Properties

Label 1512.2.cx.a.17.7
Level $1512$
Weight $2$
Character 1512.17
Analytic conductor $12.073$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(17,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.cx (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 1512.17
Dual form 1512.2.cx.a.89.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.20884 q^{5} +(2.16520 + 1.52049i) q^{7} +0.181913i q^{11} +(2.50424 + 1.44582i) q^{13} +(-1.98511 + 3.43832i) q^{17} +(0.867067 - 0.500601i) q^{19} -5.61313i q^{23} -0.121025 q^{25} +(-0.703311 + 0.406057i) q^{29} +(-6.89908 + 3.98319i) q^{31} +(-4.78259 - 3.35852i) q^{35} +(1.25614 + 2.17569i) q^{37} +(0.612906 - 1.06158i) q^{41} +(5.47716 + 9.48671i) q^{43} +(-3.57551 + 6.19296i) q^{47} +(2.37622 + 6.58434i) q^{49} +(1.75586 + 1.01374i) q^{53} -0.401817i q^{55} +(3.27911 + 5.67958i) q^{59} +(6.97275 + 4.02572i) q^{61} +(-5.53147 - 3.19359i) q^{65} +(-3.44505 - 5.96701i) q^{67} +11.4168i q^{71} +(-10.1861 - 5.88094i) q^{73} +(-0.276597 + 0.393879i) q^{77} +(-6.35501 + 11.0072i) q^{79} +(7.19085 + 12.4549i) q^{83} +(4.38480 - 7.59470i) q^{85} +(7.11375 + 12.3214i) q^{89} +(3.22383 + 6.93818i) q^{91} +(-1.91521 + 1.10575i) q^{95} +(-3.01040 + 1.73805i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 48 q^{25} - 18 q^{29} + 18 q^{31} + 6 q^{41} - 6 q^{43} - 18 q^{47} - 12 q^{49} + 12 q^{53} + 18 q^{61} + 36 q^{65} + 12 q^{77} + 6 q^{79} + 18 q^{89} + 6 q^{91} + 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.20884 −0.987823 −0.493912 0.869512i \(-0.664433\pi\)
−0.493912 + 0.869512i \(0.664433\pi\)
\(6\) 0 0
\(7\) 2.16520 + 1.52049i 0.818370 + 0.574691i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.181913i 0.0548488i 0.999624 + 0.0274244i \(0.00873056\pi\)
−0.999624 + 0.0274244i \(0.991269\pi\)
\(12\) 0 0
\(13\) 2.50424 + 1.44582i 0.694551 + 0.400999i 0.805315 0.592847i \(-0.201996\pi\)
−0.110763 + 0.993847i \(0.535330\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.98511 + 3.43832i −0.481461 + 0.833915i −0.999774 0.0212765i \(-0.993227\pi\)
0.518313 + 0.855191i \(0.326560\pi\)
\(18\) 0 0
\(19\) 0.867067 0.500601i 0.198919 0.114846i −0.397232 0.917718i \(-0.630029\pi\)
0.596151 + 0.802872i \(0.296696\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.61313i 1.17042i −0.810882 0.585210i \(-0.801012\pi\)
0.810882 0.585210i \(-0.198988\pi\)
\(24\) 0 0
\(25\) −0.121025 −0.0242050
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.703311 + 0.406057i −0.130602 + 0.0754028i −0.563877 0.825859i \(-0.690691\pi\)
0.433276 + 0.901261i \(0.357358\pi\)
\(30\) 0 0
\(31\) −6.89908 + 3.98319i −1.23911 + 0.715401i −0.968913 0.247403i \(-0.920423\pi\)
−0.270199 + 0.962805i \(0.587089\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.78259 3.35852i −0.808405 0.567693i
\(36\) 0 0
\(37\) 1.25614 + 2.17569i 0.206507 + 0.357681i 0.950612 0.310382i \(-0.100457\pi\)
−0.744105 + 0.668063i \(0.767124\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.612906 1.06158i 0.0957198 0.165792i −0.814189 0.580600i \(-0.802818\pi\)
0.909909 + 0.414808i \(0.136151\pi\)
\(42\) 0 0
\(43\) 5.47716 + 9.48671i 0.835259 + 1.44671i 0.893820 + 0.448426i \(0.148015\pi\)
−0.0585613 + 0.998284i \(0.518651\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.57551 + 6.19296i −0.521542 + 0.903336i 0.478145 + 0.878281i \(0.341309\pi\)
−0.999686 + 0.0250552i \(0.992024\pi\)
\(48\) 0 0
\(49\) 2.37622 + 6.58434i 0.339460 + 0.940620i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.75586 + 1.01374i 0.241186 + 0.139249i 0.615722 0.787964i \(-0.288865\pi\)
−0.374536 + 0.927212i \(0.622198\pi\)
\(54\) 0 0
\(55\) 0.401817i 0.0541810i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.27911 + 5.67958i 0.426903 + 0.739418i 0.996596 0.0824396i \(-0.0262712\pi\)
−0.569693 + 0.821858i \(0.692938\pi\)
\(60\) 0 0
\(61\) 6.97275 + 4.02572i 0.892769 + 0.515440i 0.874847 0.484399i \(-0.160962\pi\)
0.0179215 + 0.999839i \(0.494295\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.53147 3.19359i −0.686094 0.396117i
\(66\) 0 0
\(67\) −3.44505 5.96701i −0.420880 0.728986i 0.575145 0.818051i \(-0.304945\pi\)
−0.996026 + 0.0890650i \(0.971612\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.4168i 1.35492i 0.735560 + 0.677460i \(0.236919\pi\)
−0.735560 + 0.677460i \(0.763081\pi\)
\(72\) 0 0
\(73\) −10.1861 5.88094i −1.19219 0.688312i −0.233388 0.972384i \(-0.574981\pi\)
−0.958803 + 0.284072i \(0.908315\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.276597 + 0.393879i −0.0315211 + 0.0448867i
\(78\) 0 0
\(79\) −6.35501 + 11.0072i −0.714994 + 1.23841i 0.247968 + 0.968768i \(0.420237\pi\)
