L(s) = 1 | + 5·9-s + 6·11-s − 4·16-s + 8·19-s − 4·29-s + 14·41-s − 11·49-s − 8·61-s − 30·71-s + 24·79-s + 16·81-s + 8·89-s + 30·99-s − 10·101-s + 32·109-s + 5·121-s + 127-s + 131-s + 137-s + 139-s − 20·144-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + ⋯ |
L(s) = 1 | + 5/3·9-s + 1.80·11-s − 16-s + 1.83·19-s − 0.742·29-s + 2.18·41-s − 1.57·49-s − 1.02·61-s − 3.56·71-s + 2.70·79-s + 16/9·81-s + 0.847·89-s + 3.01·99-s − 0.995·101-s + 3.06·109-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 855625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 855625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.916729473\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.916729473\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29883822079331656807726094709, −9.648199182049271574205442442906, −9.355469487477673851181236714466, −9.291183712213893153827401128671, −8.860487452846874021455137294794, −8.059017778010705528728782210761, −7.64126389519372121167664886496, −7.21524436642249174260474723064, −7.07383170386774211071998019693, −6.39624914642318759474885510393, −6.13973152908746942882554894416, −5.55410042878517579377978228021, −4.76001955473198647244417968799, −4.54385233423212239601255360530, −4.06303102487752304895733821289, −3.53259304262641880095525664206, −3.03025300731379696849968531194, −2.04390162925547804785771964609, −1.50595709374352737261906253919, −0.918523189452766087992089119907,
0.918523189452766087992089119907, 1.50595709374352737261906253919, 2.04390162925547804785771964609, 3.03025300731379696849968531194, 3.53259304262641880095525664206, 4.06303102487752304895733821289, 4.54385233423212239601255360530, 4.76001955473198647244417968799, 5.55410042878517579377978228021, 6.13973152908746942882554894416, 6.39624914642318759474885510393, 7.07383170386774211071998019693, 7.21524436642249174260474723064, 7.64126389519372121167664886496, 8.059017778010705528728782210761, 8.860487452846874021455137294794, 9.291183712213893153827401128671, 9.355469487477673851181236714466, 9.648199182049271574205442442906, 10.29883822079331656807726094709