| L(s) = 1 | − 3·2-s − 2·3-s + 4·4-s − 3·5-s + 6·6-s − 5·7-s − 3·8-s − 3·9-s + 9·10-s − 8·12-s − 2·13-s + 15·14-s + 6·15-s + 3·16-s − 6·17-s + 9·18-s − 12·20-s + 10·21-s + 6·24-s + 25-s + 6·26-s + 14·27-s − 20·28-s − 3·29-s − 18·30-s + 3·31-s − 6·32-s + ⋯ |
| L(s) = 1 | − 2.12·2-s − 1.15·3-s + 2·4-s − 1.34·5-s + 2.44·6-s − 1.88·7-s − 1.06·8-s − 9-s + 2.84·10-s − 2.30·12-s − 0.554·13-s + 4.00·14-s + 1.54·15-s + 3/4·16-s − 1.45·17-s + 2.12·18-s − 2.68·20-s + 2.18·21-s + 1.22·24-s + 1/5·25-s + 1.17·26-s + 2.69·27-s − 3.77·28-s − 0.557·29-s − 3.28·30-s + 0.538·31-s − 1.06·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.63904160802417821624663628691, −13.16371348442870399093902062507, −12.42643715581397599566395255420, −11.93305911788362475343826251061, −11.45890042196068561769156560531, −11.21711552819622516178340218458, −10.25644898687776839236866277489, −10.12907394878540675614875167831, −9.395539239652842239684726576896, −8.791491402927148758584956909343, −8.434338348736293880930741680040, −7.88654935467074101815542443262, −6.78328450407209927392109956700, −6.76391275547223292903500878979, −5.86769882254247262044039795784, −4.99121960582268942783276276215, −3.72903192561893816413158387599, −2.84908049331121638651684860775, 0, 0,
2.84908049331121638651684860775, 3.72903192561893816413158387599, 4.99121960582268942783276276215, 5.86769882254247262044039795784, 6.76391275547223292903500878979, 6.78328450407209927392109956700, 7.88654935467074101815542443262, 8.434338348736293880930741680040, 8.791491402927148758584956909343, 9.395539239652842239684726576896, 10.12907394878540675614875167831, 10.25644898687776839236866277489, 11.21711552819622516178340218458, 11.45890042196068561769156560531, 11.93305911788362475343826251061, 12.42643715581397599566395255420, 13.16371348442870399093902062507, 13.63904160802417821624663628691