−0.962962 + 0.269638i \(0.913096\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.19085 + 12.4549i 0.789298 + 1.36710i 0.926397 + 0.376547i \(0.122889\pi\)
−0.137099 + 0.990557i \(0.543778\pi\)
\(84\) 0 0
\(85\) 4.38480 7.59470i 0.475598 0.823760i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.11375 + 12.3214i 0.754055 + 1.30606i 0.945843 + 0.324626i \(0.105238\pi\)
−0.191787 + 0.981437i \(0.561428\pi\)
\(90\) 0 0
\(91\) 3.22383 + 6.93818i 0.337949 + 0.727319i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.91521 + 1.10575i −0.196497 + 0.113447i
\(96\) 0 0
\(97\) −3.01040 + 1.73805i −0.305659 + 0.176473i −0.644982 0.764197i \(-0.723135\pi\)
0.339323 + 0.940670i \(0.389802\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.50563 −0.945846 −0.472923 0.881104i \(-0.656801\pi\)
−0.472923 + 0.881104i \(0.656801\pi\)
\(102\) 0 0
\(103\) 8.38505i 0.826204i −0.910685 0.413102i \(-0.864445\pi\)
0.910685 0.413102i \(-0.135555\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.7310 + 7.35026i −1.23075 + 0.710576i −0.967187 0.254065i \(-0.918232\pi\)
−0.263567 + 0.964641i \(0.584899\pi\)
\(108\) 0 0
\(109\) 8.35648 14.4738i 0.800405 1.38634i −0.118944 0.992901i \(-0.537951\pi\)
0.919350 0.393442i \(-0.128716\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.19493 + 0.689894i 0.112410 + 0.0648998i 0.555151 0.831750i \(-0.312661\pi\)
−0.442741 + 0.896650i \(0.645994\pi\)
\(114\) 0 0
\(115\) 12.3985i 1.15617i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.52611 + 4.42632i −0.873257 + 0.405760i
\(120\) 0 0
\(121\) 10.9669 0.996992
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3115 1.01173
\(126\) 0 0
\(127\) −11.9684 −1.06202 −0.531012 0.847364i \(-0.678188\pi\)
−0.531012 + 0.847364i \(0.678188\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.35396 0.642519 0.321259 0.946991i \(-0.395894\pi\)
0.321259 + 0.946991i \(0.395894\pi\)
\(132\) 0 0
\(133\) 2.63854 + 0.234462i 0.228790 + 0.0203305i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.4316i 1.40385i −0.712251 0.701925i \(-0.752324\pi\)
0.712251 0.701925i \(-0.247676\pi\)
\(138\) 0 0
\(139\) 11.2110 + 6.47266i 0.950903 + 0.549004i 0.893361 0.449339i \(-0.148340\pi\)
0.0575417 + 0.998343i \(0.481674\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.263014 + 0.455554i −0.0219944 + 0.0380953i
\(144\) 0 0
\(145\) 1.55350 0.896914i 0.129011 0.0744847i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.2359i 1.24818i −0.781354 0.624088i \(-0.785471\pi\)
0.781354 0.624088i \(-0.214529\pi\)
\(150\) 0 0
\(151\) −13.6625 −1.11184 −0.555919 0.831236i \(-0.687634\pi\)
−0.555919 + 0.831236i \(0.687634\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 15.2390 8.79822i 1.22402 0.706690i
\(156\) 0 0
\(157\) 10.2322 5.90757i 0.816619 0.471475i −0.0326299 0.999468i \(-0.510388\pi\)
0.849249 + 0.527992i \(0.177055\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.53471 12.1536i 0.672630 0.957836i
\(162\) 0 0
\(163\) −4.35998 7.55170i −0.341500 0.591495i 0.643212 0.765688i \(-0.277601\pi\)
−0.984711 + 0.174194i \(0.944268\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.89862 + 15.4129i −0.688596 + 1.19268i 0.283696 + 0.958914i \(0.408439\pi\)
−0.972292 + 0.233769i \(0.924894\pi\)
\(168\) 0 0
\(169\) −2.31918 4.01695i −0.178399 0.308996i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.56015 + 16.5587i −0.726845 + 1.25893i 0.231366 + 0.972867i \(0.425681\pi\)
−0.958210 + 0.286065i \(0.907653\pi\)
\(174\) 0 0
\(175\) −0.262044 0.184017i −0.0198086 0.0139104i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.31891 + 3.07088i 0.397554 + 0.229528i 0.685428 0.728140i \(-0.259615\pi\)
−0.287874 + 0.957668i \(0.592948\pi\)
\(180\) 0 0
\(181\) 11.1208i 0.826604i 0.910594 + 0.413302i \(0.135625\pi\)
−0.910594 + 0.413302i \(0.864375\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.77460 4.80575i −0.203993 0.353326i
\(186\) 0 0
\(187\) −0.625475 0.361118i −0.0457393 0.0264076i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −12.9342 7.46759i −0.935889 0.540336i −0.0472195 0.998885i \(-0.515036\pi\)
−0.888669 + 0.458549i \(0.848369\pi\)
\(192\) 0 0
\(193\) 6.21387 + 10.7627i 0.447284 + 0.774719i 0.998208 0.0598363i \(-0.0190579\pi\)
−0.550924 + 0.834556i \(0.685725\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 16.1512i 1.15073i −0.817897 0.575364i \(-0.804860\pi\)
0.817897 0.575364i \(-0.195140\pi\)
\(198\) 0 0
\(199\) −21.5762 12.4571i −1.52950 0.883057i −0.999383 0.0351325i \(-0.988815\pi\)
−0.530117 0.847925i \(-0.677852\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.14022 0.190181i −0.150214 0.0133481i
\(204\) 0 0
\(205\) −1.35381 + 2.34487i −0.0945542 + 0.163773i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0910659 + 0.157731i 0.00629916 + 0.0109105i
