10.2790 13.8864i 0.361837 0.488823i
\(808\) 0 0
\(809\) −8.57462 + 4.95056i −0.301468 + 0.174052i −0.643102 0.765780i \(-0.722353\pi\)
0.341634 + 0.939833i \(0.389020\pi\)
\(810\) 0 0
\(811\) 33.1027i 1.16239i 0.813763 + 0.581197i \(0.197416\pi\)
−0.813763 + 0.581197i \(0.802584\pi\)
\(812\) 0 0
\(813\) −0.819682 + 7.18355i −0.0287475 + 0.251938i
\(814\) 0 0
\(815\) 19.2610 0.674683
\(816\) 0 0
\(817\) 10.9675i 0.383704i
\(818\) 0 0
\(819\) −8.61971 21.2717i −0.301197 0.743292i
\(820\) 0 0
\(821\) 11.4327i 0.399004i 0.979897 + 0.199502i \(0.0639324\pi\)
−0.979897 + 0.199502i \(0.936068\pi\)
\(822\) 0 0
\(823\) 38.9019 1.35603 0.678017 0.735047i \(-0.262840\pi\)
0.678017 + 0.735047i \(0.262840\pi\)
\(824\) 0 0
\(825\) 0.0306495 + 0.0226874i 0.00106708 + 0.000789874i
\(826\) 0 0
\(827\) 8.05228i 0.280005i 0.990151 + 0.140003i \(0.0447111\pi\)
−0.990151 + 0.140003i \(0.955289\pi\)
\(828\) 0 0
\(829\) −11.3389 + 6.54652i −0.393816 + 0.227370i −0.683812 0.729658i \(-0.739679\pi\)
0.289996 + 0.957028i \(0.406346\pi\)
\(830\) 0 0
\(831\) 7.65806 + 0.873826i 0.265655 + 0.0303127i
\(832\) 0 0
\(833\) 17.9220 + 21.2409i 0.620960 + 0.735953i
\(834\) 0 0
\(835\) 39.3113 1.36042
\(836\) 0 0
\(837\) 13.8374 39.0132i 0.478290 1.34849i
\(838\) 0 0
\(839\) 5.51797 + 9.55740i 0.190501 + 0.329958i 0.945416 0.325864i \(-0.105655\pi\)
−0.754915 + 0.655822i \(0.772322\pi\)
\(840\) 0 0
\(841\) −14.1702 + 24.5436i −0.488629 + 0.846330i
\(842\) 0 0
\(843\) 39.4600 + 29.2091i 1.35907 + 1.00601i
\(844\) 0 0
\(845\) 5.12271 8.87279i 0.176227 0.305233i
\(846\) 0 0
\(847\) −23.7456 + 16.6751i −0.815908 + 0.572962i
\(848\) 0 0
\(849\) −18.4209 + 8.00594i −0.632202 + 0.274763i
\(850\) 0 0
\(851\) 14.1017i 0.483400i
\(852\) 0 0
\(853\) −20.2134 + 11.6702i −0.692092 + 0.399580i −0.804395 0.594094i \(-0.797511\pi\)
0.112303 + 0.993674i \(0.464177\pi\)
\(854\) 0 0
\(855\) 4.85064 + 4.52634i 0.165888 + 0.154798i
\(856\) 0 0
\(857\) 9.10606 15.7722i 0.311057 0.538767i −0.667534 0.744579i \(-0.732650\pi\)
0.978592 + 0.205812i \(0.0659836\pi\)
\(858\) 0 0
\(859\) −33.9133 + 19.5799i −1.15711 + 0.668057i −0.950609 0.310390i \(-0.899540\pi\)
−0.206499 + 0.978447i \(0.566207\pi\)
\(860\) 0 0
\(861\) −0.140341 + 5.61562i −0.00478282 + 0.191380i
\(862\) 0 0
\(863\) −22.7847 13.1548i −0.775601 0.447793i 0.0592683 0.998242i \(-0.481123\pi\)
−0.834869 + 0.550449i \(0.814457\pi\)
\(864\) 0 0
\(865\) 21.1168 + 36.5754i 0.717994 + 1.24360i
\(866\) 0 0
\(867\) −2.12923 0.242957i −0.0723125 0.00825125i
\(868\) 0 0
\(869\) 2.00235 + 1.15606i 0.0679252 + 0.0392166i
\(870\) 0 0
\(871\) 17.2545 + 9.96189i 0.584646 + 0.337546i
\(872\) 0 0
\(873\) −2.34927 + 10.1603i −0.0795107 + 0.343872i
\(874\) 0 0
\(875\) −2.64894 29.8100i −0.0895506 1.00776i
\(876\) 0 0
\(877\) −3.59833 6.23249i −0.121507 0.210456i 0.798855 0.601523i \(-0.205439\pi\)
−0.920362 + 0.391067i \(0.872106\pi\)
\(878\) 0 0
