Properties

Label 2-9280-1.1-c1-0-204
Degree $2$
Conductor $9280$
Sign $-1$
Analytic cond. $74.1011$
Root an. cond. $8.60820$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s − 4·11-s + 2·13-s + 2·15-s − 4·19-s − 4·23-s + 25-s − 4·27-s + 29-s − 4·31-s − 8·33-s + 8·37-s + 4·39-s − 2·41-s − 2·43-s + 45-s + 2·47-s − 7·49-s + 14·53-s − 4·55-s − 8·57-s − 4·59-s − 2·61-s + 2·65-s + 4·67-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s − 1.20·11-s + 0.554·13-s + 0.516·15-s − 0.917·19-s − 0.834·23-s + 1/5·25-s − 0.769·27-s + 0.185·29-s − 0.718·31-s − 1.39·33-s + 1.31·37-s + 0.640·39-s − 0.312·41-s − 0.304·43-s + 0.149·45-s + 0.291·47-s − 49-s + 1.92·53-s − 0.539·55-s − 1.05·57-s − 0.520·59-s − 0.256·61-s + 0.248·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9280\)    =    \(2^{6} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(74.1011\)
Root analytic conductor: \(8.60820\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
29 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64645176412998051295674141773, −6.74767650322653115866862816627, −5.94243374697725297711657227774, −5.41841474305090309175653044136, −4.41514848466740474103794523314, −3.75503784584083282805677446262, −2.83688006836849780274397501180, −2.38260142152677273193226584705, −1.53248742561401324339137470807, 0, 1.53248742561401324339137470807, 2.38260142152677273193226584705, 2.83688006836849780274397501180, 3.75503784584083282805677446262, 4.41514848466740474103794523314, 5.41841474305090309175653044136, 5.94243374697725297711657227774, 6.74767650322653115866862816627, 7.64645176412998051295674141773

Graph of the $Z$-function along the critical line