\(210\) 0 0
\(211\) 5.78631 10.0222i 0.398346 0.689955i −0.595176 0.803595i \(-0.702918\pi\)
0.993522 + 0.113640i \(0.0362510\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −12.0982 20.9546i −0.825088 1.42909i
\(216\) 0 0
\(217\) −20.9943 1.86557i −1.42519 0.126643i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −9.94241 + 5.74025i −0.668799 + 0.386131i
\(222\) 0 0
\(223\) 13.9653 8.06285i 0.935183 0.539928i 0.0467358 0.998907i \(-0.485118\pi\)
0.888447 + 0.458979i \(0.151785\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.8036 1.31441 0.657206 0.753711i \(-0.271738\pi\)
0.657206 + 0.753711i \(0.271738\pi\)
\(228\) 0 0
\(229\) 15.6001i 1.03088i −0.856924 0.515442i \(-0.827628\pi\)
0.856924 0.515442i \(-0.172372\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.6450 6.14590i 0.697378 0.402631i −0.108992 0.994043i \(-0.534762\pi\)
0.806370 + 0.591411i \(0.201429\pi\)
\(234\) 0 0
\(235\) 7.89773 13.6793i 0.515191 0.892337i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.8058 + 7.97079i 0.893024 + 0.515588i 0.874930 0.484249i \(-0.160907\pi\)
0.0180934 + 0.999836i \(0.494240\pi\)
\(240\) 0 0
\(241\) 20.6872i 1.33258i 0.745693 + 0.666290i \(0.232119\pi\)
−0.745693 + 0.666290i \(0.767881\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −5.24869 14.5438i −0.335327 0.929167i
\(246\) 0 0
\(247\) 2.89513 0.184212
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.66566 −0.483852 −0.241926 0.970295i \(-0.577779\pi\)
−0.241926 + 0.970295i \(0.577779\pi\)
\(252\) 0 0
\(253\) 1.02110 0.0641961
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.9297 0.744157 0.372078 0.928201i \(-0.378645\pi\)
0.372078 + 0.928201i \(0.378645\pi\)
\(258\) 0 0
\(259\) −0.588325 + 6.62076i −0.0365568 + 0.411394i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.72501i 0.476345i 0.971223 + 0.238172i \(0.0765483\pi\)
−0.971223 + 0.238172i \(0.923452\pi\)
\(264\) 0 0
\(265\) −3.87841 2.23920i −0.238249 0.137553i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.98739 8.63841i 0.304086 0.526693i −0.672971 0.739669i \(-0.734982\pi\)
0.977058 + 0.212976i \(0.0683155\pi\)
\(270\) 0 0
\(271\) 3.61508 2.08717i 0.219600 0.126786i −0.386165 0.922430i \(-0.626200\pi\)
0.605765 + 0.795643i \(0.292867\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.0220160i 0.00132761i
\(276\) 0 0
\(277\) 4.45007 0.267379 0.133689 0.991023i \(-0.457318\pi\)
0.133689 + 0.991023i \(0.457318\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.5472 14.1723i 1.46436 0.845451i 0.465155 0.885229i \(-0.345999\pi\)
0.999209 + 0.0397785i \(0.0126652\pi\)
\(282\) 0 0
\(283\) −10.0427 + 5.79815i −0.596976 + 0.344664i −0.767851 0.640628i \(-0.778674\pi\)
0.170875 + 0.985293i \(0.445341\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.94119 1.36663i 0.173613 0.0806696i
\(288\) 0 0
\(289\) 0.618645 + 1.07152i 0.0363909 + 0.0630308i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.4199 + 24.9760i −0.842418 + 1.45911i 0.0454266 + 0.998968i \(0.485535\pi\)
−0.887845 + 0.460143i \(0.847798\pi\)
\(294\) 0 0
\(295\) −7.24302 12.5453i −0.421705 0.730414i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.11560 14.0566i 0.469337 0.812916i
\(300\) 0 0
\(301\) −2.56529 + 28.8686i −0.147861 + 1.66396i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −15.4017 8.89216i −0.881898 0.509164i
\(306\) 0 0
\(307\) 10.8117i 0.617059i 0.951215 + 0.308529i \(0.0998368\pi\)
−0.951215 + 0.308529i \(0.900163\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.59161 14.8811i −0.487185 0.843830i 0.512706 0.858564i \(-0.328643\pi\)
−0.999891 + 0.0147345i \(0.995310\pi\)
\(312\) 0 0
\(313\) −7.91893 4.57200i −0.447604 0.258425i 0.259214 0.965820i \(-0.416537\pi\)
−0.706818 + 0.707396i \(0.749870\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.984650 0.568488i −0.0553034 0.0319295i 0.472093 0.881549i \(-0.343499\pi\)
−0.527397 + 0.849619i \(0.676832\pi\)
\(318\) 0 0
\(319\) −0.0738670 0.127941i −0.00413576 0.00716334i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.97500i 0.221175i
\(324\) 0 0
\(325\) −0.303075 0.174981i −0.0168116 0.00970618i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.1580 + 7.97250i −0.945954 + 0.439538i
\(330\) 0 0
\(331\) 3.02394 5.23761i 0.166211 0.287885i −0.770874 0.636988i \(-0.780180\pi\)
0.937085 + 0.349102i \(0.113513\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.60957 + 13.1802i 0.415755 + 0.720110i
\(336\) 0 0
\(337\) 17.6873 30.6353i 0.963490 1.66881i 0.249871 0.968279i \(-0.419612\pi\)
0.713619 0.700534i \(-0.247055\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.724593 1.25503i −0.0392389 0.0679638i
\(342\) 0 0