\(879\) 49.6299 + 5.66304i 1.67397 + 0.191010i
\(880\) 0 0
\(881\) −37.2133 −1.25375 −0.626874 0.779121i \(-0.715666\pi\)
−0.626874 + 0.779121i \(0.715666\pi\)
\(882\) 0 0
\(883\) −9.72629 −0.327316 −0.163658 0.986517i \(-0.552329\pi\)
−0.163658 + 0.986517i \(0.552329\pi\)
\(884\) 0 0
\(885\) 14.9278 20.1667i 0.501793 0.677897i
\(886\) 0 0
\(887\) −10.3493 17.9255i −0.347496 0.601881i 0.638308 0.769781i \(-0.279635\pi\)
−0.985804 + 0.167900i \(0.946301\pi\)
\(888\) 0 0
\(889\) −2.80277 31.5411i −0.0940019 1.05786i
\(890\) 0 0
\(891\) −0.718695 + 1.47104i −0.0240772 + 0.0492817i
\(892\) 0 0
\(893\) 6.20041 + 3.57981i 0.207489 + 0.119794i
\(894\) 0 0
\(895\) −11.7486 6.78307i −0.392713 0.226733i
\(896\) 0 0
\(897\) −11.2058 25.7834i −0.374151 0.860884i
\(898\) 0 0
\(899\) −3.23480 5.60284i −0.107887 0.186865i
\(900\) 0 0
\(901\) −6.97115 4.02480i −0.232243 0.134085i
\(902\) 0 0
\(903\) 42.8329 + 26.1778i 1.42539 + 0.871142i
\(904\) 0 0
\(905\) 21.2731 12.2821i 0.707143 0.408269i
\(906\) 0 0
\(907\) 0.495464 0.858169i 0.0164516 0.0284950i −0.857682 0.514180i \(-0.828096\pi\)
0.874134 + 0.485685i \(0.161430\pi\)
\(908\) 0 0
\(909\) 8.32839 + 27.2736i 0.276235 + 0.904609i
\(910\) 0 0
\(911\) −15.2170 + 8.78552i −0.504161 + 0.291077i −0.730430 0.682987i \(-0.760680\pi\)
0.226269 + 0.974065i \(0.427347\pi\)
\(912\) 0 0
\(913\) 2.61622i 0.0865842i
\(914\) 0 0
\(915\) 24.7584 + 18.3267i 0.818488 + 0.605862i
\(916\) 0 0
\(917\) 15.9228 11.1816i 0.525818 0.369250i
\(918\) 0 0
\(919\) 9.22417 15.9767i 0.304277 0.527024i −0.672823 0.739804i \(-0.734918\pi\)
0.977100 + 0.212780i \(0.0682517\pi\)
\(920\) 0 0
\(921\) 17.1746 7.46429i 0.565921 0.245957i
\(922\) 0 0
\(923\) 16.5066 28.5903i 0.543322 0.941061i
\(924\) 0 0
\(925\) −0.152024 0.263313i −0.00499851 0.00865767i
\(926\) 0 0
\(927\) 5.66690 24.5085i 0.186125 0.804966i
\(928\) 0 0
\(929\) −20.9425 −0.687100 −0.343550 0.939134i \(-0.611629\pi\)
−0.343550 + 0.939134i \(0.611629\pi\)
\(930\) 0 0
\(931\) 6.59226 + 2.37908i 0.216053 + 0.0779712i
\(932\) 0 0
\(933\) 11.8631 + 27.2957i 0.388380 + 0.893621i
\(934\) 0 0
\(935\) −1.38157 + 0.797652i −0.0451823 + 0.0260860i
\(936\) 0 0
\(937\) 27.1677i 0.887529i −0.896143 0.443764i \(-0.853643\pi\)
0.896143 0.443764i \(-0.146357\pi\)
\(938\) 0 0
\(939\) −14.5253 + 6.31290i −0.474016 + 0.206014i
\(940\) 0 0
\(941\) −2.85152 −0.0929569 −0.0464785 0.998919i \(-0.514800\pi\)
−0.0464785 + 0.998919i \(0.514800\pi\)
\(942\) 0 0
\(943\) 6.88064i 0.224065i
\(944\) 0 0
\(945\) 29.2551 8.14022i 0.951670 0.264802i
\(946\) 0 0
\(947\) 17.6279i 0.572830i 0.958106 + 0.286415i \(0.0924635\pi\)
−0.958106 + 0.286415i \(0.907536\pi\)
\(948\) 0 0
\(949\) 34.0112 1.10405
\(950\) 0 0
\(951\) −1.80610 + 0.784953i −0.0585667 + 0.0254539i
\(952\) 0 0
\(953\) 47.1766i 1.52820i −0.645097 0.764101i \(-0.723183\pi\)
0.645097 0.764101i \(-0.276817\pi\)
\(954\) 0 0
\(955\) −28.5697 + 16.4947i −0.924493 + 0.533756i
