Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 154 x^{2} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.0608868240001$, $\pm0.939113176000$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{5})\) |
Galois group: | $C_2^2$ |
Jacobians: | $32$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6736$ | $45373696$ | $326939903824$ | $2251349144211456$ | $15516041189848086736$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6582$ | $571788$ | $47438446$ | $3939040644$ | $326939434278$ | $27136050989628$ | $2252292224444638$ | $186940255267540404$ | $15516041192490320022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=x^6+8 x^5+42 x^4+57 x^3+9 x^2+19 x+22$
- $y^2=45 x^6+51 x^5+4 x^4+8 x^3+80 x^2+65 x+29$
- $y^2=7 x^6+56 x^5+75 x^4+71 x^3+6 x^2+15 x+21$
- $y^2=45 x^6+16 x^5+34 x^4+75 x^3+67 x^2+79 x+4$
- $y^2=72 x^6+53 x^5+55 x^4+33 x^3+63 x^2+38 x+48$
- $y^2=47 x^6+37 x^5+39 x^4+77 x^3+77 x^2+77 x+1$
- $y^2=47 x^6+3 x^5+20 x^4+80 x^3+21 x^2+28 x+29$
- $y^2=13 x^6+45 x^5+59 x^4+23 x^3+82 x^2+47 x+38$
- $y^2=67 x^6+10 x^5+49 x^4+12 x^3+71 x^2+9 x+33$
- $y^2=56 x^6+32 x^5+37 x^4+79 x^3+69 x^2+21 x+68$
- $y^2=36 x^6+81 x^5+47 x^4+57 x^3+27 x^2+30 x+73$
- $y^2=14 x^6+44 x^5+4 x^4+39 x^3+66 x^2+27 x+38$
- $y^2=72 x^6+42 x^5+41 x^4+27 x^3+14 x^2+60 x+25$
- $y^2=50 x^6+76 x^5+27 x^4+42 x^3+29 x^2+43 x+41$
- $y^2=51 x^6+19 x^5+23 x^4+41 x^3+61 x^2+77 x+10$
- $y^2=8 x^6+62 x^5+38 x^4+18 x^3+53 x^2+46 x+70$
- $y^2=66 x^6+73 x^5+40 x^4+49 x^3+50 x^2+69 x+39$
- $y^2=30 x^6+54 x^5+63 x^4+71 x^3+74 x^2+32 x+27$
- $y^2=12 x^6+20 x^5+82 x^4+50 x^3+51 x^2+62 x+45$
- $y^2=43 x^6+81 x^5+55 x^4+31 x^3+30 x^2+68 x+25$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{5})\). |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.afy 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-15}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.ag_dr | $3$ | (not in LMFDB) |
2.83.g_dr | $3$ | (not in LMFDB) |
2.83.a_fy | $4$ | (not in LMFDB) |