\(343\) −4.86643 + 17.8695i −0.262762 + 0.964861i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.1007 11.6051i 1.07906 0.622995i 0.148417 0.988925i \(-0.452582\pi\)
0.930643 + 0.365929i \(0.119249\pi\)
\(348\) 0 0
\(349\) 12.7248 7.34667i 0.681144 0.393258i −0.119142 0.992877i \(-0.538014\pi\)
0.800286 + 0.599619i \(0.204681\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.4624 0.716533 0.358267 0.933619i \(-0.383368\pi\)
0.358267 + 0.933619i \(0.383368\pi\)
\(354\) 0 0
\(355\) 25.2178i 1.33842i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.5004 + 7.79444i −0.712522 + 0.411375i −0.811994 0.583666i \(-0.801618\pi\)
0.0994721 + 0.995040i \(0.468285\pi\)
\(360\) 0 0
\(361\) −8.99880 + 15.5864i −0.473621 + 0.820335i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.4994 + 12.9901i 1.17767 + 0.679930i
\(366\) 0 0
\(367\) 8.67003i 0.452572i −0.974061 0.226286i \(-0.927342\pi\)
0.974061 0.226286i \(-0.0726584\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.26040 + 4.86473i 0.117354 + 0.252564i
\(372\) 0 0
\(373\) −24.0978 −1.24774 −0.623868 0.781530i \(-0.714440\pi\)
−0.623868 + 0.781530i \(0.714440\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.34835 −0.120946
\(378\) 0 0
\(379\) 10.0778 0.517662 0.258831 0.965923i \(-0.416663\pi\)
0.258831 + 0.965923i \(0.416663\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.70476 −0.240402 −0.120201 0.992750i \(-0.538354\pi\)
−0.120201 + 0.992750i \(0.538354\pi\)
\(384\) 0 0
\(385\) 0.610958 0.870015i 0.0311373 0.0443401i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 21.5003i 1.09011i −0.838401 0.545055i \(-0.816509\pi\)
0.838401 0.545055i \(-0.183491\pi\)
\(390\) 0 0
\(391\) 19.2997 + 11.1427i 0.976030 + 0.563511i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.0372 24.3131i 0.706288 1.22333i
\(396\) 0 0
\(397\) −23.7548 + 13.7148i −1.19222 + 0.688327i −0.958809 0.284052i \(-0.908321\pi\)
−0.233408 + 0.972379i \(0.574988\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 29.2299i 1.45967i −0.683622 0.729836i \(-0.739596\pi\)
0.683622 0.729836i \(-0.260404\pi\)
\(402\) 0 0
\(403\) −23.0359 −1.14750
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.395786 + 0.228507i −0.0196184 + 0.0113267i
\(408\) 0 0
\(409\) 27.3564 15.7942i 1.35269 0.780974i 0.364061 0.931375i \(-0.381390\pi\)
0.988625 + 0.150401i \(0.0480565\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.53581 + 17.2833i −0.0755721 + 0.850455i
\(414\) 0 0
\(415\) −15.8834 27.5109i −0.779687 1.35046i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.80176 11.7810i 0.332288 0.575539i −0.650672 0.759359i \(-0.725513\pi\)
0.982960 + 0.183819i \(0.0588462\pi\)
\(420\) 0 0
\(421\) −14.8629 25.7432i −0.724372 1.25465i −0.959232 0.282620i \(-0.908797\pi\)
0.234860 0.972029i \(-0.424537\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.240248 0.416122i 0.0116537 0.0201849i
\(426\) 0 0
\(427\) 8.97636 + 19.3185i 0.434396 + 0.934887i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.6467 + 12.4977i 1.04268 + 0.601994i 0.920592 0.390525i \(-0.127707\pi\)
0.122091 + 0.992519i \(0.461040\pi\)
\(432\) 0 0
\(433\) 18.7778i 0.902401i −0.892423 0.451201i \(-0.850996\pi\)
0.892423 0.451201i \(-0.149004\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.80994 4.86696i −0.134418 0.232818i
\(438\) 0 0
\(439\) −1.82363 1.05287i −0.0870369 0.0502508i 0.455850 0.890057i \(-0.349335\pi\)
−0.542887 + 0.839806i \(0.682669\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.6452 + 6.72337i 0.553281 + 0.319437i 0.750444 0.660934i \(-0.229840\pi\)
−0.197163 + 0.980371i \(0.563173\pi\)
\(444\) 0 0
\(445\) −15.7131 27.2159i −0.744874 1.29016i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.42429i 0.350374i 0.984535 + 0.175187i \(0.0560530\pi\)
−0.984535 + 0.175187i \(0.943947\pi\)
\(450\) 0 0
\(451\) 0.193116 + 0.111496i 0.00909347 + 0.00525012i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −7.12093 15.3253i −0.333834 0.718462i
\(456\) 0 0
\(457\) 0.139009 0.240771i 0.00650257 0.0112628i −0.862756 0.505621i \(-0.831263\pi\)
0.869258 + 0.494358i \(0.164597\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.98573 + 6.90348i 0.185634 + 0.321527i 0.943790 0.330546i \(-0.107233\pi\)
−0.758156 + 0.652073i \(0.773900\pi\)
\(462\) 0 0
\(463\) 12.4572 21.5765i 0.578936 1.00275i −0.416666 0.909060i \(-0.636801\pi\)
0.995602 0.0936870i \(-0.0298653\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.4485 31.9538i −0.853695 1.47864i −0.877850 0.478935i \(-0.841023\pi\)
0.0241548 0.999708i \(-0.492311\pi\)
\(468\) 0 0
\(469\) 1.61353 18.1580i 0.0745059 0.838457i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.72576 + 0.996366i −0.0793504 + 0.0458130i
\(474\) 0 0