\(956\) 0 0
\(957\) 0.101994 + 0.234677i 0.00329699 + 0.00758603i
\(958\) 0 0
\(959\) −18.3193 + 39.4259i −0.591560 + 1.27313i
\(960\) 0 0
\(961\) −32.4631 −1.04720
\(962\) 0 0
\(963\) −42.1788 + 12.8799i −1.35919 + 0.415049i
\(964\) 0 0
\(965\) −13.7255 23.7732i −0.441838 0.765286i
\(966\) 0 0
\(967\) 3.62809 6.28404i 0.116672 0.202081i −0.801775 0.597626i \(-0.796111\pi\)
0.918447 + 0.395545i \(0.129444\pi\)
\(968\) 0 0
\(969\) 6.31433 2.74429i 0.202846 0.0881594i
\(970\) 0 0
\(971\) −10.2653 + 17.7800i −0.329429 + 0.570588i −0.982399 0.186796i \(-0.940190\pi\)
0.652970 + 0.757384i \(0.273523\pi\)
\(972\) 0 0
\(973\) 14.4324 31.0608i 0.462683 0.995764i
\(974\) 0 0
\(975\) 0.487198 + 0.360634i 0.0156028 + 0.0115495i
\(976\) 0 0
\(977\) 44.7499i 1.43168i 0.698267 + 0.715838i \(0.253955\pi\)
−0.698267 + 0.715838i \(0.746045\pi\)
\(978\) 0 0
\(979\) −2.24142 + 1.29408i −0.0716360 + 0.0413591i
\(980\) 0 0
\(981\) −48.8500 11.2952i −1.55966 0.360627i
\(982\) 0 0
\(983\) −13.4550 + 23.3047i −0.429146 + 0.743303i −0.996798 0.0799658i \(-0.974519\pi\)
0.567651 + 0.823269i \(0.307852\pi\)
\(984\) 0 0
\(985\) −30.8959 + 17.8378i −0.984425 + 0.568358i
\(986\) 0 0
\(987\) 28.7802 15.6709i 0.916084 0.498810i
\(988\) 0 0
\(989\) 53.2502 + 30.7440i 1.69326 + 0.977602i
\(990\) 0 0
\(991\) −13.8668 24.0181i −0.440494 0.762959i 0.557232 0.830357i \(-0.311864\pi\)
−0.997726 + 0.0673982i \(0.978530\pi\)
\(992\) 0 0
\(993\) −4.17538 9.60711i −0.132502 0.304873i
\(994\) 0 0
\(995\) 47.6585 + 27.5156i 1.51088 + 0.872304i
\(996\) 0 0
\(997\) 19.4320 + 11.2191i 0.615418 + 0.355312i 0.775083 0.631859i \(-0.217708\pi\)
−0.159665 + 0.987171i \(0.551041\pi\)
\(998\) 0 0
\(999\) 9.93071 8.47299i 0.314194 0.268074i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.257.10 48
3.2 odd 2 3024.2.ca.e.2609.7 48
4.3 odd 2 504.2.bs.a.257.15 48
7.3 odd 6 1008.2.df.e.689.17 48
9.2 odd 6 1008.2.df.e.929.17 48
9.7 even 3 3024.2.df.e.1601.7 48
12.11 even 2 1512.2.bs.a.1097.7 48
21.17 even 6 3024.2.df.e.17.7 48
28.3 even 6 504.2.cx.a.185.8 yes 48
36.7 odd 6 1512.2.cx.a.89.7 48
36.11 even 6 504.2.cx.a.425.8 yes 48
63.38 even 6 inner 1008.2.ca.e.353.10 48
63.52 odd 6 3024.2.ca.e.2033.7 48
84.59 odd 6 1512.2.cx.a.17.7 48
252.115 even 6 1512.2.bs.a.521.7 48
252.227 odd 6 504.2.bs.a.353.15 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.15 48 4.3 odd 2
504.2.bs.a.353.15 yes 48 252.227 odd 6
504.2.cx.a.185.8 yes 48 28.3 even 6
504.2.cx.a.425.8 yes 48 36.11 even 6
1008.2.ca.e.257.10 48 1.1 even 1 trivial
1008.2.ca.e.353.10 48 63.38 even 6 inner
1008.2.df.e.689.17 48 7.3 odd 6
1008.2.df.e.929.17 48 9.2 odd 6
1512.2.bs.a.521.7 48 252.115 even 6
1512.2.bs.a.1097.7 48 12.11 even 2
1512.2.cx.a.17.7 48 84.59 odd 6
1512.2.cx.a.89.7 48 36.7 odd 6
3024.2.ca.e.2033.7 48 63.52 odd 6
3024.2.ca.e.2609.7 48 3.2 odd 2
3024.2.df.e.17.7 48 21.17 even 6
3024.2.df.e.1601.7 48 9.7 even 3