L(s) = 1 | + (−0.690 − 1.58i)3-s + (1.10 + 1.91i)5-s + (−0.234 − 2.63i)7-s + (−2.04 + 2.19i)9-s + (−0.157 − 0.0909i)11-s + (−2.50 − 1.44i)13-s + (2.27 − 3.07i)15-s + (−1.98 − 3.43i)17-s + (−0.867 − 0.500i)19-s + (−4.02 + 2.19i)21-s + (−4.86 + 2.80i)23-s + (0.0605 − 0.104i)25-s + (4.89 + 1.73i)27-s + (0.703 − 0.406i)29-s − 7.96i·31-s + ⋯ |
L(s) = 1 | + (−0.398 − 0.917i)3-s + (0.493 + 0.855i)5-s + (−0.0885 − 0.996i)7-s + (−0.682 + 0.731i)9-s + (−0.0475 − 0.0274i)11-s + (−0.694 − 0.400i)13-s + (0.587 − 0.793i)15-s + (−0.481 − 0.833i)17-s + (−0.198 − 0.114i)19-s + (−0.878 + 0.478i)21-s + (−1.01 + 0.585i)23-s + (0.0121 − 0.0209i)25-s + (0.942 + 0.334i)27-s + (0.130 − 0.0754i)29-s − 1.43i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.907 + 0.419i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7515360144\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7515360144\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.690 + 1.58i)T \) |
| 7 | \( 1 + (0.234 + 2.63i)T \) |
good | 5 | \( 1 + (-1.10 - 1.91i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.157 + 0.0909i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.50 + 1.44i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.98 + 3.43i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.867 + 0.500i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.86 - 2.80i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.703 + 0.406i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7.96iT - 31T^{2} \) |
| 37 | \( 1 + (-1.25 + 2.17i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.612 + 1.06i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.47 + 9.48i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 7.15T + 47T^{2} \) |
| 53 | \( 1 + (-1.75 + 1.01i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 6.55T + 59T^{2} \) |
| 61 | \( 1 - 8.05iT - 61T^{2} \) |
| 67 | \( 1 + 6.89T + 67T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (10.1 - 5.88i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 12.7T + 79T^{2} \) |
| 83 | \( 1 + (7.19 + 12.4i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.11 + 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.01 + 1.73i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.01185346621559682238604200897, −8.648195238677713335496821875582, −7.52605172670404516620852004869, −7.18355410031509136859801312441, −6.32350058537086194025045602176, −5.51044469134924867399232780388, −4.31412454994468694710029245738, −2.93209744119878357305578935897, −1.99294349064840387166140040756, −0.33815969062903600649621035981,
1.79054142052381406789763239948, 3.10524158446649867936893336347, 4.46108582236810162965280537961, 5.02059297779837756538049651140, 5.92341771016398322086580782852, 6.60352902525782778663150478120, 8.247419041994317516707074118795, 8.768122553287058729114447157188, 9.553410929387352286154297469338, 10.11499244883557907158028591793