\(475\) −0.104937 + 0.0605852i −0.00481483 + 0.00277984i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.41169 −0.155884 −0.0779420 0.996958i \(-0.524835\pi\)
−0.0779420 + 0.996958i \(0.524835\pi\)
\(480\) 0 0
\(481\) 7.26460i 0.331237i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.64948 3.83908i 0.301938 0.174324i
\(486\) 0 0
\(487\) −1.17122 + 2.02861i −0.0530729 + 0.0919249i −0.891341 0.453333i \(-0.850235\pi\)
0.838268 + 0.545258i \(0.183568\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.65365 2.68678i −0.210016 0.121253i 0.391303 0.920262i \(-0.372025\pi\)
−0.601319 + 0.799009i \(0.705358\pi\)
\(492\) 0 0
\(493\) 3.22428i 0.145214i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.3591 + 24.7196i −0.778660 + 1.10883i
\(498\) 0 0
\(499\) −33.3813 −1.49435 −0.747175 0.664627i \(-0.768591\pi\)
−0.747175 + 0.664627i \(0.768591\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6.01630 −0.268254 −0.134127 0.990964i \(-0.542823\pi\)
−0.134127 + 0.990964i \(0.542823\pi\)
\(504\) 0 0
\(505\) 20.9964 0.934328
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.0398 0.445007 0.222503 0.974932i \(-0.428577\pi\)
0.222503 + 0.974932i \(0.428577\pi\)
\(510\) 0 0
\(511\) −13.1130 28.2213i −0.580087 1.24844i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.5212i 0.816143i
\(516\) 0 0
\(517\) −1.12658 0.650432i −0.0495470 0.0286059i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.8007 + 18.7074i −0.473188 + 0.819586i −0.999529 0.0306875i \(-0.990230\pi\)
0.526341 + 0.850274i \(0.323564\pi\)
\(522\) 0 0
\(523\) 11.6105 6.70332i 0.507692 0.293116i −0.224193 0.974545i \(-0.571974\pi\)
0.731884 + 0.681429i \(0.238641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 31.6283i 1.37775i
\(528\) 0 0
\(529\) −8.50726 −0.369881
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.06973 1.77231i 0.132965 0.0767672i
\(534\) 0 0
\(535\) 28.1208 16.2355i 1.21577 0.701924i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.19778 + 0.432265i −0.0515919 + 0.0186190i
\(540\) 0 0
\(541\) 4.53805 + 7.86013i 0.195106 + 0.337933i 0.946935 0.321424i \(-0.104162\pi\)
−0.751829 + 0.659358i \(0.770828\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −18.4581 + 31.9704i −0.790659 + 1.36946i
\(546\) 0 0
\(547\) 13.5359 + 23.4448i 0.578752 + 1.00243i 0.995623 + 0.0934620i \(0.0297934\pi\)
−0.416871 + 0.908966i \(0.636873\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.406545 + 0.704157i −0.0173194 + 0.0299981i
\(552\) 0 0
\(553\) −30.4962 + 14.1701i −1.29683 + 0.602574i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.8690 + 13.7808i 1.01136 + 0.583911i 0.911591 0.411099i \(-0.134855\pi\)
0.0997727 + 0.995010i \(0.468188\pi\)
\(558\) 0 0
\(559\) 31.6760i 1.33975i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6.92328 11.9915i −0.291781 0.505380i 0.682450 0.730933i \(-0.260915\pi\)
−0.974231 + 0.225552i \(0.927581\pi\)
\(564\) 0 0
\(565\) −2.63941 1.52387i −0.111041 0.0641095i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.5219 + 6.07485i 0.441103 + 0.254671i 0.704065 0.710135i \(-0.251366\pi\)
−0.262962 + 0.964806i \(0.584700\pi\)
\(570\) 0 0
\(571\) 23.1505 + 40.0979i 0.968819 + 1.67804i 0.698985 + 0.715136i \(0.253635\pi\)
0.269833 + 0.962907i \(0.413031\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.679329i 0.0283300i
\(576\) 0 0
\(577\) −10.6284 6.13630i −0.442465 0.255457i 0.262178 0.965020i \(-0.415559\pi\)
−0.704643 + 0.709562i \(0.748893\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −3.36792 + 37.9011i −0.139725 + 1.57240i
\(582\) 0 0
\(583\) −0.184413 + 0.319413i −0.00763762 + 0.0132287i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.9875 20.7630i −0.494778 0.856980i 0.505204 0.863000i \(-0.331417\pi\)
−0.999982 + 0.00601986i \(0.998084\pi\)
\(588\) 0 0
\(589\) −3.98798 + 6.90738i −0.164322 + 0.284614i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15.4912 + 26.8315i 0.636146 + 1.10184i 0.986271 + 0.165134i \(0.0528056\pi\)
−0.350125 + 0.936703i \(0.613861\pi\)
\(594\) 0 0
\(595\) 21.0416 9.77702i 0.862623 0.400819i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 21.4392 12.3779i 0.875981 0.505748i 0.00665010 0.999978i \(-0.497883\pi\)
0.869331 + 0.494230i \(0.164550\pi\)
\(600\) 0 0
\(601\) 7.67329 4.43017i 0.313000 0.180711i −0.335268 0.942123i \(-0.608827\pi\)
0.648268 + 0.761412i \(0.275494\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −24.2241 −0.984852
\(606\) 0 0
\(607\) 13.0415i 0.529339i 0.964339 + 0.264670i \(0.0852629\pi\)
−0.964339 + 0.264670i \(0.914737\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.9079 + 10.3391i −0.724475 + 0.418276i
\(612\) 0 0
\(613\) 5.90775 10.2325i 0.238612 0.413288i −0.721704 0.692201i \(-0.756641\pi\)
0.960316 + 0.278914i \(0.0899743\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.7906 + 7.96200i 0.555188 + 0.320538i 0.751212 0.660061i \(-0.229470\pi\)
−0.196024 + 0.980599i \(0.562803\pi\)
\(618\) 0 0
\(619\) 30.9231i 1.24291i 0.783452 + 0.621453i \(0.213457\pi\)
−0.783452 + 0.621453i \(0.786543\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −3.33180 + 37.4947i −0.133486 + 1.50219i
\(624\) 0 0
\(625\) −24.3802 −0.975209
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.97429 −0.397701
\(630\) 0 0
\(631\) 0.925450 0.0368416 0.0184208 0.999830i \(-0.494136\pi\)
0.0184208 + 0.999830i \(0.494136\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 26.4363 1.04909
\(636\) 0 0
\(637\) −3.56917 + 19.9244i −0.141416 + 0.789433i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.3482i 1.35667i −0.734752 0.678336i \(-0.762702\pi\)
0.734752 0.678336i \(-0.237298\pi\)
\(642\) 0 0
\(643\) 11.8373 + 6.83426i 0.466817 + 0.269517i 0.714906 0.699220i \(-0.246469\pi\)
−0.248089 + 0.968737i \(0.579803\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.1075 + 31.3630i −0.711877 + 1.23301i 0.252274 + 0.967656i \(0.418822\pi\)
−0.964152 + 0.265352i \(0.914512\pi\)
\(648\) 0 0
\(649\) −1.03319 + 0.596512i −0.0405562 + 0.0234151i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.5270i 1.42941i 0.699426 + 0.714705i \(0.253439\pi\)
−0.699426 + 0.714705i \(0.746561\pi\)
\(654\) 0 0
\(655\) −16.2437 −0.634695
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.5178 11.2686i 0.760305 0.438962i −0.0691004 0.997610i \(-0.522013\pi\)
0.829405 + 0.558648i \(0.188680\pi\)
\(660\) 0 0
\(661\) 1.29595 0.748216i 0.0504065 0.0291022i −0.474585 0.880210i \(-0.657402\pi\)
0.524991 + 0.851107i \(0.324068\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −5.82811 0.517890i −0.226004 0.0200829i
\(666\) 0 0
\(667\) 2.27925 + 3.94778i 0.0882529 + 0.152859i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.732330 + 1.26843i −0.0282713 + 0.0489673i
\(672\) 0 0
\(673\) 13.9366 + 24.1389i 0.537215 + 0.930484i 0.999053 + 0.0435197i \(0.0138571\pi\)
−0.461837 + 0.886965i \(0.652810\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 15.6344 27.0796i 0.600880 1.04075i −0.391809 0.920047i \(-0.628150\pi\)
0.992688 0.120707i \(-0.0385162\pi\)
\(678\) 0 0
\(679\) −9.16081 0.814037i −0.351560 0.0312399i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.06769 4.65788i −0.308701 0.178229i 0.337644 0.941274i \(-0.390370\pi\)
−0.646345 + 0.763045i \(0.723703\pi\)
\(684\) 0 0
\(685\) 36.2949i 1.38676i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.93139 + 5.07732i 0.111677 + 0.193431i
\(690\) 0 0
\(691\) 42.0468 + 24.2757i 1.59954 + 0.923493i 0.991576 + 0.129526i \(0.0413456\pi\)
0.607961 + 0.793967i \(0.291988\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24.7633 14.2971i −0.939324 0.542319i
\(696\) 0 0
\(697\) 2.43338 + 4.21473i 0.0921707 + 0.159644i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.9812i 0.867987i −0.900916 0.433994i \(-0.857104\pi\)
0.900916 0.433994i \(-0.142896\pi\)
\(702\) 0 0
\(703\) 2.17831 + 1.25765i 0.0821564 + 0.0474330i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.5816 14.4532i −0.774052 0.543569i
\(708\) 0 0
\(709\) −15.3433 + 26.5753i −0.576228 + 0.998057i 0.419679 + 0.907673i \(0.362143\pi\)
−0.995907 + 0.0903840i \(0.971191\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.3582 + 38.7255i 0.837319 + 1.45028i
\(714\) 0 0
\(715\) 0.580956 1.00625i 0.0217265 0.0376315i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.44166 4.22907i −0.0910584 0.157718i 0.816898 0.576782i \(-0.195692\pi\)
−0.907957 + 0.419064i \(0.862358\pi\)
\(720\) 0 0
\(721\) 12.7494 18.1554i 0.474812 0.676141i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0.0851181 0.0491430i 0.00316121 0.00182512i
\(726\) 0 0
\(727\) 32.7779 18.9243i 1.21567 0.701865i 0.251678 0.967811i \(-0.419018\pi\)
0.963988 + 0.265946i \(0.0856844\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −43.4911 −1.60858
\(732\) 0 0
\(733\) 46.3166i 1.71074i 0.518017 + 0.855370i \(0.326670\pi\)
−0.518017 + 0.855370i \(0.673330\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.08548 0.626700i 0.0399840 0.0230848i
\(738\) 0 0
\(739\) 5.15606 8.93056i 0.189669 0.328516i −0.755471 0.655182i \(-0.772592\pi\)
0.945140 + 0.326666i \(0.105925\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.9984 12.7008i −0.807042 0.465946i 0.0388856 0.999244i \(-0.487619\pi\)
−0.845928 + 0.533298i \(0.820953\pi\)
\(744\) 0 0
\(745\) 33.6537i 1.23298i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −38.7413 3.44258i −1.41557 0.125789i
\(750\) 0 0
\(751\) −53.7306 −1.96066 −0.980329 0.197369i \(-0.936760\pi\)
−0.980329 + 0.197369i \(0.936760\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 30.1783 1.09830
\(756\) 0 0
\(757\) 28.3821 1.03157 0.515783 0.856719i \(-0.327501\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.1184 −0.838041 −0.419021 0.907977i \(-0.637626\pi\)
−0.419021 + 0.907977i \(0.637626\pi\)
\(762\) 0 0
\(763\) 40.1008 18.6329i 1.45175 0.674556i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 18.9640i 0.684752i
\(768\) 0 0
\(769\) −23.1698 13.3771i −0.835524 0.482390i 0.0202163 0.999796i \(-0.493565\pi\)
−0.855740 + 0.517406i \(0.826898\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.97203 6.87976i 0.142864 0.247448i −0.785710 0.618595i \(-0.787702\pi\)
0.928574 + 0.371147i \(0.121035\pi\)
\(774\) 0 0
\(775\) 0.834960 0.482065i 0.0299927 0.0173163i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.22729i 0.0439721i
\(780\) 0 0
\(781\) −2.07686 −0.0743158
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.6013 + 13.0489i −0.806676 + 0.465734i
\(786\) 0 0
\(787\) −10.5602 + 6.09696i −0.376432 + 0.217333i −0.676265 0.736659i \(-0.736402\pi\)
0.299833 + 0.953992i \(0.403069\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.53829 + 3.31064i 0.0546954 + 0.117713i
\(792\) 0 0
\(793\) 11.6410 + 20.1627i 0.413382 + 0.715999i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 3.30173 5.71876i 0.116953 0.202569i −0.801606 0.597853i \(-0.796021\pi\)
0.918559 + 0.395284i \(0.129354\pi\)
\(798\) 0 0
\(799\) −14.1956 24.5875i −0.502204 0.869842i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.06982 1.85298i 0.0377531 0.0653903i
\(804\) 0 0
\(805\) −18.8518 + 26.8453i −0.664439 + 0.946173i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.57462 4.95056i −0.301468 0.174052i 0.341634 0.939833i \(-0.389020\pi\)
−0.643102 + 0.765780i \(0.722353\pi\)
\(810\) 0 0
\(811\) 33.1027i 1.16239i 0.813763 + 0.581197i \(0.197416\pi\)
−0.813763 + 0.581197i \(0.802584\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.63049 + 16.6805i 0.337341 + 0.584292i
\(816\) 0 0
\(817\) 9.49812 + 5.48374i 0.332297 + 0.191852i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 9.90100 + 5.71634i 0.345547 + 0.199502i 0.662722 0.748865i \(-0.269401\pi\)
−0.317175 + 0.948367i \(0.602734\pi\)
\(822\) 0 0
\(823\) 19.4509 + 33.6900i 0.678017 + 1.17436i 0.975577 + 0.219656i \(0.0704936\pi\)
−0.297561 + 0.954703i \(0.596173\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.05228i 0.280005i 0.990151 + 0.140003i \(0.0447111\pi\)
−0.990151 + 0.140003i \(0.955289\pi\)
\(828\) 0 0
\(829\) −11.3389 6.54652i −0.393816 0.227370i 0.289996 0.957028i \(-0.406346\pi\)
−0.683812 + 0.729658i \(0.739679\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −27.3561 4.90047i −0.947834 0.169791i
\(834\) 0 0
\(835\) 19.6556 34.0445i 0.680211 1.17816i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −5.51797 9.55740i −0.190501 0.329958i 0.754915 0.655822i \(-0.227678\pi\)
−0.945416 + 0.325864i \(0.894345\pi\)
\(840\) 0 0
\(841\) −14.1702 + 24.5436i −0.488629 + 0.846330i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.12271 + 8.87279i 0.176227 + 0.305233i
\(846\) 0 0
\(847\) 23.7456 + 16.6751i 0.815908 + 0.572962i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.2124 7.05085i 0.418637 0.241700i
\(852\) 0 0
\(853\) 20.2134 11.6702i 0.692092 0.399580i −0.112303 0.993674i \(-0.535823\pi\)
0.804395 + 0.594094i \(0.202489\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −18.2121 −0.622115 −0.311057 0.950391i \(-0.600683\pi\)
−0.311057 + 0.950391i \(0.600683\pi\)
\(858\) 0 0
\(859\) 39.1597i 1.33611i −0.744111 0.668057i \(-0.767126\pi\)
0.744111 0.668057i \(-0.232874\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 22.7847 13.1548i 0.775601 0.447793i −0.0592683 0.998242i \(-0.518877\pi\)
0.834869 + 0.550449i \(0.185543\pi\)
\(864\) 0 0
\(865\) 21.1168 36.5754i 0.717994 1.24360i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.00235 1.15606i −0.0679252 0.0392166i
\(870\) 0 0
\(871\) 19.9238i 0.675091i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 24.4918 + 17.1991i 0.827973 + 0.581434i
\(876\) 0 0
\(877\) 7.19666 0.243014 0.121507 0.992591i \(-0.461227\pi\)
0.121507 + 0.992591i \(0.461227\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −37.2133 −1.25375 −0.626874 0.779121i \(-0.715666\pi\)
−0.626874 + 0.779121i \(0.715666\pi\)
\(882\) 0 0
\(883\) 9.72629 0.327316 0.163658 0.986517i \(-0.447671\pi\)
0.163658 + 0.986517i \(0.447671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −20.6986 −0.694992 −0.347496 0.937681i \(-0.612968\pi\)
−0.347496 + 0.937681i \(0.612968\pi\)
\(888\) 0 0
\(889\) −25.9140 18.1978i −0.869129 0.610336i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.15962i 0.239587i
\(894\) 0 0
\(895\) −11.7486 6.78307i −0.392713 0.226733i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 3.23480 5.60284i 0.107887 0.186865i
\(900\) 0 0
\(901\) −6.97115 + 4.02480i −0.232243 + 0.134085i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 24.5641i 0.816539i
\(906\) 0 0
\(907\) 0.990928 0.0329032 0.0164516 0.999865i \(-0.494763\pi\)
0.0164516 + 0.999865i \(0.494763\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15.2170 + 8.78552i −0.504161 + 0.291077i −0.730430 0.682987i \(-0.760680\pi\)
0.226269 + 0.974065i \(0.427347\pi\)
\(912\) 0 0
\(913\) −2.26571 + 1.30811i −0.0749841 + 0.0432921i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.9228 + 11.1816i 0.525818 + 0.369250i
\(918\) 0 0
\(919\) −9.22417 15.9767i −0.304277 0.527024i 0.672823 0.739804i \(-0.265082\pi\)
−0.977100 + 0.212780i \(0.931748\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.5066 + 28.5903i −0.543322 + 0.941061i
\(924\) 0 0
\(925\) −0.152024 0.263313i −0.00499851 0.00865767i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.4712 18.1367i 0.343550 0.595046i −0.641539 0.767090i \(-0.721704\pi\)
0.985089 + 0.172044i \(0.0550372\pi\)
\(930\) 0 0
\(931\) 5.35647 + 4.51953i 0.175551 + 0.148122i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.38157 + 0.797652i 0.0451823 + 0.0260860i
\(936\) 0 0
\(937\) 27.1677i 0.887529i 0.896143 + 0.443764i \(0.146357\pi\)
−0.896143 + 0.443764i \(0.853643\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.42576 + 2.46949i 0.0464785 + 0.0805031i 0.888329 0.459208i \(-0.151867\pi\)
−0.841850 + 0.539711i \(0.818533\pi\)
\(942\) 0 0
\(943\) −5.95881 3.44032i −0.194046 0.112032i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −15.2662 8.81395i −0.496085 0.286415i 0.231010 0.972951i \(-0.425797\pi\)
−0.727095 + 0.686536i \(0.759130\pi\)
\(948\) 0 0
\(949\) −17.0056 29.4546i −0.552025 0.956136i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 47.1766i 1.52820i 0.645097 + 0.764101i \(0.276817\pi\)
−0.645097 + 0.764101i \(0.723183\pi\)
\(954\) 0 0
\(955\) 28.5697 + 16.4947i 0.924493 + 0.533756i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.9842 35.5779i 0.806780 1.14887i
\(960\) 0 0
\(961\) 16.2315 28.1139i 0.523598 0.906899i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.7255 23.7732i −0.441838 0.765286i
\(966\) 0 0
\(967\) −3.62809 + 6.28404i −0.116672 + 0.202081i −0.918447 0.395545i \(-0.870556\pi\)
0.801775 + 0.597626i \(0.203889\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 10.2653 + 17.7800i 0.329429 + 0.570588i 0.982399 0.186796i \(-0.0598104\pi\)
−0.652970 + 0.757384i \(0.726477\pi\)
\(972\) 0 0
\(973\) 14.4324 + 31.0608i 0.462683 + 0.995764i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.7545 + 22.3749i −1.23987 + 0.715838i −0.969067 0.246798i \(-0.920622\pi\)
−0.270800 + 0.962636i \(0.587288\pi\)
\(978\) 0 0
\(979\) −2.24142 + 1.29408i −0.0716360 + 0.0413591i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −26.9099 −0.858293 −0.429146 0.903235i \(-0.641186\pi\)
−0.429146 + 0.903235i \(0.641186\pi\)
\(984\) 0 0
\(985\) 35.6755i 1.13672i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 53.2502 30.7440i 1.69326 0.977602i
\(990\) 0 0
\(991\) 13.8668 24.0181i 0.440494 0.762959i −0.557232 0.830357i \(-0.688136\pi\)
0.997726 + 0.0673982i \(0.0214698\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 47.6585 + 27.5156i 1.51088 + 0.872304i
\(996\) 0 0
\(997\) 22.4382i 0.710624i 0.934748 + 0.355312i \(0.115625\pi\)
−0.934748 + 0.355312i \(0.884375\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.cx.a.17.7 48
3.2 odd 2 504.2.cx.a.185.8 yes 48
4.3 odd 2 3024.2.df.e.17.7 48
7.5 odd 6 1512.2.bs.a.1097.7 48
9.2 odd 6 1512.2.bs.a.521.7 48
9.7 even 3 504.2.bs.a.353.15 yes 48
12.11 even 2 1008.2.df.e.689.17 48
21.5 even 6 504.2.bs.a.257.15 48
28.19 even 6 3024.2.ca.e.2609.7 48
36.7 odd 6 1008.2.ca.e.353.10 48
36.11 even 6 3024.2.ca.e.2033.7 48
63.47 even 6 inner 1512.2.cx.a.89.7 48
63.61 odd 6 504.2.cx.a.425.8 yes 48
84.47 odd 6 1008.2.ca.e.257.10 48
252.47 odd 6 3024.2.df.e.1601.7 48
252.187 even 6 1008.2.df.e.929.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.15 48 21.5 even 6
504.2.bs.a.353.15 yes 48 9.7 even 3
504.2.cx.a.185.8 yes 48 3.2 odd 2
504.2.cx.a.425.8 yes 48 63.61 odd 6
1008.2.ca.e.257.10 48 84.47 odd 6
1008.2.ca.e.353.10 48 36.7 odd 6
1008.2.df.e.689.17 48 12.11 even 2
1008.2.df.e.929.17 48 252.187 even 6
1512.2.bs.a.521.7 48 9.2 odd 6
1512.2.bs.a.1097.7 48 7.5 odd 6
1512.2.cx.a.17.7 48 1.1 even 1 trivial
1512.2.cx.a.89.7 48 63.47 even 6 inner
3024.2.ca.e.2033.7 48 36.11 even 6
3024.2.ca.e.2609.7 48 28.19 even 6
3024.2.df.e.17.7 48 4.3 odd 2
3024.2.df.e.1601.7 48 252.47 odd 6